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Abstract: Beta-lactam antibiotics have been a major climacteric in medicine for being the first bacteri-
cidal compound available for clinical use. They have continually been prescribed since their devel-
opment in the 1940s, and their application has saved an immeasurable number of lives. With such
immense use, the rise in antibiotic resistance has truncated the clinical efficacy of these compounds.
Nevertheless, the synergism of combinational antibiotic therapy has allowed these drugs to burgeon
once again. Here, the development of meropenem with vaborbactam—a recently FDA-approved
beta-lactam combinational therapy—is reviewed in terms of structure rationale, activity gamut,
pharmacodynamic/pharmacokinetic properties, and toxicity to provide insight into the future devel-
opment of analogous therapies.
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1. Introduction

The first beta-lactam antibiotic, penicillin, became available in the 1940s, and it proved
to be a life-saving treatment for what would be considered a minor infection today [1].
For its cardinal role in medicine, the Nobel Prize was awarded to its developers; Fleming,
Chain, and Florey, in 1945 [2]. The discovery, isolation, and development of penicillin
initiated the research leading to the discovery of many other fermentation products used
as antibiotics [2]. To no surprise, beta-lactams have become the largest class of antibiotics
today, covering 65% of the market, and are the inspiration for modern treatments like
meropenem/vaborbactam [3]. The mechanism of action of beta-lactam antibiotics involves
covalent inhibition of a peptidoglycan transpeptidase in the bacterial cell wall, known
as penicillin-binding protein [4,5]. Penicillin-binding protein catalyzes the crosslinking
of peptidoglycan layers within the cell wall, providing structure and integrity to the
cell [6]. When beta-lactams bind to penicillin-binding protein, the structural integrity
of peptidoglycan cross-linkage is compromised, and the cells are susceptible to lysis by
osmotic pressure [7]. The specificity of beta-lactams to their non-eukaryotic target and
well-established pharmacokinetics/pharmacodynamics renders them the primary choice
for physicians when treating bacterial infections [8].

Beta-lactams consist of five separate categories based on their chemical structure,
but consistent within them all is the beta-lactam ring composed of three carbons and one
nitrogen [1]. These include penicillins, cephalosporins, carbapenems, and monobactams [5].
Figure 1 shows the structural differences between the different classes of beta-lactams.
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Figure 1. Structural classification of beta-lactams. 

With beta-lactams being the most commonly prescribed antibiotic, resistance to 
treatment was bound to occur. In fact, Alexander Fleming predicted this himself due to 
the “era of overuse” [9]. As warned, widespread resistance to penicillin became common 
within ten years of its introduction to the market [10]. Resistance to beta-lactams, 
specifically, is induced primarily through the expression of hydrolytic enzymes known as 
beta-lactamases [11,12]. Beta-lactamases utilize a serine residue as a nucleophile to attack 
the carbonyl carbon of the beta-lactam ring, leading to the hydrolysis and deactivation of 
the beta-lactam antibiotic [13]. To overcome beta-lactamase-induced resistance to beta-
lactam antibiotics, the combinational administration of a beta-lactam with a beta-
lactamase inhibitor to prevent enzymatic hydrolyzation was first demonstrated with 
amoxicillin and clavulanic acid in 1981 [14]. The development of a new class of potent β-
lactamase inhibitors to address the existing β-lactam antibiotic resistance offers the 
greatest opportunity for maximizing the efficacy of combination antimicrobial therapy, 
aiming to preserve the potency of existing β-lactam antibiotics. There are currently six 
beta-lactamase inhibitors available for use in combinational therapy, as shown in Figure 
2 [15]. 

 
Figure 2. Structure of FDA-approved beta-lactamase inhibitors. 

