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Abstract: The present study aimed to determine the genetic diversity of isolates of Mycobacterium
tuberculosis (Mtb) from presumed drug-resistant tuberculosis patients from several states of Brazil.
The isolates had been submitted to conventional drug susceptibility testing for first- and second-line
drugs. Multidrug-resistant (MDR-TB) (54.8%) was the most frequent phenotypic resistance profile, in
addition to an important high frequency of pre-extensive resistance (p-XDR-TB) (9.2%). Using whole-
genome sequencing (WGS), we characterized 298 Mtb isolates from Brazil. Besides the analysis of
genotype distribution and possible correlations between molecular and clinical data, we determined
the performance of an in-house WGS pipeline with other online pipelines for Mtb lineages and drug
resistance profile definitions. Sub-lineage 4.3 (52%) was the most frequent genotype, and the genomic
approach revealed a p-XDR-TB level of 22.5%. We detected twenty novel mutations in three resistance
genes, and six of these were observed in eight phenotypically resistant isolates. A cluster analysis
of 170 isolates showed that 43.5% of the TB patients belonged to 24 genomic clusters, suggesting
considerable ongoing transmission of DR-TB, including two interstate transmissions. The in-house
WGS pipeline showed the best overall performance in drug resistance prediction, presenting the best
accuracy values for five of the nine drugs tested. Significant associations were observed between
suffering from fatal disease and genotypic p-XDR-TB (p = 0.03) and either phenotypic (p = 0.006) or
genotypic (p = 0.0007) ethambutol resistance. The use of WGS analysis improved our understanding
of the population structure of MTBC in Brazil and the genetic and clinical data correlations and
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demonstrated its utility for surveillance efforts regarding the spread of DR-TB, hopefully helping to
avoid the emergence of even more resistant strains and to reduce TB incidence and mortality rates.

Keywords: Mycobacterium tuberculosis; drug resistance; whole-genome sequencing; genetic diversity;
Brazil; novel mutations

1. Introduction

Tuberculosis (TB) accounted for 1.4 million deaths and an estimated 10.6 million new
cases in 2023, and was the leading cause of death from a single infectious agent worldwide
until the COVID-19 pandemic [1]. The emergence of drug-resistant (DR) TB is a global
threat that hinders successful TB treatment. Multidrug-resistant TB (MDR-TB), defined as
the simultaneous resistance to rifampicin (RIF) and isoniazid (INH), results in a worse prog-
nosis, prolonged TB treatment with second-line drugs that are more toxic, more expensive,
and that could possibly evolve into pre-extensive drug-resistant TB (p-XDR-TB). The latter
is defined as strains that fulfill the definition of multidrug-resistant or rifampicin-resistant
(MDR/RR-TB), plus resistance to any fluoroquinolone, and subsequently can evolve into
extensive drug-resistant TB (XDR-TB), defined as strains p-XDR-TB plus resistance to
bedaquiline and/or linezolid.

Brazil is one of the thirty countries with the highest TB burden, and although the
incidence rate decreased until 2014, during the period of 2015–2019, a notified increased
incidence of 34.3 to 37.4 cases/100.000 inhabitants was observed [2]. In addition, due to
the COVID-19 pandemic, it is estimated that after a decade of decline, TB mortality has
increased in Brazil and globally [3]. An additional concern for TB control in Brazil is the
considerable number of DR-TB patients; in 2018, around 2.500 MDR/RR-TB cases were
estimated [4], including an increase in MDR-TB among patients that had not previously
been treated in the Rio de Janeiro State [5].

Rapid DR-TB detection and epidemiological surveillance, as well as knowledge about
the genetic diversity of isolates of the Mycobacterium tuberculosis complex (MTBC) in dif-
ferent settings, are factors that may contribute to DR-TB elimination. In this scenario,
molecular tools have become important, and quite recently, next-generation sequencing
(NGS) has made it possible to quickly characterize the whole genome of MTBC strains, en-
abling the identification of both resistance-related genetic variants and lineages involved in
ongoing transmission [6,7]. The culture-based phenotypic drug susceptibility test (DST), al-
though still the current gold standard, has limitations due to the slow growth rate of MTBC
organisms. Thus, molecular methods for drug resistance prediction are being steadily
introduced as a routine in low-TB-incidence countries [8].

WGS is a promising tool and an approach to DR/MDR-TB detection, since it provides
detailed sequence information from different genomic regions, thus enabling drug resis-
tance prediction [9]. However, the high amount of sequencing data generated by WGS has
created the challenge to develop bioinformatics tools to translate the data into information
of clinical and laboratory interest [8]. To permit the use of WGS by professionals with
little or no bioinformatics skills, user-friendly tools for the analysis and interpretation of
WGS data have been developed and implemented, permitting the accessibility and broad
implementation of NGS-based approaches [10–13]. Nonetheless, due to the complexity of
large-scale data analyses, some bioinformatics command-line skills are still required and
sometimes, a user-friendly graphical interface is not available [14,15].

Due to the global variability in the prevalence of MTBC lineages and the evidence of
a differential association with drug resistance, it is evident that the combined detection
of both characteristics in different countries and regions may interfere with DR-TB man-
agement [16]. Therefore, the genomic information of MTBC strains and a conventional
phenotypic DST regarding clinical outcomes are urgently needed [17–19]. In addition, the
evaluation of the different available tools for the extraction of a DST profile from WGS
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has become important to evaluating the regional differences in DR-TB surveillance and to
understanding local TB transmission [20–23].

Here we conducted a genetic diversity study on genomes from a large collection of
Mtb isolates from several states of Brazil that mostly had a phenotypic DST for primary and
secondary drugs. WGS data were evaluated by an in-house WGS pipeline and different
online available pipelines, including Mykrobe Predictor, KvarQ, TB Profiler version 0.3.4,
and the more recent TB Profiler 5.0 to predict drug susceptibility, and the in-house WGS
pipeline, KvarQ, TB Profiler 5.0, and RD-Analyzer to predict the genotype (TB lineages).

2. Results
2.1. Study Samples, Patient Data, and Phenotypic Drug Susceptibility Testing

Among the 298 Mtb isolates from presumed DR-TB patients with high-quality WGS
data, 294 had conventional phenotypic DST data for at least one drug. The phenotypic DST
resulted in 64 (21.8%) pan-susceptible, 22 (7.5%) isoniazid-monoresistant (IMR), 9 (3.1%)
rifampicin-monoresistant (RMR); 1 (0.3%) ethambutol-monoresistant (EMR), 10 (3.4%)
poly-resistant (Poly-R), 161 (54.8%) MDR, and 27 (9.2%) p-XDR (Supplementary Table S1).

