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Abstract: Background: Antibiotic overuse in pediatric patients with upper respiratory tract infections
(UR-TIs) raises concerns about antimicrobial resistance. This study examines the impact of antibiotics
on hospital stay duration and fever resolution in pediatric patients diagnosed with viral infections
via a multiplex polymerase chain reaction (PCR) respiratory panel. Methods: In the pediatric
ward of Imam Abdulrahman Bin Faisal Hospital, a retrospective cohort analysis was conducted on
pediatric patients with viral infections confirmed by nasopharyngeal aspirates from October 2016
to December 2021. Cohorts receiving antibiotics versus those not receiving them were balanced
using the gradient boosting machine (GBM) technique for propensity score matching. Results:
Among 238 patients, human rhinovirus/enterovirus (HRV/EV) was most common (44.5%), followed
by respiratory syncytial virus (RSV) (18.1%). Co-infections occurred in 8.4% of cases. Antibiotic
administration increased hospital length of stay (LOS) by an average of 2.19 days (p-value: 0.00).
Diarrhea reduced LOS by 2.26 days, and higher albumin levels reduced LOS by 0.40 days. Fever
and CRP levels had no significant effect on LOS. Time to recovery from fever showed no significant
difference between antibiotic-free (Abx0) and antibiotic-received (Abx1) groups (p-value: 0.391), with
a hazard ratio of 0.84 (CI: 0.57–1.2). Conclusions: Antibiotics did not expedite recovery but were
associated with longer hospital stays in pediatric patients with acute viral respiratory infections.
Clinicians should exercise caution in prescribing antibiotics to pediatric patients with confirmed viral
infections, especially when non-critical.

Keywords: antibiotics; respiratory tract infections; pediatrics; hospitalization; fever; anti-bacterial
agents; polymerase chain reaction

1. Introduction

The global health challenge today is significantly impacted by the growing problem
of antibiotic resistance [1]. Initially celebrated for their effectiveness in fighting bacterial
infections, antibiotics are now becoming less effective due to overuse and misuse [2,3].
The World Health Organization (WHO) has identified antibiotic resistance as a critical
threat to global health, affecting food security and development [4]. This crisis is driven by
the unnecessary use of antibiotics, their availability without prescription, and their use in
agriculture, which is not related to human health [5,6]. Additionally, the development of
new antibiotics is lagging, mainly due to economic challenges within the pharmaceutical
industry [7]. This problem is particularly serious for children under five, who are very
vulnerable to respiratory infections [8]. Due to antibiotic resistance, these infections can
become more severe and prolonged, leading to longer hospital stays and increased death
rates among these young patients (Laxminarayan et al. [9]).
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The widespread misuse of antibiotics is a global issue, as highlighted by several
studies. In the United States and the United Kingdom, there are consistent patterns of over-
prescribing antibiotics in pediatric settings, often for conditions caused by viruses [10–13].
This trend is also observed in European countries, despite their well-established health
systems [14–16]. In Australia, concerns about antibiotic stewardship are growing, with esti-
mates suggesting that nearly half of all antibiotic prescriptions may be unnecessary [17–19].
In India, the challenges are worsened by over-the-counter sales of antibiotics and limited
diagnostic facilities [20,21]. Many other countries face significant hurdles due to the absence
of structured antibiotic management programs and sufficient regulatory oversight [22–24].
The ineffectiveness of antibiotics against viral infections, especially acute viral respiratory
tract infections in children, is well-documented [25–27]. Since antibiotics do not have
antiviral properties, their use in such cases is not only ineffective but can also disrupt
natural microbiota and lead to adverse antibiotic-related events [28,29].

In the context of escalating antibiotic resistance and clear evidence of the ineffective-
ness of antibiotics for viral infections, there is a notable gap in knowledge [30,31]. Most
of the studies were observational and reported associations linked rather than causality.
Some studies, such as studies from Lee and Hassan (2019), Blatt et al. (2017), and Yen et al.
(2019), show that antibiotics do not improve clinical outcomes or shorten hospital stays
for children with viral respiratory tract infections (ARTIs). These studies call for better
diagnostic tools to determine if antibiotics are necessary [32–34]. The findings of Fahey and
Stocks (1998) and Petersen (2007), who brought attention to the overestimation of antibiotic
advantages in pediatric viral illnesses [35,36], corroborate the limited usefulness of these
medications in changing hospitalization lengths and fever recovery. Moreover, there are
major gaps in the literature connecting antibiotic use to shorter hospital stays which has
led Mustafa and Salman (2020) and Little and Rumsby (2005) to express concerns regarding
the appropriate use of antibiotics [37,38]. In a similar vein, research by Pichichero et al.
(2000) and Jain et al. (2001), highlights the fact that most children can recover from viral
RTIs without antibiotics. These studies call for cautious prescribing to prevent needless
problems and resistance [39,40]. The necessity for integrated diagnostic and treatment
strategies is further demonstrated by the fact that rapid diagnostics, like the PCR multiplex
respiratory panel, which was emphasized in studies by Kim et al. (2021) and Papan et al.
(2020), improve diagnosis speed but do not significantly decrease length of stay or antibiotic
use [41,42].

