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Abstract: Antimicrobial peptides (AMPs) have emerged as promising agents for treat-
ing topical infections due to their enhanced biocompatibility and resistance to systemic
degradation. AMPs possess host immunomodulatory effects and disintegrate bacterial
cell membranes, a mechanism less prone to microbial resistance compared to conventional
antibiotics, making AMPs potential candidates for antimicrobial delivery. The review
discusses the challenges posed by antimicrobial resistance (AMR) and explores the mech-
anisms by which bacteria develop resistance to AMPs. The authors provide a detailed
analysis of the mechanisms of action of AMPs, their limitations, and strategies to improve
their efficacy. Conventional AMP delivery systems, including polymeric, synthetic, and
lipid-based nanoparticles and cubosomes, face challenges of microbial resistance mech-
anisms via efflux pump systems, bacterial cell membrane modifications, and protease
enzyme release. This review explores strategies to optimize these delivery systems. Further-
more, market statistics and the growing interest in peptide antibiotics have been explored
in this review. The authors provide future research directions, such as exploring gene-
targeting approaches to combat emerging bacterial resistance against AMPs, and emphasize
considering the conformational stability of peptides, the skin microbiome’s nature at the
infection site, and proteolytic stability for developing efficient AMP delivery systems for
topical infections.

Keywords: antimicrobial resistance; antimicrobial peptide; proteolytic degradation;
self-assembly; skin microbiome; topical infection

1. Introduction
Antimicrobial resistance (AMR) has become a primary focus for current pharmaceu-

tical researchers due to its growing niche of innovative drug delivery technologies. The
increased resistance (up to 73% of infectious diseases), specifically against the ESKAPE
pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter species), has become a serious global
threat [1,2]. Addressing AMR is essential for both systemic and topical infections.

Being the fourth most common cause of human disease, topical infections are often
underrated [3], starting from common skin ailments that can be bacterial, viral, or fungal
to serious chronic skin infections, namely cellulitis and soft tissue infections [4]. Bacterial
infections represent most of the common skin infections [4]. Several topical antibacte-
rial agents, such as mupirocin, bacitracin, fusidic acid, polymyxin B, and neomycin, are
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currently on the market indicated for most staphylococcal skin infections [4,5]. However,
growing resistance via different mechanisms, such as horizontal gene transfer and encoding
specific metalloproteins, avoids the binding of these antibacterial agents [4].

Antimicrobial peptides (AMPs), specifically short peptides (5–15 amino acids), have
shown promise in combating bacterial resistance [4]. These naturally occurring AMPs
(host defense peptides) possess a cationic nature and exert a strong electrostatic interaction
with the negatively charged bacterial surface, leading to disruption of the bacterial cell
membrane [6]. Various models of AMP targeting, such as the barrel stave, carpet model,
and toroidal pore model, highlight the bactericidal activity of these peptides [7]. A more
detailed classification of AMPs has been reviewed by Bin Hafeez et al. [8]. Briefly, this
process begins with electrostatic interactions between the cationic charge of AMPs and the
negatively charged bacterial surface, such as anionic phospholipids in the cell membrane
and lipopolysaccharide (LPS) in Gram-negative bacteria or teichoic acid in Gram-positive
bacteria [6,7]. Following this attraction and attachment, AMPs disrupt the integrity of
the bacterial cell membrane through several proposed models, namely the barrel-stave
model where AMPs insert themselves across the lipid bilayer, the carpet model where,
unlike barrel stave, AMPs do not insert themselves across the membrane but instead
cover the membrane surface like a carpet. In the Toroidal pore model, AMPs insert into
the lipid bilayer and induce the lipid monolayers to bend. This bending creates a pore-
like structure [6,7]. These mechanisms lead to permeabilization or disintegration of the
microbial cell membrane, ultimately causing cell death.

Several technologies are being explored to enhance AMP efficacy and stability. Struc-
turally nanoengineered antimicrobial peptide polymers (SNAPPs) utilize the bactericidal
activity of naturally occurring AMPs [7]. Currently, several AMPs are undergoing clinical
trials [9], but the challenge of improving their stability is the area where pharmaceutical
researchers are mostly invested [4].