Among the 170 patients for which we had identification, 112 had sociodemographic,
clinical, radiographic, and treatment outcome data available (Supplementary Table S2).
Among them, 65 (57.5%) were male, 7 (6.3%) were smokers, 8 (7.1%) were illicit drug users,
16 (14.2%) had diabetes, 12 (10.7%) were alcohol users, and 7 (6.3%) were HIV-infected. In
relation to chest radiographic images, 72 patients (64.3%) had bilateral cavitary disease,
15 (13.4%) had unilateral, and 16 (14.3%) had no image available. Regarding treatment
outcomes, 50 (44.6%) were cured or completed treatment, 32 (28.6%) died due to TB,
16 (14.3%) were lost to follow-up, 5 (4.5%) were still under treatment, 5 (4.5%) died from
another cause, and 4 (3.6%) patients had no clinical data available.

2.2. Novel Mutations, In Silico Drug Susceptibility, and Resistance Prediction Using
Different Pipelines

Considering the in-house WGS pipeline, the 298 sequenced genomes were classified
as follows: 80 (26.8%) pan-susceptible, 11 (3.7%) IMR, 4 (1.3%) RMR, 1 (0.3%) EMR, 1 (0.3%)
SMR, 10 (3.4%) Poly-R, 124 (41.6%) MDR, and 67 (22.5%) p-XDR. The nature and frequencies
of the mutations detected with this pipeline are presented in Figure 1 and in Supplementary
Table S3.

Using the 294 genomes that had a DST available for at least one drug, we compared the
performance in drug resistance using five predictive drug resistance pipelines against the
phenotypic DST (three different pipelines and two versions of TB Profiler). The in-house
WGS pipeline showed slightly better overall results when considering sensitivity, specificity,
positive and negative predictive values, and accuracy compared to Mykrobe Predictor, both
versions of TB Profiler, and KvarQ (Table 1). For the prediction of resistance to RIF and
INH, in all tools, the sensitivity was higher than 80% but the specificity was lower than
95%. Regarding the prediction of other first-line drugs, the in-house WGS pipeline showed
sensitivity higher than 80% to EMB, while high specificity to STR was observed using the
in-house WGS pipeline and Mykrobe Predictor. With respect to second-line drugs, the
highest sensitivity to FQ ofloxacin (OFL) was obtained using TB Profiler, and over 90%
specificity to AMK, KAN, and CAP was observed in all pipelines. The highest sensitivity
to PZA was obtained in the most updated version of TB Profiler (68%).
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Table 1. Evaluation of WGS-based drug susceptibility prediction based on the in-house WGS pipeline, KvarQ, Mykrobe Predictor, TB Profiler, and TB Profiler 5.0
presenting sensitivity, specificity, positive and negative predictive values, and accuracy.

DST WGS Pipeline KvarQ Mykrobe Predictor TB Profiler TB Profiler 5.0
ATB RES SUS SEN SPE PPV NPV ACC SEN SPE PPV NPV ACC SEN SPE PPV NPV ACC SEN SPE PPV NPV ACC SEN SPE PPV NPV ACC

RIF ¹ 199 95 89.95% 84.21% 92.27% 80% 88.1% 88.94% 84.21% 92.19% 78.43% 87.41% 89.95% 84.21% 92.27% 80% 88.1% 87.94% 82.11% 91.15% 76.47% 86.01% 89.95% 83.15% 91.79% 79.79% 87.75%
INH ¹ 217 75 85.25% 88% 95.36% 67.35% 85.96% 83.87% 88% 95.29% 65.35% 84.93% 84.79% 88% 95.34% 66.67% 85.62% 88.94% 82.67% 93.69% 72.09% 87.33% 89.4% 85.33% 94.63% 73.56% 88.35%
PZA ¹ 25 138 0% 94.2% 0% 83.87% 79.75% 40% 71.74% 20.41% 86.84% 66.87% Na Na Na Na Na 24% 61.59% 10.17% 81.73% 55.83% 68% 50.72% 20% 89.74% 53.37%
EMB ¹ 67 213 82.09% 65.73% 42.97% 92.11% 69.64% 68.66% 75.12% 46.46% 88.4% 73.57% 64.18% 78.4% 48.31% 87.43% 75% 76.12% 67.61% 42.5% 90% 69.64% 80.59% 65.73% 42.52% 91.5% 69.28%
STR ² 39 75 56.41% 97.33% 91.67% 81.11% 83.33% 48.72% 88% 67.86% 76.74% 74.56% 43.59% 97.33% 89.47% 76.84% 78.95% 53.85% 88% 70% 78.57% 76.32% 69.23% 94.66% 87.09% 85.54% 85.96%
OFL ² 29 45 75.86% 91.11% 84.62% 85.42% 85.14% 55.17% 93.33% 84.21% 76.36% 78.38% 72.41% 88.89% 80.77% 83.33% 82.43% 86.21% 80% 73.53% 90% 82.43% 79.31% 82.22% 74.19% 86.04% 81.08%
AMK ² 12 68 75% 97.06% 81.82% 95.65% 93.75% 41.67% 98.53% 83.33% 90.54% 90% 75% 98.53% 90% 95.71% 95% 75% 91.18% 60% 95.38% 88.75% 75% 92.64% 64.28% 95.45% 90%
KAN ² 7 29 42.86% 100% 100% 87.88% 88.89% 28.57% 100% 100% 85.29% 86.11% 42.86% 96.55% 75% 87.5% 86.11% 57.14% 96.55% 80% 90.32% 88.89% 42.86% 96.55% 75% 87.5% 86.11%
CAP ² 7 29 42.86% 96.55% 75% 87.5% 86.11% 0% 80.56% 0% 100% 80.56% 42.86% 96.55% 75% 87.5% 86.11% 42.86% 96.55% 75% 87.5% 86.11% 42.86% 96.55% 75% 87.5% 86.11%

ATB = antibiotic; RES = resistant; SUS = susceptible; SEN = sensitivity; SPE = specificity; PPV = positive predictive value; NPV = negative predictive value; ACC = accuracy. 1 = first-line
drugs; 2 = second-line drugs.
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The agreement among phenotypic DST and the in-house WGS pipeline, KvarQ,
Mykrobe Predictor, TB Profiler 0.3.4, and TB Profiler 5.0 was assessed for all drugs consider-
ing resistance and susceptibility prediction (regardless of mutation type in pipelines). The
highest agreement level among the six methods was found in RIF (k = 0.89), and the worst
agreement level was in PZA (k = 0.32). An excellent level of agreement was also detected
in INH, AMK, KAN, and CAP (Supplementary Table S4).