From Figure 2, notice that clavulanate, sulbactam, and tazobactam all contain beta-
lactam rings, whereas avibactam, relebactam, and vaborbactam do not. The beta-lactam-
containing inhibitors are effective against primarily class A and C serine beta-lactamases 
by forming sterically unfavorable acyl-enzyme interactions [15,16]. The latter beta-
lactamase inhibitors, the non-beta-lactams, covalently bind to a serine residue consistent 
in the active site of beta-lactamases, permanently inactivating them via suicide inhibition 
[15]. The diazabicyclooctane inhibitors, avibactam and relebactam, were meant to be 
broad-spectrum inhibitors of class A, C, and some D beta-lactamases and have proven to 
be efficacious, even inadvertently, against the very prevalent Klebsiella pneumoniae 
carbapenemase (KPC) [17]. However, there have already been reports of reduced potency 

Figure 1. Structural classification of beta-lactams.

With beta-lactams being the most commonly prescribed antibiotic, resistance to treat-
ment was bound to occur. In fact, Alexander Fleming predicted this himself due to the
“era of overuse” [9]. As warned, widespread resistance to penicillin became common
within ten years of its introduction to the market [10]. Resistance to beta-lactams, specifi-
cally, is induced primarily through the expression of hydrolytic enzymes known as beta-
lactamases [11,12]. Beta-lactamases utilize a serine residue as a nucleophile to attack the
carbonyl carbon of the beta-lactam ring, leading to the hydrolysis and deactivation of the
beta-lactam antibiotic [13]. To overcome beta-lactamase-induced resistance to beta-lactam
antibiotics, the combinational administration of a beta-lactam with a beta-lactamase in-
hibitor to prevent enzymatic hydrolyzation was first demonstrated with amoxicillin and
clavulanic acid in 1981 [14]. The development of a new class of potent β-lactamase in-
hibitors to address the existing β-lactam antibiotic resistance offers the greatest opportunity
for maximizing the efficacy of combination antimicrobial therapy, aiming to preserve the
potency of existing β-lactam antibiotics. There are currently six beta-lactamase inhibitors
available for use in combinational therapy, as shown in Figure 2 [15].
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From Figure 2, notice that clavulanate, sulbactam, and tazobactam all contain beta-
lactam rings, whereas avibactam, relebactam, and vaborbactam do not. The beta-lactam-
containing inhibitors are effective against primarily class A and C serine beta-lactamases by
forming sterically unfavorable acyl-enzyme interactions [15,16]. The latter beta-lactamase
inhibitors, the non-beta-lactams, covalently bind to a serine residue consistent in the active
site of beta-lactamases, permanently inactivating them via suicide inhibition [15]. The
diazabicyclooctane inhibitors, avibactam and relebactam, were meant to be broad-spectrum
inhibitors of class A, C, and some D beta-lactamases and have proven to be efficacious, even
inadvertently, against the very prevalent Klebsiella pneumoniae carbapenemase (KPC) [17].
However, there have already been reports of reduced potency to these diazabicyclooctane
inhibitors due to mutations in the target enzymes both clinically and in vitro [16,18–20].
Reports of treatment failure and relapse due to resistance developing within the duration of
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therapy have also been reported [17,21,22]. Vaborbactam, the only beta-lactamase inhibitor
that is a cyclic boronic acid, was also developed to be a broad-spectrum inhibitor with
specific potency for KPC in mind [17,23].

2. Structural Development of Vaborbactam

Boronic acids, like vaborbactam, have been previously shown to have inhibitory
activity against serine proteases but were first investigated for their activity against beta-
lactamases by Oxford University in the late 1970s [23–26]. The cyclic boronic acid structure
of vaborbactam was inspired by the work of Ness et al., who hypothesized that the phenolic
hydroxyl group of their lead compound might induce the formation of a cyclic boronate
ester upon binding [27]. Hecker et al. thought that a cyclic boronate ester would ideally
constrain the compounds into the preferred conformation for docking while also providing
higher selectivity for beta-lactamases, rather than other mammalian serine proteases, which
form a more linear transition state profile [26]. In silico modeling of non-covalent interac-
tions was conducted to determine which compounds had a high affinity for the active site,
which would ultimately allow for the rapid formation of the covalent interaction [26]. The
highest-ranking inhibitor from in silico docking is shown in Figure 3. The lead compound
was tested with multiple substituents, including N-acetyl, phenylacetyl, 2-thienyl acetyl,
aminothiazole, aminopyridyl, and various hydroxyl group configurations, before finding
the most potent confirmation, a thiophene, shown in Figure 3 [26].
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Figure 3. The cyclic boronate ester substructure of Vaborbactam and the thiophene substituent slated
for attachment to the R1 group. The addition of the thiophene R group to cyclic boronate ester forms
what is now known as vaborbactam.