Despite clear evidence of their limited effectiveness, antibiotics are frequently pre-
scribed for pediatric viral upper respiratory tract infections (URTIs), often based on miscon-
ceptions about their benefits. Research indicates that antibiotics do not significantly reduce
fever duration or enhance clinical outcomes in viral URTIs [43–46]. Such misuse is exac-
erbated by widespread false beliefs regarding antibiotic efficacy for symptoms like fever,
which prompt an inappropriate prescription rate of 40% to 75% in North America, often
when fever exceeds 38.5 ◦C [47,48]. In Saudi Arabia, 27% of parents seek antibiotics for their
children’s fever, illustrating a global issue [23]. The persistence of incorrect beliefs among
parents about the role of antibiotics in treating fever and ear pain necessitates targeted
educational interventions to correct these views and promote effective fever management
strategies [49]. Antibiotics are reserved for specific instances, like influenza, to prevent
secondary bacterial infections, but do not change the recovery timeline from the virus
itself [50]. A meta-analysis by Fahey and Stocks showed that antibiotics do not improve
outcomes in children with URTIs, with no significant reduction in symptom duration or
hospitalization [35]. Petersen (2003) found that the number needed to treat with antibiotics
to prevent one serious complication from an acute viral infection exceeds 4000, indicating
their minimal role in such cases.

In fact, there is a lack of comprehensive research examining the impact of antimicrobial
agents on key health outcomes such as hospital stay duration and fever resolution time in
children with viral respiratory tract infections. This gap highlights the urgent importance
of our current study. Our working hypothesis is that antibiotics do not significantly
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alter these outcomes and instead contribute to global antibiotic abuse and resistance.
To evaluate these results, we used a survey-weighted linear regression model and the
gradient boosting machine (GBM) method for propensity score matching [51,52]. These
advanced data analysis methods allow us to compare cohorts treated with antibiotics
against those not treated, focusing on the duration required for fever resolution and hospital
stay lengths. While antibiotics are often criticized for their ineffectiveness against viral
pathogens, they are crucial in preventing bacterial complications arising from influenza.
With precise diagnostic practices that accurately identify bacterial co-infections, antibiotics
can be prescribed more judiciously, ensuring their use is both necessary and appropriate.

2. Materials and Methods

This study employed a retrospective analysis of electronic medical records (EMRs) for
pediatric patients admitted between October 2016 and December 2020 to the Pediatric ward
at Imam Abdulrahman Bin Faisal Hospital in Dammam, Saudi Arabia. The proposal was
approved by the Institutional Review Board (IRB), King Abdullah International Medical
Research Center, Riyadh, Saudi Arabia, under the reference number RD20/004/D. The
Hospital affiliated with the National Guard Health Affairs, has an overall capacity of
approximately 100 beds. The pediatric ward has a designated capacity of 20 beds, with an
average annual admission rate of 1200. Notably, during winter, admission rates frequently
exceed the bed capacity of the ward.

For the purposes of our research, the age range of the pediatric population under
investigation spanned from 1 month to 14 years. To be included in the cohort, children had
to exhibit acute-onset respiratory symptoms and be diagnosed with acute viral respiratory
tract infection (VRTI) through PCR multiplex respiratory panels conducted on nasopharyn-
geal aspirates. The key exclusion criteria were as follows: (1) Prematurity with a corrected
age under 40 weeks; (2) Immunocompromised status; (3) Documented bacterial etiology
evident from blood cultures, urine cultures, or respiratory panels; (4) Suspected sepsis with
hemodynamic instability. (5) SARS-CoV-2 was excluded from the analysis.

Our research aimed to utilize gradient boosting machine algorithms to investigate the
causal impact of antimicrobial agents on the recovery times from fever and the duration of
hospital stay in non-critical pediatric patients diagnosed with acute VRTI.