Using TB Profiler 5.0, which is able to detect and report unique mutations, i.e., those
not yet reported, twenty novel mutations in three resistance genes (katG, pncA, and ethA)
were identified, of which six were present in eight phenotypically resistant isolates (gene–
drug-related), as shown in Table 2. Unfortunately, ethionamide susceptibility was not
phenotypically characterized in the present study. Mostly isolates with novel mutations
were phenotypically MDR (68.7%) and genotypically p-XDR (46.8%). All mutations ob-
served using TB Profiler 5.0 are shown in Supplementary Table S5.

Table 2. Novel mutations observed in this study using TB Profiler 5.0.

n Isolates Drug DST Novel Mutation Phenotypic Profile Genotypic Profile ‡
1 INH R katG_c.2070delC 1 MDR p-XDR
1 INH S katG_c.1141dupG 2 RMR IMR
1 ETH NA ethA_c.306_307delCA MDR p-XDR
1 ETH NA ethA_c.-382_*857del p-XDR p-XDR
1 ETH NA ethA_c.40dupA MDR MDR
4 ETH NA ethA_c.851dupC MDR 2 MDR/2 p-XDR
4 PZA 2R/2NA pncA_c.193_200dupTCCTCGTC MDR MDR
1 PZA NA pncA_c.289_293dupGGTGC MDR MDR
1 PZA NA pncA_c.502delA Poly-R Poly-R
1 PZA R pncA_c.452dupT MDR p-XDR
2 PZA R pncA_c.75_79delCGCGC p-XDR p-XDR
4 PZA R/2S/NA pncA_c.443_444dupGC 3 MDR 2 MDR/2 p-XDR
1 PZA S pncA_c.117_124delGGACTACC MDR p-XDR
1 PZA S pncA_c.300delC MDR Poly-R
2 PZA R/NA pncA_c.305dupC p-XDR/Poly-R p-XDR
1 PZA S pncA_c.329_338delACGAGAACGG p-XDR Poly-R
1 PZA S pncA_c.-3449_*7353del p-XDR p-XDR
1 PZA S pncA_c.423_424delGA p-XDR p-XDR
2 PZA S pncA_c.454_455insT MDR MDR
1 PZA S pncA_c.527dupG MDR MDR

‡ = genotypic resistance profile classified according to TB Profiler 5.0. 1 Genotypic isoniazid resistance pro-
file = ahpC_c.-81C>T, katG_c.2070delC. 2 Genotypic isoniazid resistance profile = ahpC_c.-48G>A, katG_c.1141dupG.
3 Genotypic pyrazinamide resistance profile = pncA_c.443_444dupGC, pncA_p.Phe81Val. Isolate PZA phenotypi-
cally susceptible. * = deletion beyond the boundaries of coding sequence.

2.3. Genomic Diversity, Phylogenetic Analysis, and Lineage Classification Using Different Pipelines

Among the 298 genomes analyzed by the in-house WGS pipeline, 99% belonged to
lineage 4, of which 155 (52%) belonged to sub-lineage 4.3 [LAM], 42 (14.1%) to sub-lineage
4.10 [PGG3], 40 (13.4%) to sub-lineage 4.1.2 [Haarlem], 35 (11.7%) to sub-lineage 4.1.1 [X],
17 (5.7%) to sub-lineage 4.4 [Vietnam], 2 (0.6%) had not been sub-lineage-detected and
4 (1.3%) demonstrated a mixed classification of L4.3/L4.1.1 (n = 1), L4.3/L4.1.2 (n = 1),
L4.3/L4.10 (n = 1), and L4.1.1/L4.4 (n = 1), indicating mixed infections or contaminations;
three (1%) were classified as lineage 1.

A phylogenetic tree (Figure 2) based on 38,563 genome-wide SNPs was constructed
using 293 genomes. Five genomes with a high count of mixed SNP calls were excluded
(four with mixed sub-lineage classification and one L4.1.2 [Haarlem]). The topology was
congruent with different lineage and sub-lineage classifications assigned by all SNP-based
pipelines as previously described [24,25].
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Figure 2. Maximum likelihood phylogenetic tree for the 293 M. tuberculosis isolates constructed
based on 38,563 SNPs rooted with M. canettii. Presented from the outside to the inside: SNP-based
lineage classification by the in-house WGS pipeline; genotypic resistance profile (circle); phenotypic
resistance profile (square). Tips (triangle) are shown colored according to the genomic cluster from
170 patients with identification (see legend). GC = genomic cluster; NC = non-clustered. Tree branch
scale represents the number of nucleotide substitutions per site.

Upon comparing the SNP-based lineage classification pipelines (in-house WGS pipeline,
KvarQ-barcode-Coll14, and TB Profiler) and an RD-based analysis pipeline (RD-Analyzer),
the L4.3 [LAM] (and higher resolutions classifications when available, e.g., L4.3.2, L4.3.3,
L4.3.4, L4.3.4.1, L4.3.4.2, L4.3.4.2.1) was predominant with all tools. The classification
results and lineage proportions are presented in Supplementary Figure S1.

Some discordant genotypic classifications were encountered and described in Supple-
mentary Figure S2, mainly among RD-based pipeline analyses and SNP-based pipelines.
Nevertheless, the free marginal kappa coefficient obtained presented an excellent agreement
level (k = 0.89 [95%CI: 0.86–0.93]), and the overall agreement was 92.06%.

With respect to the sample origin (Figure 3), 212 (71.2%) were isolates from patients
residing in the southeast region, including 173 (58.1%) isolates from Rio de Janeiro and
39 (13.1%) from São Paulo; 46 (15.4%) were from the Midwest region, including 42 (14.1%)
from the Distrito Federal, 2 (0.7%) from Goiás, and 2 (0.7%) from Mato Grosso; 15 (4.9%)
were form the northeast, including 6 (2%) from Pernambuco, 4 (1.3%) from Ceará, 3 (1%)
from Maranhão, 1 (0.3%) from Piauí, and 1 (0.3%) from Sergipe; 9 (3%) were from the south
region, including 6 (2%) from Santa Catarina and 3 (1%) from Paraná; finally, 6 (2%) were
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from the north region, including 3 (1%) from Amazonas, 2 (0.7%) from Tocantins, and one
(0.3%) from Acre. For eight (2.7%) isolates, we had no data regarding state origin.
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Figure 3. Geographic proportion distribution of Mycobacterium tuberculosis lineages classified by
in-house WGS pipeline of 290 isolates. Eight isolates (three L4.3 [LAM], two L4.10 [PGG3], two L4.1.1
[X], and one L4.1.2 [Haarlem]) have no data regarding geographic origin.