A robust line of peptide antibiotic products is anticipated to contribute to the growth of
the peptide-antibiotic market [10–12]. As per the current market (Table 1) of peptide antibi-
otics, the skin infection segment accounted for the largest revenue share of 30.3% in 2021 and
is expected to continue leading the market throughout the forecast period (2022–2030) [10].
Joint ventures between companies like Boehringer Ingelheim and BioMérieux are expected
to drive the development of the next generation of antibiotics. The market share for the
skin infection segments of the AMPs is likely to dominate in the coming years [13].

Despite the potential of AMPs, the cost efficiency (production) and resistance to such
peptides have been a limitation. Thus, utilizing recombinant engineering methods from
prokaryotes can help reduce these costs. Resistance to such AMPs has also been addressed
by synthesizing derivative peptides. However, efficient susceptibility testing against most
of the common pathogens like methicillin-resistant Staphylococcus aureus (MRSA) should
pave the path for AMP production and reduce the risk of resistance development against
such AMPs [4,13].

Several reviews have been reported for emerging treatments for topical infections
utilizing AMPs [4,6,14,15]. Specifically, metallic nanoparticles [16,17], carbon-based nano-
materials [16], and hydrogels [6,16]. The use of metallic nanoparticles to enhance AMP
properties, namely stability, toxicity, half-life, and release profile, has been specifically
discussed in the literature [17]. The potential of AMPs to treat multi-drug resistant and
biofilm-forming bacteria and fungi in wound infections via polymers, scaffolds, films,
and nanoparticles has been discussed in the literature [18]. However, such existing lit-
erature does not discuss specific aspects like the effects of such delivery systems on the
skin microbiome [16], limited scope of other delivery systems [17], a brief discussion on
bacterial resistance mechanisms to AMPs, and a limited explanation of the advantages
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and disadvantages of each delivery strategy [18]. Additionally, the existing literature [6]
does not mention any marketed formulations for topical AMP applications. A key focus
area on certain aspects of AMP delivery, which includes maintaining the stability within
the formulation and increasing the contact time of these emerging therapeutics, has not
been addressed.

This review addresses the gaps of such existing review articles; namely, it has a focus
on the skin microbiome, which is important while designing peptide delivery systems. It
highlights factors such as pH and its influence on the local concentration of AMPs. Secondly,
there is an emphasis on the need to maintain the peptide conformation stability during for-
mulation development, which has received less attention in other review articles [6,16–18].
Understanding the commercial implications of AMP therapeutics has been explored in this
review, as mentioned in market statistics (Table 1). While all existing literature [6,16–18]
acknowledges the limitations of current AMP delivery therapies, this review provides a
concise summary of these limitations, encompassing microbial resistance mechanisms,
short residence time, bioadhesivity issues, and cytotoxic concerns. This reinforces the
need for optimization strategies to improve the current AMP-derived formulations for
topical infections.

Table 1. Marketed topical AMP formulations.

Marketed Product Type of Product Company Target Disease Reference

Cubicin RF Lipopeptide Merck & Co., Inc. (Rahway,
NJ, USA) Skin infections [19]

Daptomycin (cubicin)
IV 4 mg/kg Cyclic Lipopeptide AuroMedics Pharma LLC

(East Windsor, NJ, USA) Skin infections [20]

Polymyxin B vials Polypeptide antibiotics Xellia
(Copenhagen, Denmark)

Acute urinary,
meningeal or blood

stream infections
[21,22]

Vancocin (vancomycin
hydrochloride (1–2%) Glycopeptides Septicemia [23]

Dalvance/allergan
(dalbavancin
500 mg/vial)

Second-generation
lipoglycopeptide antibiotic

Melinta Therapeutics
(Parsippany-Troy Hills, NJ,

USA) FDA approval
May 2014

Acute skin
structure infections [24]

Telavancin Semisynthetic
peptide derivative

Theravance Biopharma
(South San Francisco,

CA, USA)

Serious bacterial
skin infections [25,26]

Orbactiv (oritavancin) Semisynthetic
lipoglycopeptide Melinta Therapeutics Acute skin

structure infections [27]

Omiganan
pentahydrochloride

Synthetic analog of
human defensin Atopic dermatitis [28,29]

2. Resistance to Antimicrobial Peptides
The lipid bilayer of the bacterial cell membrane provides an efficient line of defense

against various antimicrobials. This threat of antimicrobial resistance has been augmented
by several other factors like inappropriate use of antibiotics, cross-contamination in hospital
setup, lack of drug efficacy, and evolving mutagenesis within the ESKAPE pathogens [1].