Co-Variates

In our analytical framework, we meticulously assimilated 29 confounders spanning
demographic, clinical, and laboratory dimensions. Demographically, age and sex were
cornerstone parameters. From a clinical perspective, our analysis delved deep into the
nuances of disease duration, antecedent fever episodes, zenith-recorded temperatures, and
trajectory to fever resolution. It is important to highlight that we operationalized ‘fever
recovery’ as a phenomenon in which the fever abates within 72 h of its inaugural docu-
mentation, treating any protracted or non-diminishing febrile episode during the ensuing
observation period as a censored phenomenon. In addition, our clinical lens also captured
manifestations, such as cough, dyspnea, wheezing, diarrhea, and vomiting, coupled with
the presence of any concurrent comorbid pathologies or coinfections. Shifting the gaze to
the laboratory dimension, our investigatory matrix was bolstered by parameters including,
but not limited to, hemoglobin concentrations, leukocyte metrics, neutrophil and lympho-
cyte enumerations, thrombocyte counts, C-reactive protein indices, creatinine benchmarks,
alanine aminotransferase metrics, albumin gradients, respiratory intervention necessities,
and the cumulative duration of hospital-based care. Collectively, these confounders metic-
ulously architect a robust analytical scaffold, empowering our gradient boosting machine
algorithms to dissect the potential ramifications of antimicrobial therapeutics on fever
trajectories and hospitalization epochs in non-critical pediatric cohorts with acute viral
respiratory tract pathologies.

Acute Viral Respiratory Tract Infection: An acute viral respiratory tract infection is
a rapid-onset infection caused by one of several respiratory viruses, including influenza,
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respiratory syncytial virus (RSV), rhinovirus, coronavirus, adenovirus, and others. The
infection typically affects the nose, throat, airways, or lungs. Clinically, ARTIs present
with a constellation of symptoms including, but not limited to, cough, sore throat, nasal
congestion, rhinorrhea, fever, malaise, and dyspnea. These symptoms can vary in intensity
and may be accompanied by systemic features such as fever and body aches. Diagnosis is
primarily clinical but can be confirmed through molecular testing, antigen detection, or
viral culture. The management of ARTIs is generally supportive, with antiviral medications
used for specific viruses and in particular patient populations [32].

Laboratory diagnosis of acute viral respiratory tract infection: A multiplex polymerase
chain reaction (PCR) assay was employed to discern the genomic material of an exten-
sive panel of 22 respiratory pathogens, including the recently added SARS-CoV-2. This
multiplex real-time PCR analysis was meticulously executed with strict adherence to the
protocols delineated by its manufacturer, See-gene, a renowned entity headquartered in
Korea. The diagnostic tool of choice was the Any-plex™ II RV16 detection kit (Seegene
Inc., Seoul, South Korea), an innovative product from Seegene’s repertoire tailored to
identify a spectrum of viral pathogens. The detection capabilities of this kit encompass a
range of viruses, notably adenovirus, influenza A and B, parainfluenza viruses (types 1
through 4), rhinovirus A/B/C, RSV A and B, bocaviruses (types 1 through 4), human
metapneumovirus, coronavirus (229E, NL63, and OC43), and enterovirus, thereby offering
a comprehensive diagnostic panorama [33].

Definition of exposed or Unexposed Group: In this study, we defined pediatric patients
who received antimicrobial treatment for at least 48 h during their hospital stay as the
“antibiotics-exposed” group. Conversely, those who did not meet this criterion were
classified into the “unexposed” group.

Statistical Analysis: Statistical analyses were conducted using R software (version 4.1.1,
10 August 2021). Baseline demographic and clinical characteristics of patients were detailed
using the ‘table one’ package, producing an informative “Table 1”. This table systematically
presents categorical variables as counts and percentages, and continuous variables as means
and standard deviations (for normal distributions) or medians and interquartile ranges
(for non-normal distributions), depending on their distribution. Categorical data were
analyzed using the Chi-square test or Fisher’s exact test when more appropriate, while
continuous variables were analyzed using one-way ANOVA or the Kruskal–Wallis test,
with the t-test or Wilcoxon test used for two-group comparisons. Statistical significance
was determined at a p-value < 0.05 with a 95% confidence interval.

The study applied the ‘twang’ R package, which utilizes advanced machine learning
algorithms, to derive propensity scores [34]. This method was used to balance baseline
characteristics between antibiotic-exposed and non-exposed groups. The analysis used
multivariate logistic regression with antibiotic factors (Abx0 and Abx1) as the outcomes
and the baseline variables as potential confounders. The balance of covariates before and
after matching was assessed using standardized mean differences, with a threshold of
0.15 indicating a satisfactory balance. Where this threshold was exceeded, the analysis
recommended combining propensity score adjustments with further covariate adjustments,
enhancing the reliability of the conclusions. In fact, the gradient boosting machine (GBM)
was employed exclusively for the purpose of propensity score matching to adjust for
confounding variables, rather than for predictive modeling.