2.4. Genomic Clusters Analysis

Among the 170 isolates with patient identification available, 74 (43.5%) belonged to
24 genomic clusters with sizes ranging from 2 to 10 isolates, therefore characterized by a
clustering rate of 0.294. The most frequent genotypic resistance profile in this sampling was
MDR-TB (53.5%), followed by p-XDR-TB (32.9%), and a similar distribution was observed
among the clustered population, composed of 63.5% MDR-TB and 33.7% p-XDR-TB isolates
(Figure 4). Importantly, a significant association between being part of a cluster and having
an MDR-TB genotype was observed (Chi-squared = 5.2512; p = 0.02).

Upon analysis of the genotypes of these 170 isolates using the in-house WGS pipeline,
95 (55.8%) belonged to sub-lineage 4.3 [LAM], 26 (15.2%) were 4.1.2 [Haarlem], 20 (11.7%)
were 4.10 [PGG3], 18 (10.5%) were 4.1.1 [X], 9 (5.3%) were 4.4 [Vietnam], 1 (0.6%) was
classified as lineage 1, and 1 (0.6%) as lineage 4 without sub-lineage detection. Among the
isolates in clusters, L4.3 LAM was also observed most frequently (n = 39; 52.7%).

When concentrating on the origins of these samples, 138 were from Rio de Janeiro
(81.1%), 6 each from Pernambuco (3.5%) and Santa Catarina (3.5%), 4 from Ceará (2.3%),
3 each from Amazonas (1.7%), Maranhão (1.7%), and Paraná (1.7%), 2 each from Minas
Gerais (1.1%) and Goiás (1.1%), and 1 each from Tocantins (0.6%), Acre (0.6%), and Mato
Grosso (0.6%). An even more pronounced number of the clustered isolates (95.9%) were
from Rio de Janeiro, while only three isolates were from other states (Ceará [GC8], Goiás,
and Tocantins [GC15]). The latter explains why we observed two genomic clusters with
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isolates belonging to patients from different states: GC8 with one from Ceará and three
from Rio de Janeiro, and GC15 with one from Goiás and one from Tocantins.
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to genotypic resistance profile. Pie charts in the tips represent two or more isolates with no SNP
differences among genomes. NC = non-clustered. The dashed line represents the L1 isolate with
greater distance in comparison to the rest of the isolates. Tree branch scale represents the number of
nucleotide substitutions per site. [n] = number of isolates by category.

2.5. Evolution of Drug Susceptibility Patterns in Patients with Multiple Isolates of
Mycobacterium tuberculosis

Among the 112 patients for whom clinical and epidemiologic data were available,
15 had at least 2 isolates with genomes sequenced, resulting in a total of 36 genomes:
2 patients with 4 isolates, 2 patients with 3 isolates, and 11 patients with 2 isolates each,
who could have been included in follow-up (Table 3 and Supplementary Table S6). Only
two patients presented a change in phenotypical drug resistance: One was susceptible to
AMK and changed to being resistant without a change in mutational profile (patient P39).
Another was phenotypically susceptible to KAN and CAP and changed to being resistant
(patient P64), again without a change in mutational profile.
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Table 3. Chronic TB patients with changes in genotypic profile mutations and phenotypic resistance.
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P28 G23103 2010 S315T S450L M306V   K43R A1401G A1401G A1401G     MDR R R R R R R S R R L4.10/PGG3  833 39 T1/167                 
P28 G23335 2011 S315T S450L M306V S91P K43R A1401G A1401G A1401G     p-XDR R R - R - - - - - L4.10/PGG3  839 6 T1/167                 
P28 G23216 2011 S315T S450L M306V S91P K43R A1401G A1401G A1401G     p-XDR R R - R - - - - - L4.10/PGG3  834 51 T1/167 M No No Yes UC UC Death 0–1 

                                                                      
P27 G23178 2008 S315T S450L M306V1   K43R G1484T G1484T       MDR R R R R R - - - - L4.10/PGG3  751 62 T1/167                 
P27 G23124 2009 S315T S450L M306V A90V K43R G1484T G1484T       p-XDR R R S S - R R - - L4.10/PGG3  837 20 T1/167 M No No No UC  BC Death 0 

                                                                      
P54 G23259 2012 S315T S450L                 MDR R R S S - - - - - L4.4/Vietnam 830 12 S/34                 
P54 G23242 2012 S315T S450L G406D2               MDR R R S S - - - - - L4.4/Vietnam 815 38 S/34 F No No No BC BC Death 0 

                                                                      
P63 G23094 2010   D435V                 RMR R R - S R - - - - L4.1.2/Harlem 800 33 ND/Orphan                 
P63 G23327 2011   D435V   D94H             p-XDR R R S S - - - - - L4.1.2/Harlem 805 10 ND/Orphan M No Yes No BC BC Cured 3 

                                                                      
P35 G23277 2012 S315T2 Q432P                 MDR R R S S - - - - - L4.1.1/X 608 177 T1/53                 
P35 G23280 2012 S315T S450L Q497R               MDR R R S S - - - - - L4.3/LAM  829 44 ND/Orphan F No No No BC BC Abandonment 484 

                                                                      
P10 G23108 2008 S315T S450L M306V               MDR R R - S S - - - - L4.3/LAM  833 20 LAM6/64                 
P10 G23167 2012 S315T S450L M306V D94A             p-XDR R R - S - - - - - L4.3/LAM  826 52 LAM6/64 M No No Yes BC BC Death 2 

                                                                      
P39 G23185 2008 C-15T/S94A S450L G406C             C-15T/S94A MDR S R R - - S - - - L4.3/LAM  849 25 LAM6/Orphan                 
P39 G23090 2010 C-15T/S94A S450L G406C D94G/A90V           C-15T/S94A p-XDR R R - R S R R S S L4.3/LAM  837 18 LAM6/Orphan F No Yes No BC BC Death 1 

1 In addition to the mutation M306V, there was a gap in codons 405 and 406, which resulted in flag G→T E405D, G→C E405D, G→T G406C, G→A G406S, G→A 
G406D, and G→C G406A. 2 Mixed SNP call. ND = not determined. Homo SNPs = all bases detected in the same genome position are the same. Het SNP = bases 
detected in the same genome position are different. UC = unilateral cavitary. BC = bilateral cavitary. 