The final product after the addition of the thiophene to the cyclic boronate ester,
vaborbactam, confirmed its binding mechanism through X-ray diffraction. The exact
binding mechanism against KPC-2 is shown in Figure 4 (PDB ID: 6V7I) [28].
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Figure 4. X-ray structure of vaborbactam in complex with KPC-2. Ser70 of KPC-2 (gray) covalently
bound to boron in vaborbactam (cyan). Other significant pharmacophores include hydrogen bonding
of the acetyl group with Ser130 and Arg220. The amide also contributes to the high affinity of
vaborbactam in the oxyanion hole with hydrogen bonding between Thr237. The thiophene utilizes
the hydrophobic effect, as seen by the solvent exposure, shielding, and securing vaborbactam to the
binding site while also undergoing pi-pi stacking with Trp105.
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As previously stated, vaborbactam was developed as a broad-spectrum inhibitor, but
KPC beta-lactamases were of specific interest. Vaborbactam achieves nanomolar Ki values
for KPC by interactions formed within the oxyanion hole due to its non-linear, cyclic struc-
ture [28]. Vaborbactam is unique in this manner because it is the only inhibitor that is able
to form an additional hydrogen bond with Thr237 via the exocyclic hydroxyl group [28–30].
This additional bond is consistent in complexes with CTX-M-14, but threonine is replaced
by a serine [28]. This unique interaction of vaborbactam could be utilized in future in-
hibitor development as it seems to contribute to the high affinity and broad-spectrum
activity of vaborbactam. Table 1 shows the inhibition constants of vaborbactam against
various beta-lactamases.

Table 1. Inhibition activity of vaborbactam.

Enzyme Class Ki (µM)

KPC-2 A 0.069
KPC-3 A 0.050

CTX-M-14 A 0.033
CTX-M-15 A 0.030

SHV-12 A 0.029
TEM-10 A 0.110
TEM-43 A 1.04
AmpC C 0.035

P99 C 0.053
CMY-2 C 0.099

OXA-48 D 14
OXA-23 D 66
NDM-1 B >160
VIM-1 B >160

References [16,26]

Vaborbactam was tested with a range of beta-lactams including cephalosporins and
monobactams but proved most effective in combination with meropenem, a carbapenem [23].
The physical and chemical properties of meropenem and vaborbactam can be seen in Table 2.

Table 2. Physical and chemical properties of meropenem and vaborbactam.

Property Meropenem Vaborbactam

LogP −0.6 1.86
pKa 3.47/9.39 3.75/−2.6

Molecular Weight 383.5 g/mol 297.14 g/mol
Formal Charge 0 0

Solubility in Water 5.63 mg/mL 0.155 mg/mL
H-Bond Donors 3 3

H-Bond Acceptors 7 6
Rotatable Bonds 5 5

References [31–34]

Meropenem was developed in the 1980s as a “me better” drug to the former a
N-formimidoylthienamycin derivative, imipenem [35]. Imipenem was rapidly hydrolyzed
by dehydropeptidase-I (DHP-1) in the renal tubules [35]. This led to reduced absorption
into the urinary tract, reducing efficacy in urinary tract infections while also causing prox-
imal tubular necrosis when given in high doses to achieve sufficient concentrations to
treat cognate infections [35]. Meropenem was chemically optimized to avoid the issues of
imipenem, which can be seen in Figure 5 by the structure–activity relationships as described
by Drusano [35].
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From left to right, the key structural differences in meropenem shown in blue circles include the C1

methyl group and the C2 pyrrolidine-3-thiol group.