Secondary outcomes, such as the time until fever resolution, were analyzed using the
‘survival’ and ‘survminer’ R packages, with the log-rank test assessing differences. This
robust statistical approach helped clarify the impact of antimicrobial therapy on the speed
of recovery and reduction of hospital stays in non-critical pediatric patients with acute viral
respiratory tract infections.



Antibiotics 2024, 13, 518 5 of 16

Table 1. Demographic, clinical, and laboratory data for 238 patients. Age in months (median, IQR);
gender as % male. Clinical symptoms (fever, cough, SOB, wheezing, vomiting, diarrhea, convulsions)
and interventions (antibiotics, respiratory support) are reported as percentages. Median and IQR are
used to present weight, days of illness, maximum temperature, and length of stay. Laboratory values
include WBC, Hb, neutrophils, lymphocytes, platelets, CRP, albumin, creatinine, and ALT (median,
IQR). X-ray results are shown as frequency and percentage.

Total Number (N) N = 238
Age (median [IQR]) 15.00 [7.00, 37.00]

Gender, n (%) Male 112 (47.1)
Wt (median [IQR]) 10.00 [6.91, 14.07]

DOI (median [IQR]) 3.00 [2.00, 4.00]
Fever, n (%) Yes 125 (52.5)

MaxTem (median [IQR]) 37.95 [37.23, 38.90]
Cough, n (%) Yes 175 (74.2)

SOB, n (%) Yes 163 (68.5)
Wheeze, n (%) Yes 122 (51.7)
Vomiting, n(%) Yes 90 (37.8)
Diarrhea, n(%) Yes 28 (11.8)

Convulsion, n(%) Yes 15 (6.3)
Comorbidity, n (%) Yes 80 (34.3)
Co-infection, n (%) Yes 63 (26.9)

WBC (median [IQR]) 11.30 [8.70, 15.80]
Hb (median [IQR]) 12.00 [10.50, 12.80]

Neutrophil (median [IQR]) 5.58 [3.10, 9.32]
Lymphocyte (median [IQR]) 3.90 [2.18, 6.08]

Platelets (median [IQR]) 330.5 [271, 430]
CRP (median [IQR]) 14.8 [5.53, 39.8]

Albumin (median [IQR]) 36 [32, 39]
X-Ray result, n (%) Abnormal 130 (54.6)

Creatinine (median [IQR]) 40 [36, 46]
ALT (median [IQR]) 26 [18, 35.5]

Abx, n(%) Yes 137 (57.6)
Res support, n (%) Yes 67 (28.2)

LOS (median [IQR]) 4.00 [3.00, 7.00]

3. Results

Patient Demographics and Clinical Characteristics: Our cohort included 238 patients
with a median age of 15 months (IQR, 7 to 37 months) and a slight female predominance
(52.9%). The median weight was 10.00 kg (IQR, 6.91 to 14.07 kg). Cough was the most
common symptom (74.2%), followed by shortness of breath (68.5%), and fever (52.5%). The
median illness duration before presentation was 3 days (IQR, 2 to 4 days). The median
maximum temperature was 37.95 ◦C (IQR, 37.23 to 38.90 ◦C). Vomiting and diarrhea were
reported in 37.8% and 11.8% of patients, respectively, while convulsions were less common
at 6.3%. Comorbid conditions were present in 34.3% of patients, and co-infections were
seen in 26.9%. (Table 1).

Laboratory and Radiological Findings: The median white blood cell count was
11.30 × 109/L (IQR, 8.70 to 15.80 × 109/L). The median hemoglobin level was 12.00 g/dL
(IQR, 10.50 to 12.80 g/dL), and the median platelet count was 330.5 × 109/L (IQR,
271 to 430 ×109/L). C-reactive protein had a median value of 14.8 mg/L (IQR, 5.53 to
39.8 mg/L). Median values for albumin, creatinine, and alanine aminotransferase were
36 g/L (IQR, 32 to 39 g/L), 40 µmol/L (IQR, 36 to 46 µmol/L), and 26 U/L (IQR, 18 to
35.5 U/L), respectively. Radiologically, 54.6% of the X-rays were abnormal. (Table 1).

Therapeutic Interventions and Length of Hospital Stay: Antibiotics were used in
57.6% of patients, while 28.2% required respiratory support. The median hospital stay was
4 days (IQR, 3 to 7 days) (Table 1).
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Viral Infections and Co-Infections: Among the 238 pediatric patients, viral infections
were PCR-confirmed from nasopharyngeal aspirates. Human rhinovirus/enterovirus
(HRV/EV) was the most prevalent, present in 44.5% of the cohort, followed by respiratory
syncytial virus (RSV) in 18.1% of cases. Co-infections showed HRV/EV and RSV together
in 8.4% of patients, while HRV/EV and parainfluenza virus co-occurred in 5.0% of cases.
Other viruses such as influenza A Virus, parainfluenza virus, adenovirus, and human
metapneumovirus were present in smaller proportions. (Figure 1).