1 In addition to the mutation M306V, there was a gap in codons 405 and 406, which resulted in flag G→T E405D, G→C E405D, G→T G406C, G→A G406S, G→A G406D, and G→C
G406A. 2 Mixed SNP call. ND = not determined. Homo SNPs = all bases detected in the same genome position are the same. Het SNP = bases detected in the same genome position are
different. UC = unilateral cavitary. BC = bilateral cavitary.
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Regarding the mutational profile changes of those 15 patients, 7 patients (2 with
3 isolates each and 5 with 2 isolates each) had their genotypic drug resistance profile
changed (Table 3). The other eight patients presented no change in the genomes of their
respective isolates (genetic distance = 0 SNPs) (Supplementary Table S6).

The emergence of resistance mutations for FQ was observed in five patients in the gyrA
gene (including P28 = S91P [T→C], P27 = A90V [C→T], P63 = D94H [G→C], P10 = D94A
[A→C], and P39 = D94G [A→G]/A90V [C→T]); one patient was cured from the disease
while the other four died of tuberculosis. Two patients had an EMB mutation resistance
emergence in the embB gene (P54 = G406D [G→A] and P35 = Q497R [A→G]); the first was
cured while the second patient abandoned treatment with no further information obtained.

2.6. Treatment Outcome, Risk Factors, and Lineage Associations with Genotypic and
Phenotypic Resistance

The association between TB treatment outcome and genotypic and phenotypic drug
resistance was evaluated. Genotypic p-XDR-TB was significantly associated with mortal-
ity (Chi-squared = 4.6231; p = 0.03). Both phenotypic resistance (Chi-squared = 7.3445;
p = 0.006) and genotypic resistance to EMB (Fisher’s exact test p = 0.0007) were significantly
associated with mortality. Another significant association was EMB genotypic resistance
(Chi-squared = 24.364; p = 0.00001) with the p-XDR-TB genotype. All isolates with a phe-
notypic EMB available are summarized in Supplementary Table S7. In short, the table
shows the available EMB tests of isolates, divided into four groups: EMB genotypically
susceptible and resistant and phenotypically susceptible and resistant; each of these groups
was also divided into two groups: cured and deceased.

Compared to patients who had any risk factors for developing TB (HIV, diabetes,
alcoholism, smoking, and/or illicit drugs abuse) (Supplementary Table S2), among the two
outcome groups, deceased and cured, a significant association between the presence of any
risk factor and a deceased outcome was observed (Chi-squared = 5.7672; p = 0.01).

Upon comparing of the frequency of the presence of drug-resistance-related mutations
in Mtb isolates classified as L4.3 (LAM) to those of other sub-lineages, a statistically signif-
icantly lower frequency of mutations related to resistance to STR (Chi-squared = 5.3496;
p = 0.02), CAP (Chi-squared = 6.4498; p = 0.01), ETH (Chi-squared = 5.7636; p = 0.01), and
AMK (Fisher’s exact test p = 0.001) was associated with the LAM sub-lineage in comparison
to non-LAM isolates.

3. Discussion

In this study, we performed a genome-based characterization of the genetic diversity
of mainly drug-resistant isolates of Mtb in different regions in Brazil. The analyzed Mtb
strains predominantly belonged to the sub-lineage 4.3 (LAM) (52%). This is in accordance
with previous studies performed in various Brazilian regions in both susceptible and DR-TB
samples [26–29]. L4.3 was predominant in the south, north, southeast and midwest regions.
In the northeast, this predominance of L4.3 was not observed, but the number of samples
from this region was low. Three isolates (from São Paulo, Rio de Janeiro, and Distrito
Federal) belonged to lineage 1, which are known to be restricted mostly to eastern Africa
and the south and east of Asia [30], but are apparently described with a certain frequency
in the northern region of Brazil [29,31,32], probably imported trough slave trade from east
Africa [23]. Although L1 is usually not associated with DR, two of the three isolates in
this study presented some resistance (one IMR and one Poly-R). This might be due to
sampling bias as the CRPHF mainly receives samples from patients suspicious of being
DR, either due to treatment failure, treatment abandonment, relapse TB, or contact with
TB-resistant patients.

The four pipelines presented a high agreement level (k = 0.89), with almost complete
agreement among the SNP-based pipelines, but showing divergences mainly in the lineage
classifications by RD-Analyzer. The Mtb isolates with high counts of mixed SNP calls may
be indicative of a mixed infection, as described by others [33–35]. An analysis of the five
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isolates with a high proportion of mixed SNP calls showed four mixed classifications by
the in-house WGS pipeline only, while TB Profiler and KvarQ detected only one of the two
lineages present in these isolates. RD-Analyzer had some difficulties in classifying lineage
in comparison with the SNP-based tools and presented the most divergences among all
the tools tested, including 31 isolates with a mixed classification and 6 unidentified despite
having a good genome quality and low mixed SNP call counts.

The majority of clusters were identified in Rio de Janeiro, and although sampling from
this state was clearly over-represented in our setting, this may represent higher levels of
recent infection and drug-resistant TB transmission, differing from TB cases due to the
reactivation of a latent infection [36,37]. In this Brazilian state, an increase in primary MDR-
TB has been described as being associated with low TB control performance [5]. Studies
in other Brazilian states have also shown significant ongoing transmission of MDR-TB,
as observed in Sao Paulo [38,39] and Santa Catarina [40], and Rio Grande do Sul in a
genome-based study [41]. In the latter, as well as in our study, a significant association
between clustering and genotypic MDR-TB and significant ongoing transmission in p-
XDR-TB resistance profiles was observed, with practically half of the patients infected
with genotypic p-XDR-TB (44.6%; n = 25) in clusters, reflecting an alarming scenario of
insufficient DR-TB control [41].