The C1 methyl group improved the stability of meropenem in DHP-1, allowing for
higher concentrations of the drug to reach the urinary tract [35]. A recently approved
combinational therapy, Recarbio, includes imipenem (carbapenem), relebactam (diazabi-
cyclooctane beta-lactamase inhibitor), and cilistatin (DHP-1 inhibitor) [36]. The critical
advantage of the meropenem/vaborbactam combinational therapy, known as Vaborem, is
that there is no need to include a DHP-1 inhibitor because of the stability the C1 methyl
group provides in DHP-1 [35,37,38]. Clinical trials show that 60–80% of meropenem reaches
the urinary tract without combining it with a DHP-1 inhibitor due to resistance to DHP-1
provided by the C1 methyl group [37]. Cilistatin, a DHP-1 inhibitor, is given at a 1:1 ratio
to imipenem in Recarbio; however, pharmacokinetic data shows that they are eliminated
at different rates, meaning that the dosages would have to be adjusted for the continued
treatment to be safe [39]. Additionally, the C2 pyrrolidine-3-thiol substituent increases the
activity in gram-negative pathogens while also allowing for greater tolerance in the central
nervous system [35].

Clinical Use and PD/PK Data

The combination of meropenem and vaborbactam was approved by the FDA in
2017 for the treatment of patients aged 18 years and older with complicated urinary tract
infections, including pyelonephritis, caused by Enterobacteriaceae [40]. Although this is
the only FDA-approved use of the combinational therapy, it will likely be used to treat
multi-drug resistant infections acquired nosocomialy [41]. The meropenem/vaborbactam
combination should be administered every 8 h by intravenous infusion over 3 h for up to 14
days [40]. Meropenem has time-dependent bactericidal activity; therefore, the best indicator
for dosage is the level of free drug that exceeds the MIC, also known as %T>ƒMIC [42]. With
the FDA-approved dosage, free meropenem levels should exceed 8 mg/L for at least
40% of the interval [42]. Data from the studies below show that this concentration was
maintained. Pharmacokinetic data from 91 non-infected patients in phase 1 studies and
from 322 infected patients in phase 3 trials can be seen in Tables 3 and 4, respectively.
Importantly, the pharmacokinetics of meropenem and vaborbactam are well correlated,
allowing for simplistic dosage regimes.

Table 3. Pharmacokinetic data from non-infected patients in phase 1 studies.

Parameter Meropenem Vaborbactam

CLR,max (L/h) 6.58 8.86
CLNR (L/h) 3.85 0.157
CLd (L/h) 1.36 2.75

Vc (L) 17.0 17.1
Vp (L) 2.32 1.77

eGFR50 (mL/min/1.73 m2) 40.0 49.7

Reference [43]
CLR—renal clearance, CLNR—non-renal clearance, CLd—distributional clearance, Vc—central compartment
volume, Vp—peripheral compartment volume, eGFR50—eGFR value at half-maximal CLR.
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Table 4. Pharmacokinetic data from phase 3 clinical trials.

Parameter Meropenem Vaborbactam

Cmax (µg/mL) 55.4 68.7
Day 1 AUC0–24 (µg h/mL) 593 776

Steady-state AUC0–24 (µg h/mL) 586 766
CL (L/h) 8.68 6.22
t1/2,alpha 0.771 0.379
t1/2,beta 1.89 2.04

Reference [43]
Data pooled from studies 505 and 506. Cmax—highest concentration observed during the first interval.

Data from Trang et al., shown in Table 3, indicates that both meropenem and vabor-
bactam are primarily cleared by the kidneys (CLR) [43]. Another study done by Rubino
et al. showed that the simultaneous administration of these two drugs does not affect
plasma pharmacokinetics or renal clearance [44]. This same study showed that 47–64% of
meropenem is excreted in the urine unchanged, and 81–95% of vaborbactam was excreted
in the urine unchanged over the same time period, further validating the primary clearance
route, indicating there are minimal, if any, toxic metabolites [44].

Rubino et al. also evaluated the safety and tolerability of vaborbactam and meropenem
in combination and individually. Plasma pharmacokinetic exposure measurements (Cmax,
AUC0–t, and AUC0–inf) all validated that exposure to vaborbactam or meropenem alone, or
in combination, was no different, providing credibility of no drug-drug interactions [44].
Adverse events of vaborbactam and meropenem in combination mimic that of meropenem
given independently [44–47]. A list of the most common adverse events can be seen
in Table 5.