Antibiotics 2024, 13, x FOR PEER REVIEW 6 of 16 
 

×109/L). C-reactive protein had a median value of 14.8 mg/L (IQR, 5.53 to 39.8 mg/L). Me-

dian values for albumin, creatinine, and alanine aminotransferase were 36 g/L (IQR, 32 to 

39 g/L), 40 µmol/L (IQR, 36 to 46 µmol/L), and 26 U/L (IQR, 18 to 35.5 U/L), respectively. 

Radiologically, 54.6% of the X-rays were abnormal. (Table 1). 

Therapeutic Interventions and Length of Hospital Stay: Antibiotics were used in 

57.6% of patients, while 28.2% required respiratory support. The median hospital stay was 

4 days (IQR, 3 to 7 days) (Table 1). 

Viral Infections and Co-Infections: Among the 238 pediatric patients, viral infections 

were PCR-confirmed from nasopharyngeal aspirates. Human rhinovirus/enterovirus 

(HRV/EV) was the most prevalent, present in 44.5% of the cohort, followed by respiratory 

syncytial virus (RSV) in 18.1% of cases. Co-infections showed HRV/EV and RSV together 

in 8.4% of patients, while HRV/EV and parainfluenza virus co-occurred in 5.0% of cases. 

Other viruses such as influenza A Virus, parainfluenza virus, adenovirus, and human 

metapneumovirus were present in smaller proportions. (Figure 1). 

 

Figure 1. Detected virus from a PCR multiplex respiratory panel. HRV/EV = human rhinovirus/en-

terovirus RSV = respiratory syncytial virus, FLUA = influenza A, Hmpv = human metapneumovirus, 

parainfluenza virus = PIV, ADV = adenovirus, Hmpv = human metapneumovirus, HcoV = human 

coronavirus. 

Propensity Score Weighting Analysis for causal impact of antibiotics on length of 

stay: To address potential imbalances between the two groups (Abx0 and Abx1), we em-

ployed propensity score weighting using the ‘twang’ R package, which leverages a gen-

eralized boosting machine algorithm. This technique allowed us to account for observed 

covariates and approximate randomized control trials in observational data. Before 

weighting, we identified significant imbalances in several covariates. Covariates with an 

SMD of 0.15 or less were considered balanced between the two groups, while those with 

an SMD greater than 0.15 were deemed imbalanced. Balanced covariates included dura-

tion of illness (DOI), shortness of breath (SOB), vomiting, convulsion, neutrophil count, 

platelet count, creatinine level, ALT level, and requirement of respiratory support. Imbal-

anced covariates included age, weight, gender, fever, cough, maximum temperature, 

wheeze, diarrhea, co-morbidity, co-infection, WBC, hemoglobin, lymphocyte count, CRP 

level, albumin level, X-ray result, and length of stay (LOS). To correct for these imbalances, 

we applied propensity score weighting to estimate the average treatment effect on the 

treated (ATT) (Table 2). 

Figure 1. Detected virus from a PCR multiplex respiratory panel. HRV/EV = human rhi-
novirus/enterovirus RSV = respiratory syncytial virus, FLUA = influenza A, Hmpv = human metap-
neumovirus, parainfluenza virus = PIV, ADV = adenovirus, Hmpv = human metapneumovirus,
HcoV = human coronavirus.

Propensity Score Weighting Analysis for causal impact of antibiotics on length of stay:
To address potential imbalances between the two groups (Abx0 and Abx1), we employed
propensity score weighting using the ‘twang’ R package, which leverages a generalized
boosting machine algorithm. This technique allowed us to account for observed covariates
and approximate randomized control trials in observational data. Before weighting, we
identified significant imbalances in several covariates. Covariates with an SMD of 0.15 or
less were considered balanced between the two groups, while those with an SMD greater
than 0.15 were deemed imbalanced. Balanced covariates included duration of illness (DOI),
shortness of breath (SOB), vomiting, convulsion, neutrophil count, platelet count, creatinine
level, ALT level, and requirement of respiratory support. Imbalanced covariates included
age, weight, gender, fever, cough, maximum temperature, wheeze, diarrhea, co-morbidity,
co-infection, WBC, hemoglobin, lymphocyte count, CRP level, albumin level, X-ray result,
and length of stay (LOS). To correct for these imbalances, we applied propensity score
weighting to estimate the average treatment effect on the treated (ATT) (Table 2).