In addition to clusters of isolates derived from residents of particular states, we also
observed clusters suggestive of the interstate transmission of particular genotypes that
seem to have been circulating in the country for a considerable time. Examples are GC8
(three patients from Rio de Janeiro and one from Ceará) and GC15 (one from Goiás and
one from Tocantins) presenting genetic distances of ≤12 SNPs. Furthermore, we observed
among the isolates of unidentified patients, which were not included in clustering analysis,
one isolate from Distrito Federal (isolated in the year 2007) that had a genetic distance of
≤12 SNPs to the GC4 isolates that were from Rio de Janeiro (2008–2012), and one isolate
from São Paulo (2004) and one isolate from Distrito Federal (2007) that had genetic a
distance of 11 SNPs between them. These could point to other two interstate transmission
events, requiring further investigation.

From 15 patients, we had several isolates collected during and after treatment. In most
of these cases, the infecting lineage strain during follow-up with the patients was the same,
and reinfection with another strain and lineage was only observed in one patient (P35).
In a retrospective cohort study from China [42], a MIRU-VNTR-based recurrence definition
observed a lower frequency of reinfection (n = 21; 36.2%) in comparison to relapse (n = 37;
63.8%). In a population-based study from Malawi [43] using WGS, a lower frequency of
reinfection (n = 20; 14.3%) compared with relapse (n = 55; 39.5%) was also observed; 64
(46%) of recurrent patients remained unclassified, showing how challenging it remains to
classify such cases.

We observed the emergence of FQ-resistance-conferring mutations among one third
of the patients that were followed-up with during treatment. These bacterial populations
had likely been selected due non-compliance of drug treatment [44,45]. In addition, the
emergence of phenotypic resistance to AMK in patient P39 and phenotypic resistance to
KAN and CAP in patient P64 was observed, but without the detection of known mutations
in rrs and eis. This could be caused by not yet known mutations conferring resistance to
those drugs and/or by efflux pump activity, not investigated here. Such pumps have been
described to be induced by sub-inhibitory levels of antibiotics such as FQ, RIF, and INH in
inappropriate treatment regimens [46]. Additionally, the presence of a minor undetected
population of drug-resistant bacteria, so-called heteroresistance, can also explain differences
between culture and in silico-based drug susceptibility outcomes [47].

Another observation was the emergence of the G406D mutation in embB in patient P54
(Table 3); however, a mixed call was detected in this codon and may indicate the selection
of the mutant population within a single strain, probably due to inappropriate treatment.
Patient P35 presented the emergence of the Q497R mutation in embB, and in addition a
shift in the RIF resistance genotype, initially presenting the Q432P mutation in rpoB and
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posteriorly the S450L mutation. Besides that, in the first isolate the sub-lineage detected
was L4.1.1 (X) and in the second was L4.3 (LAM), and a genomic difference of 484 SNPs
was observed between both, indicating a TB recurrence by reinfection [43].

We observed a statistically significantly lower frequency of mutations related to re-
sistance to STR, CAP, ETH, and AMK in strains belonging to sub-lineage 4.3 (LAM) in
comparison with non-LAM sub-lineages. A lower frequency of mutations related to resis-
tance in some lineages has been described, including a lower frequency of S315T mutations
in katG in the LAM spoligofamily when compared to Haarlem [48]. Another study showed
a higher mutation rate in Mtb strains of lineage 2 and as such, a faster emergence of
resistance-conferring mutations in strains of lineage 2, accompanied by the development of
DR-TB [49].

Upon comparing patient treatment outcomes, risk factors for TB development, pheno-
typic and genotypic resistance, and Mtb lineage, we observed a significant association be-
tween EMB phenotypic (Chi-squared p = 0.006) and genotypic (Fisher’s exact test p = 0.0007)
resistance and TB mortality. EMB resistance has been described as a risk factor for mortality,
mainly when associated with MDR pattern [50]. In our study, genotypic p-XDR-TB was
significantly associated with EMB genotypic resistance, while the genotypic p-XDR-TB
profile was significantly associated with a higher morbidity (Chi-squared p = 0.03). In addi-
tion, the presence of any of the five risk factors (HIV, diabetes, smoking cigarette, alcohol,
and/or illicit drug use) was also significantly associated with morbidity but independent
of genotypic or phenotypic EMB resistance. The increased risk of mortality in MDR-TB
and p-XDR-TB patients has been described [51,52] and is related to the increasing level
of drug resistance, whereas accumulating even more factors increases the probability of
an unfavorable outcome [53,54]. EMB resistance could be an important stage of resistance
accumulation in Mtb.

We observed a similar proportion of main drug-resistance-conferring mutations, fre-
quencies, and affected genes detected by all the pipelines tested, and this is in agreement
with other studies [55–59].

Unprecedented was the detection of 20 novel mutations in 32 strains using TB Profiler
5.0, including a novel frameshift mutation katG_c.2070delC in an isolate that is likely
associated with INH resistance, considering the impact this may have on the catalase-
peroxidase structure and activity, accompanied by phenotypic resistance against INH. The
same isolate also presented the mutation ahpC_c.-81C>T, classified in the WHO catalogue
as having uncertain significance, but which may be acting in synergy with the newly
described mutation to confer resistance; this needs to be better investigated. This isolate
was misclassified as genetically susceptible to INH by all pipelines except TB Profiler, and
the same was observed in other isolates with the mutation ahpC_c.-81C>T, highlighting the
importance of using updated pipelines.

Only 4 of 32 isolates were fully phenotypically characterized for the 9 drugs avail-
able in this study. Unfortunately, 13 of the isolates in which we detected a novel mu-
tation were not phenotypically characterized for the drug of interest, making it impos-
sible to establish the genetic and phenotypic correlation. Among the four isolates with
the frameshift mutation pncA_c.193_200dupTCCTCGTC, two had no PZA DST avail-
able and two were PZA-resistant (these two were from the same patient); the mutation
pncA_c.305dupC was observed in one resistant and one with a DST not available; finally,
the mutations pncA_c.452dupT and pncA_c.75_79delCGCGC were both presents in resistant
isolates, all suggesting a resistance association. On the other hand, the frameshift mutation
pncA_c.443_444dupGC was detected in both susceptible and resistant isolates, making it dif-
ficult to interpret. Other phenotypically susceptible isolates observed with novel frameshift
mutations in the pncA and katG genes could be explained by an acquired low-level resis-
tance, under the antibiotic concentration threshold used here or due to some laboratorial
error in phenotypic resistance determination. Phenotypically susceptible isolates harboring
confident resistance mutations have been reported in other studies [60,61].
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Among ten other mutations we detected that were absent in the WHO catalogue
(Supplementary Table S5), eight [62–69] in twelve isolates had not yet been reported in Brazil,
and four (katG_p.Leu634Phe, pncA_p.Asp63His, pncA_p.Gly23Val, and pncA_c.521_522insT)
were present in phenotypically resistant isolates in our study. Another mutation associated
with resistance was detected for the first time in Brazil, rpoB_p.Ile491Phe, a mutation outside
of the 81 bp hotspot of the rpoB gene, which makes it undetectable by commercial assays such
as GeneXpert MTB/RIF and MTBDRplus [70,71]. In Eswatini, for example, the presence of this
mutation is a significant problem because of its prevalence of >60% in MDR strains [72]. In our
study, this mutation was observed in one isolate that was genotypically and phenotypically
MDR and carried the rpoB_p.Ser493Leu mutation, an uncertain variant according to the WHO.
However, their combination could be acting in synergy because the former is a borderline
resistance mutation [73].