Table 5. Adverse events recorded from clinical trials.

Adverse Event Meropenem Vaborbactam Meropenem +
Vaborbactam

Headache 0.4 29.2 8.8
Diarrhea 2.5 ND 3.3

Nausea/Lathargy 1.2 20.8 1.8
Rash 1.4 12.5 ND

Injection site reaction 0.9 41.7 2.2
Sepsis 0.1 ND ND

Reference [46] [44] [45]
Represented as the percentage of the population that experienced the event; ND represents no data.

Notable differences from Table 5 include a higher percentage of headaches and in-
jection site reactions that occurred when vaborbactam was included. Although higher,
the relative trend of adverse events is relatively unchanged and mild. Hepatoxicity of
meropenem has been reported in 1–6% of recipients via elevated serum aminotransferase
levels when given for up to 14 days [48]. However, the elevated serum levels are usually
transient, mild, and asymptomatic, with dosage adjustments rarely required [48]. There
have also been rare cases of cholestatic jaundice linked to meropenem treatment [48]. There
has been one case reported indicating that meropenem treatment induced vanishing vile
duct syndrome and one other case where a patient experienced acute, generalized exan-
thematous pustulosis [49,50]. Aside from these rare incidences, meropenem is generally
a well-tolerated treatment. There have not been much data published demonstrating the
toxicity of vaborbactam alone, but it also has been well tolerated clinically, most likely
due to its design. As previously mentioned, its cyclic structure reduces its affinity for
mammalian serine proteases, which have a more linear active site [26]. The IC50 values of
vaborbactam for mammalian serine proteases are shown in Table 6. The specificity for the
target enzyme, and not adverse enzymes, is key to its tolerability and minimal side effects.
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Table 6. IC50 values of vaborbactam against mammalian serine proteases.

Enzyme IC50 (µM)

Trypsin >1000
Chymotrypsin >1000

Plasmin >1000
Thrombin >1000
Elastase >1000

Urokinase >1000
Tissue plasminogen activator (TPA) >1000

Chymase >1000
D-dipeptidyl peptidase 7 (DPP7) >1000

Neutrophil elastase >1000
Cathepsin A 1000

Reference [26]

3. Discussion and Conclusions

Meropenem/vaborbactam is a unique combinational therapy because the structure
of its inhibitor is boronic acid. For this reason, it can be expected to raise new ideas in the
structural development of future combinational therapies. As shown, vaborbactam has
broad-spectrum activity against all serine beta-lactamases but lacks affinity for the class B,
metallo-beta-lactamases. There are currently no FDA-approved combinational therapies
for class B-expressing pathogens [12]. Many are in development; however, they all are
relatively specific to a few of the enzymes in this class and lack affinity for serine beta-
lactamases [51]. The development of a beta-lactamase inhibitor that is effective against the
entire spectrum of beta-lactamases would be an entirely new treatment option. Additionally,
most pathogens carrying metallo-beta-lactamases also carry serine beta-lactamses [52–55].
Therefore, without combating both classes, a metallo-beta-lactamase inhibitor will most
likely be ineffective, as the serine beta-lactamases would still induce resistance. The
clinical use of meropenem/vaborbactam is still relatively new; therefore, its clinical efficacy
against metallo-beta-lactamases in combination with other inhibitors is still unknown [56].
Another strategy could be adding a class B specific inhibitor to an already approved
combination therapy for serine beta-lactamases, such as meropenem/vaborbactam. This
development process could potentially be fast-tracked to approvable if added to an already
approved therapy as their therapeutic potential is already well documented. This strategy
was shown to be successful using meropenem/vaborbactam/aztreonam combination to
treat New Delhi beta-lactamase-expressing Klebsiella pneumoniae [57,58]. The established
pharmacokinetics and pharmacodynamics of beta-lactams make them ideal for use in
combinational therapies. They have been proven to be efficacious when they can reach
their target, and allowing them to reach said target is indicative of the future development
of first-in-class inhibitors, such as vaborbactam. Hopefully, insight will be taken from
the mechanisms of current inhibitors, both approved and in development, to continue
designing and optimizing combinational therapies.
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