Summary statistics before and after GBM model: After applying the generalized
boosted model (GBM) for propensity score matching, we ensured better balance between
the treated (137 patients) and control (101 patients) groups. Initially, significant imbalance
was indicated by a maximum effect size of 0.612. After matching, the maximum effect size
decreased to 0.461, and the mean effect size reduced from 0.220 to 0.122, with improvements
in the Kolmogorov–Smirnov statistic as well. This indicates that the matching process
significantly improved group comparability, reducing potential biases in our analysis. The
model ran 4285 cycles to adjust and improve the matching between the groups, ensur-
ing that the treated and control groups were as similar as possible in terms of baseline
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characteristics. This extensive process ensured the accuracy and reliability of our results
(Table 3).

Table 2. Characteristics of covariates used in the generalized boosted model before matching.

Variable Abx0 Abx1 SMD
N 101 137

Age (median [IQR]) 11 [6, 26] 20 [7.75, 38.00] 0.183
Gender (%), Male 35 (34.7) 77 (56.2) 0.443

Wt (median [IQR]) 9.45 [6.34, 13.25] 10.95 [7.73, 15.62] 0.174
Duration of illness (DOI) (median [IQR]) 3.0 [1.0, 3.0] 3.0 [2.00, 5.0] 0.135

Fever (5), Yes 36 (35.6) 89 (65.0) 0.613
Maximum temp (MaxTem) (median [IQR]) 37.5 [37.1, 38.3] 38.4 [37.6, 39.1] 0.634

Cough (5), Yes 70 (70.0) 105 (77.2) 0.164
Shortness of breath (SOB) (%), Yes 71 (70.3) 92 (67.2) 0.068

Wheeze (%), Yes 57 (57.0) 65 (47.8) 0.185
Vomiting (%), Yes 39 (38.6) 51 (37.2) 0.029
Diarrhea (%), Yes 4 (4.0) 24 (17.5) 0.449

Convulsion (%), No 101 (100.0) 137 (100.0) <0.001
Co-morbidity (%), Yes 40 (40) 40 (30.1) 0.209
Co-infection (%), Yes 39 (39.4) 24 (17.8) 0.493
WBC (median [IQR]) 11.50 [10.10, 15.90] 10.25 [7.57, 15.60] 0.189
Hb (median [IQR]) 12.43 [11.70, 12.80] 11.30 [10.17, 12.53] 0.552

Neutrophil (median [IQR]) 5.52 [2.61, 9.30] 5.60 [3.11, 9.45] 0.062
Lymphocyte (median [IQR]) 4.94 [3.22, 8.01] 3.50 [2.07, 5.45] 0.361

Platelets (median [IQR]) 332 [270, 490.25] 330.5 [271, 388.5] 0.140
CRP (median [IQR]) 8 [2.6, 25.8] 27.7 [10.1, 68.1] 0.836

Albumin (median [IQR]) 37 [33, 39] 35 [30, 39] 0.481
X-Ray result (%) Yes 40 (39.6) 90 (65.7) 0.541

Creatinine (median [IQR]) 39.5 [36, 46] 40.5 [36, 45.3] 0.015
ALT (median [IQR]) 25.00 [19.00, 34.00] 26.00 [18.00, 37.00] 0.024

ResSupport (%) 101 (100.0) 137 (100.0) <0.001
Length of stay (LOS) (median [IQR]) 3.00 [2.00, 4.00] 6.00 [3.00, 8.00] 0.793

Table 3. Summary statistics before and after GBM model.

n.treat n.control ess. treat ess. control max.es mean.es max. ks

unw 137 101 137 101 0.612 0.220 0.340

es. mean.ATT 137 101 137 41 0.461 0.122 0.240

mean. ks iteration

unw 0.164 NA

es. mean.ATT 0.110 4285

Unw= unweighted, n. treat= number of treats, n. control= number of controls, ess. treat= effective sample size of
treated, ess. Control= effective sample size in control, max.es= maximum effect size, mean.es= mean effect size,
KS= Kolmogorov Smirnov statistics, ATT= average treatment effect on treated.

Propensity score weighting data with visualization: We enhanced the comparison
between the Abx0 and Abx1 groups, achieving a balance across 12 factors, each with small
differences (standardized mean differences or SMDs of 0.15 or less) using a method called
propensity score weighting. Despite this, residual imbalances remained for fever, diarrhea,
C-reactive protein, and albumin, suggesting that these factors might have influenced the
outcomes and warranted careful interpretation. This analysis underscored the efficacy
of propensity score weighting in enhancing the validity of causal inferences in observa-
tional studies, as illustrated in the Love plot, which elegantly encapsulated the SMD of
16 covariates before and after matching. (Table 4, Figure 2).
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Figure 2. Love plot to demonstrate the standardized mean difference of sixteen covariates before and
after propensity score matching. The red line represents the unadjusted, and the blue line adjusted
covariates. Both shade lines are the threshold cut points for covariates balance standardized mean
difference (−0.15 to +0.15).