The comparison of the pipelines, after evaluating their performance in drug resistance
prediction through sensitivity, specificity, accuracy, and positive and negative predictive
value calculation, using phenotypic resistance results as a reference, showed a better overall
performance in resistance prediction by the in-house WGS pipeline. For all pipelines,
the sensitivity of the prediction of resistance to RIF and INH was higher than 80% but
the specificity was lower than 95%, and therefore below that of the WHO recommenda-
tions [74]. A high positive predictive value (PPV) of >80% was observed in all pipelines
used for the detection of mutations conferring resistance to RIF, INH, OFL, AMK, and
similar to that described by others [20,75]. A lower PPV was observed for the detection
of resistance mutations whose action mechanisms are more complex and for which the
genetic bases of resistance are less understood, such as resistance to PZA, KAN, and CAP.
Unreliable PZA resistance prediction has been reported in various studies [20,31,75,76], and
in order to enhance PZA resistance prediction, the following strategies have been described:
(i) improving the mutation library of the pipelines mainly by including the detection of
indels in pncA; (ii) the “non-wild-type sequence” approach, which consists of interpret-
ing any non-synonymous mutations or indels in pncA as genotypic PZA-resistant strains;
(iii) manually checking the sequence reads [77,78]. Not surprisingly, the best sensitivity
performance for PZA resistance prediction was achieved by TB Profiler 5.0, the most up-to-
date pipeline for the detection of DR-associated mutations, accounting for the largest PZA
mutation catalogue among all pipelines used and able to detect novel mutations, including
fourteen novel indels observed in this study.

Another important finding in our study is that, compared to conventional DST, more
than twice as many cases were classified as p-XDR-TB using WGS. This difference in pro-
portion could be beyond the accuracy of genomic tests for second-line resistance detection.
However, one should take into account that the criteria for performing phenotypic DST
tests for second-line drugs in Brazil cause the underestimation of the detection of resistance
to such drugs. These results highlight the importance of using WGS for the epidemiological
surveillance and control of DR/MDR/p-XDR-TB, as these discrepancies would not be
detected and reported without it use.

Without any doubt, a major limitation of this study is that phenotypic tests for second-
line drugs were not conducted for all samples. Among the 161 isolates classified as
phenotypically MDR-TB, only 22 were tested for all second-line drugs, and 10 were only
tested for 9 drugs; 1 of the 10 Poly-R-TB and 6 of the 27 p-XDR-TB were submitted to the full
DST. This further emphasizes the importance of using molecular methods for TB diagnosis
and comprehensive resistance analyses. Another limitation is the small sample size from
regions outside Rio de Janeiro, Distrito Federal, and Sao Paulo States, not representing the
national scenario of DR-TB in Brazil.

In conclusion, the evaluated pipelines for the prediction of MTBC lineage and drug
resistance work well in the Brazilian sample studied here, and our data favor the use of
WGS in cases without a conventional DST. Although the in-house WGS pipeline performed
slightly better in general, all tools performed well in predicting DR to RIF, INH, AMK, KAN,
and CAP. Importantly they allowed for the detection of p-XDR-TB strains that otherwise
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would probably have been unreported. The analysis of isolates of DR-TB patients that were
sampled sometimes years apart demonstrated that several accumulated drug resistance
mutations, showing that resistance evolution occurs by the acquisition of mutations in the
same strain, probably due to the non-compliance of treatment. Phylogenetic analysis and
lineage characterization contribute to better understanding the MTBC genotypes spreading
in the population, so WGS improves the knowledge of MTBC population structure and
evolution and offers the rapid and reliable assessment of resistance-related mutations,
allowing for faster access to effective treatment. A surprisingly low level of reinfection
was observed in an area with high TB incidence, even in patients with DR and prolonged
treatment. We believe that these findings highlight the importance of the need for active
surveillance throughout the national territory in order to avoid further aggravation of the
TB scenario in Brazil.

4. Materials and Methods
4.1. Sample Collection and Phenotypic Drug Resistance

We used a convenience sample for this study of 298 Mtb clinical isolates (Brazilian
SISGEN code: AD20DC4), available at the National Tuberculosis Reference Center Professor
Hélio Fraga (CRPHF; Rio de Janeiro, Brazil). The sample set included isolates of patients
from 16 different Brazilian states with presumed DR-TB due to a history of treatment failure,
treatment abandonment, relapse TB, or contact with DR-TB patients. The isolates were
therefore submitted to phenotypic drug susceptibility testing (DST).

DST was performed for the first-line drugs RIF, INH, PZA, and EMB, and to the
second-line drugs STR, OFL, AMK, KAN, and CAP, using the liquid MB/BacT system
(Organon Teknika Corp., Durham, NC, USA). The following cut-off values were used: RIF
(1.0 mg/L), INH (0.1 mg/L), EMB (5.0 mg/L), PZA (100.0 mg/L), STR (1.0 mg/L), OFL
(2.0 mg/L), AMK (1.0 mg/L), KAN (4.0 mg/L), and CAP (2.5 mg/L).