Table 4. Balance measures after using the twang R package (Toolkit for Weighting and Analysis of
Non-equivalent Groups) where a generalized boosted machine algorithm was used to obtain the cuff
up the balance of SMD of 0.15 among the covariates.

Type Diff.Adj M.Threshold

Propensity score Distance 4.2665

Age Continuous 0.0964 Balanced, <0.15

Weight Continuous 0.0731 Balanced, <0.15

DOI Continuous 0.0184 Balanced, <0.15
Fever Binary 0.1885 Not Balanced, >0.15
SOB Binary −0.0207 Balanced, <0.15

Vomiting Binary −0.0985 Balanced, <0.15
Diarrhea Binary 0.2761 Not Balanced, >0.15

Co-morbidity Binary −0.1490 Balanced, <0.15

WBC Continuous 0.0189 Balanced, <0.15

Neutrophil Continuous 0.0601 Balanced, <0.15

Platelets Continuous 0.1250 Balanced, <0.15
CRP Continuous 0.4608 Not Balanced, >0.15

Albumin Continuous −0.1972 Not Balanced, >0.15
ALT Continuous −0.0414 Balanced, <0.15
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Table 4. Cont.

Type Diff.Adj M.Threshold

Creatinine Continuous −0.0313 Balanced, <0.15

ResSupport Binary 0.0932 Balanced, <0.15

Balance tally for standardized mean differences

Balanced, <0.15 12

Not Balanced, >0.15 4

Bivariate Analysis: In our bivariate analysis comparing Abx0 and Abx1 cohorts,
significant differences were observed in age, white blood cell count, and length of hospital
stay, each validated by a p-value < 0.05. Neutrophil count did not show a significant
difference (Figure 3).
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Figure 3. Violin plot comparing the distributions of age, WBC (white blood cells), neutrophil, and
length of stay (LOS) between groups with and without antibiotic treatment (Abx, where 1 = Yes and
0 = No). Each subplot shows the spread and density of values for these variables, helping to visualize
any differences based on antibiotic use.

Length of Hospital Stay Analysis: Using a survey-weighted linear regression model,
we found that antimicrobial administration corresponded to a longer length of stay, ap-
proximately 2.19 days. Diarrhea was inversely correlated with the length of stay, reducing
it by roughly 2.26 days, while higher albumin levels were associated with shorter stays.
No significant relationships were observed between length of stay and either fever or
C-reactive protein (Table 5).



Antibiotics 2024, 13, 518 10 of 16

Table 5. Survey-weighted linear regression output. Fever, diarrhea, CRP, and albumin were included
in the model because of SMD > 0.15 for minimizing bias.

Model Information

Observation 238

Dependent Variable: Length of Hospital Stay (LOHS)

Type: Survey-weighted linear regression

MODEL FIT: R2 = 0.37

Adj. R2 = 0.36

Standard errors: Robust

Est S. E t val p value

(Intercept) 1.86 3.01 6.19 0.00

Abx 2.19 0.53 4.11 0.00

Fever −0.37 0.63 −0.59 0.56

Diarrhea −2.26 0.55 −4.08 0.00

CRP −0.00 0.00 −1.06 0.29

Albumin −0.40 0.08 −4.90 0.00

Estimated dispersion parameter = 15.58
Abx = Antibiotics.

Time to Recover from Fever: A Kaplan–Meier analysis comparing the time to re-
cover from fever between the Abx0 and Abx1 groups showed no significant difference
(p-value = 0.37). A log-ranked test suggested the hazard ratio was 0.84 (CI: 0.57–1.2), in-
dicating that antibiotic use did not significantly impact the time to recover from fever
(Figures 4 and 5).
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Figure 4. The Kaplan–Meier curve depicting time to recovery from fever. It shows the comparison
between two groups: Abx0 (those who did not receive antibiotics) and Abx1 (those who did). The
inferential interpretation of this curve revealed there was no significant difference between the two
groups, with a p-value of 0.34. So, whether antibiotics were used, the time to recovery from fever
was similar.
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4. Discussion

HRV/EV and RSV Infection Prevalence: Our research focused on the prevalence of
respiratory viruses in Saudi Arabian children. We found that 44.5% of non-critical cases
tested positive for human rhinoviruses/enteroviruses (HRV/EV). This figure is on the
higher end of reported prevalence rates, which have varied due to differences in detection
methods, sample sizes, or geographic influences. For example, Launes et al. reported
a prevalence of 57.3% [53], while Jacobs et al. [54] and Comte et al. [55] found lower
rates of 33% and 28.4%, respectively. Studies by Neumann et al. [56], Bouvet et al. [57],
and Duclos et al. [58] reported even lower prevalence rates, likely due to demographic,
seasonal, or geographical factors. Respiratory syncytial virus (RSV) is another major cause
of pediatric hospitalizations [59]. It accounts for 10% to 28% of infant hospitalizations.
Different studies have reported varying prevalence rates, with Reeves et al. [60] and
Hacımustafaoğlu et al. [61] finding RSV in approximately 26% of children.

The Effects of Co-Infections: We observed that HRV/EV, RSV, and PIV often co-
infect, potentially impacting the course and prognosis of diseases. Our findings, consistent
with earlier studies, show that co-infections are common [62–64]. In children under five,
significant pathogens include RSV, HMPV, and PIV. However, unlike other studies, we did
not find any cases of HMPV-RSV co-infections [65]. Hospital stays and fatality rates were
similar across single viral infections and viral co-infections [66]. Our co-infection rate of
8.4% was lower than those reported by other studies [67,68].

Hospital Stay and Antibiotic Use: Our analysis of pediatric patients with acute viral
respiratory tract infections (AVRTI) revealed that antibiotic use increased the length of stay
(LOS) by an average of 2.19 days. This finding aligns with previous research indicating
that identifying the virus does not always lead to effective treatment and is often corre-
lated with abnormal X-ray results [69]. In contrast, studies suggest that a PCR multiplex
respiratory panel can reduce LOS and unnecessary antibiotic use by quickly identifying
viral causes [34,41]. Careful antibiotic use is crucial, as most children with viral RTIs re-
cover without antibiotics, avoiding complications and resistance [39,40]. Although a PCR
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multiplex respiratory panel can improve diagnosis speed, it may not significantly impact
LOS or antibiotic use, although it is considered cost-effective and beneficial for patient
outcomes [42,70].

Impact of Antibiotics on Fever Recovery: Our study investigated the impact of an-
tibiotics on the duration of fever recovery in children with acute viral respiratory tract
infections. Kaplan–Meier curve analysis, confirmed by the log-rank test, showed no sig-
nificant difference between antibiotic-treated and non-treated patients. Antibiotics are
frequently prescribed for respiratory diseases, despite their limited effectiveness against
these conditions [43,44]. Misconceptions, such as the belief that antibiotics shorten the du-
ration and lessen the severity of viral infections, contribute to this practice [47]. In both the
United States and Canada, a significant rate of antibiotic misuse for viral upper respiratory
infections (URIs) has been documented, ranging from 40% to 75%, often driven by the
presence of fever above 38.5 ◦C [48]. In Saudi Arabia, 27% of parents sought antibiotics for
their children during fever episodes [23]. Antibiotics are typically not recommended for
viral URIs [62]. Studies have shown no significant difference in clinical outcomes [71].

Potential Clinical Consequences: Our research highlights important changes in the
treatment of pediatric respiratory infections. We urge cautious antibiotic prescribing,
especially for viral infections, to reduce the risk of antibiotic resistance and unwanted side
effects. Given the correlation between antibiotic use and extended hospital stays, a re-
evaluation of admission criteria is warranted. The efficacy of the PCR multiplex respiratory
panel suggests ways to improve diagnostic methods, while the poor effect of antibiotics on
fever recovery calls for a re-evaluation of current fever management practices.

Strengths: Our research combined clinical investigations with advanced machine
learning methods, specifically the gradient boosting machine algorithm. Our primary
aim was to address antibiotic resistance, employing state-of-the-art analytical tools and
robust statistical procedures, including Kaplan–Meier curves and the log-rank test. Our
study explored antibiotic stewardship, multiple viruses, and co-infections, with fever as a
key symptom.

Weaknesses: The technical terms in our study’s title might limit its appeal to a broader
audience. Retrospective cohort studies, while effective for identifying patterns, have
limitations such as recall bias and incomplete information. The small sample size reduces
statistical power, and reliance on electronic medical records may introduce inaccuracies.
Data collection from a single medical facility further limits generalizability. Additionally,
the inability to distinguish between upper and lower respiratory tract infections affects
the granularity of the analysis. Future research can address these issues by improving
data collection methods, increasing sample sizes, and considering a broader spectrum
of pathogens.

5. Conclusions

Our findings highlight the need for caution when prescribing antibiotics due to their
potential harmful effects and the limitations of some diagnostic procedures. Given that
antibiotics are often ineffective against viral illnesses, fever alone should not warrant
antibiotic treatment. Our research underscores the importance of evidence-based antibiotic
stewardship to combat the growing problem of antibiotic resistance. Targeted and prudent
use of antibiotics can improve clinical outcomes for young patients and address a significant
global health risk.
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