4.2. Whole-Genome Sequencing and In-House Pipeline

The Mtb genomic DNA were extracted as described previously [79]. To perform WGS,
sequencing libraries were prepared as described previously [80], and sequenced on an
Illumina platform at Division of Infectious Diseases and Environmental Health of the
Norwegian Institute of Public Health. The sequence reads generated were deposited in the
Sequence Read Archive (SRA) of the NCBI under the Bioproject PRJEB27366. To describe the
MTBC genetic diversity and genotypic resistance profile, a single-nucleotide-polymorphism
(SNP)-based Mtb lineage and sub-lineage and resistance-related genes (11 coding genes
and four promoter regions) were assigned, first using an in-house pipeline developed
at the Swiss Tropical and Public Health Institute (Swiss TPH) as described before [81],
hereafter called the in-house WGS pipeline. In brief, FASTQ files were processed with
Trimmmomatic v 0.33 (SLIDINGWINDOW:5:20) [82] to remove Illumina adaptors and trim
low quality reads. Overlapping reads were then merged with SeqPrep v 1.2. Duplicated
reads were marked by the MarkDuplicates module of Picard v 2.9.1. The resulting reads
were mapped to a reconstructed ancestral sequence of MTBC as described previously [83]
using the BWA-MEM v 0.7.13 algorithm. Pysam v 0.9.0 was used to exclude reads with an
alignment score lower than (0.93*read_length)-(read_length*4*0.07)); this corresponds to
more than seven mismatches per 100 bp. SNPs were called with Samtools v 1.2 mpileup
and VarScan v 2.4.1. The SNP annotation used was that of Mycobacterium tuberculosis H37Rv
reference strain (NC_000962.3). Repetitive regions of the genome as PE/PPE/PGRS were
excluded as described before [84].

4.3. Phylogenetic Analysis

A maximum likelihood phylogenetic tree using 100 bootstraps was constructed using
an alignment containing all variable positions from all quality filtered genomes with
≥15× average coverage using MEGAX v 10.2 [85], and the resulting tree was rooted using
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M. canettii (Genbank accession number: NC_019950.1). The tree was visualized using
iTOL v 6.7 [86].

4.4. Lineage Classification Pipelines Comparisons

Mtb lineage classification by the in-house WGS pipeline was compared with three
online available pipelines: TB Profiler version 5.0 [21], KvarQ version 0.12.2 [10] but using
the SNP barcode used elsewhere [11], and RD-Analyzer version 1.01, a region-of-difference-
based analyzer of Mtb from sequence reads [87].

4.5. Genotypic Resistance Detection and Pipelines Evaluation

In order to identify the drug-resistance-related variants among the included Mtb
genomes, we used the in-house WGS pipeline and the command-line versions of the
pipelines Mykrobe Predictor version 0.3.3 [12], TB Profiler version 0.3.4 [76], KvarQ ver-
sion 0.12.2 [10], and TB Profiler version 5.0 (https://github.com/jodyphelan/TBProfiler,
accessed on 28 September 2023), a recent pipeline version that accounts for the updated
WHO catalogue of mutations conferring resistance (https://www.who.int/publications/i/
item/9789240082410, accessed on 29 January 2024).

4.6. Cluster Analysis and Recent Transmission

Genomic clusters were delineated using the tool snp-dists v0.7.0 (https://github.com/
tseemann/snp-dists, accessed on 5 August 2022). An SNP-based distance matrix was built
using the alignment of 170 high-quality genomes not presenting mixed calls. A genomic
cluster was defined when two or more isolates presented genomes with ≤12 SNPs of
difference, which encompasses not only linked cases such as household contacts (genetic
distance from zero to five SNPs), but also related cases (five to twelve SNPs). These
thresholds are considered as very likely representing recent transmission events, especially
in settings using isolates from chronically infected patients and DR-TB [88–90]. To estimate
recent transmission, 170 genomes, corresponding to one genome per patient appropriately
identified (patient ID), were used. Samples without patient identification and/or duplicated
ID were excluded from this analysis. The reconstructed maximum likelihood tree using
100 bootstraps was visualized in GrapeTree [91]. Clustering rate was calculated using the
following formula (nc − c)/n, where nc = the total isolates in cluster, c = the number of
clusters, and n = the total number of isolates.

4.7. Patient Data

The available patient clinical data, including TB treatment outcome, diabetes, alcohol
use, illicit drug use, cigarette smoking, HIV coinfection status, and sex, were obtained
from the “Sistema de Informação de Agravos de Notificação” (SINAN) and “Sistema de
Informação de Tratamentos Especiais de Tuberculose” (SITETB), two national databases
for disease surveillance. The project was approved by the Research Ethics Committee of
Federal University of Rio de Janeiro (CAEE 10126919.2.0000.5257).

4.8. Statistical Analyses

For the prediction of drug resistance, we calculated sensitivity, specificity, accuracy,
and positive and negative predictive values using the statistical software R (Version 3.6.1).
First- and second-line anti-TB drug predictions were evaluated for the four pipelines, using
MB/BacT DST as the reference standard.

Free marginal Kappa Randolph’s statistics [92] with a 95% confidence interval was
used to determine agreement among Mtb lineage classification by the four pipelines. The
same procedure was followed to determine agreement among phenotypic drug resistance
detected by MB/BacT and the genotypic drug resistance detected by the four pipelines,
using four levels of agreement: <0.40 (poor), 0.40–0.59 (fair), 0.60–0.80 (moderate/good)
and >0.80 (excellent).

https://github.com/jodyphelan/TBProfiler
https://www.who.int/publications/i/item/9789240082410
https://www.who.int/publications/i/item/9789240082410
https://github.com/tseemann/snp-dists
https://github.com/tseemann/snp-dists
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Pearson’s Chi-squared test was used to determine associations among treatment
outcome, risk factors, clusters, lineage, genotypic and phenotypic drug resistance using the
chisq.test function in the statistical software R (Version 3.6.1). In case the expected value is
less than 5, Fisher’s exact test was calculated using the fisher.test function in R.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/antibiotics13060496/s1. Figure S1: Lineage classification of
298 genome isolates using four pipelines. Figure S2: Venn diagram for the four pipelines used in
lineage classification of the 298 genome isolates. Table S1: Phenotypic profile of 294 isolates included
in the study. Table S2: Clinical data of 112 patients obtained from SITETB and SINAN databases.
Table S3: Resistance-related mutations detected by the in-house WGS pipeline in 298 isolates. Table S4:
Agreement among phenotypic DST, in-house WGS pipeline, KvarQ, Mykrobe Predictor, and TB
Profiler versions 0.3.4 and 5.0 according to free marginal kappa coefficient. Table S5: Resistance-
related mutations detected by TB Profiler version 5.0 in 298 isolates. Table S6: Chronic patients
without changes in genotypic profile mutation resistance. Table S7: Genotypic and phenotypic
profiles of the 82 patients with cured and deceased treatment outcomes.
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