The rapid evolution of antimicrobial-resistant mutants renders the utilization of AMPs
as a potential antimicrobial agent attractive. The unique mechanism of bacterial membrane
perturbation and disintegration by AMPs makes it difficult for bacteria to develop resis-
tance [6,7]. However, resistance to AMPs has also been triggered in Gram-positive and
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Gram-negative bacteria via several mechanisms like proteolytic degradation, efflux pump
systems, and cell surface alterations (Figure 1) [30].
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From a broader perspective, bacteria show resistance to AMPs in both passive and
adaptive manner [31]. A passive mechanism arises due to the presence of an inherent
positively charged moiety known as Lipid A outside the bacterial cell membrane, which
reduces the interaction of the cationic peptides with the membrane surface [31]. Several
passive mechanisms of resistance, such as ATP-binding cassette (ABC) transporters of Gram
positives like Staphylococcus aureus and BceAB type two-component ABC transporters, are
active against a broader range of AMPs [30]. In the context of superficial skin bacterial
infections, the VraFG ABC transporter of Staphylococcus aureus (causative organism of skin
infections like impetigo and most skin and soft tissue infections) elicits resistance to a
wide range of AMPs [30]. Bacteriolytic proteins or proteases, which play an important
role in AMP resistance, are secreted by a wide range of Group A Streptococcus, Enterococcus,
metalloproteases from Staphylococcus aureus, and Gram-negatives such as Pseudomonas
aeruginosa. Extracellular surface modifications against a broad range of AMPs, including
lantibiotics, polymyxins, and colistin, have been reviewed [31–33].

The second type of resistance mechanism that is common against AMPs is the adaptive
or inducible mechanism of resistance, where a modification of the extracellular bacterial
surface at a molecular level occurs [34]. The D-ala-D-ala residue of the peptidoglycan
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is substituted with D-lactate, thus reducing the interaction of some antibiotics such as
vancomycin with the bacterial cell membrane [35]. Detailed resistance mechanisms against
AMPs are out of the scope of this paper. Comprehensive papers are available for readers
with a keen interest [30,31]

3. Skin Microbiome
The skin, as the body’s first line of defense against microbes, hosts a diverse micro-

biome, including commensals, pathogens, residents, transients, mutualistic microbes, and
opportunistic pathogens [36]. This classification served as the basis for the “Human Micro-
biome Project”, which utilized RNA gene sequencing techniques from healthy volunteers
to generate critical data on the nature of the healthy skin microbiome. This dataset is
used for the detection of pathogens that are activated or unmasked during specific disease
conditions [36]. AMPs play an integral role due to the correlation between AMP levels
and the severity of bacterial infections. The reduction in naturally occurring AMPs in
skin infections like atopic dermatitis (AD) contributes to unhindered bacterial infections,
making the detection and study of such patterns crucial for disease management [36].

The coordinated and timely completion of all four biological processes (hemostasis,
inflammation, proliferation, and remodeling) [37] is essential for successful wound healing
(Figure 2). Direct antimicrobial activity by bacterial membrane disruption, enhancement of
cell migration and proliferation, induction of neovascularization, and functioning as potent
immunomodulators encompasses the powerful and complicated mechanism of action of
AMPs (Figure 2) [38].
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4. Significance of pH in AMP Delivery for Topical Infections
The topographical variation of a healthy skin microbiome is comprised of various

endogenous factors like pH and localized concentration of microbial species affecting the se-
lection of the appropriate AMP delivery system. Considerable research has been conducted
on bacterial membrane interactions with peptides and their bactericidal effects [6,7,15].
Bacteria in the wound site express toxins and other protease enzymes, which leads to low
metabolic stability of these therapeutic peptides [6,15]. Thus, effective transdermal AMP
delivery remains a challenge. The knowledge of pH variations during wound healing is
critical, as it could affect the extent of expression of microflora, leading to inflammatory
diseases, including AD, impetigo, and diabetic foot ulcers. The cutaneous pH range of
5.5–6 changes upon infection [39], which in turn affects the whole series of tissue remodel-
ing processes (comprising of cell migration and proliferation) [6,39]. It is evident that lower
pH favors wound healing [40]. Thus, indicating that higher pH is an important marker in
detecting skin infections in the preliminary stages [39,40].

5. Key Factors to Be Considered for Novel AMP Delivery
AMP activity depends on factors like safety, concentration, stability, and the pH of its

surroundings [41–43]. Transdermal delivery is the most viable method for administering
AMPs because it ensures a localized and higher concentration of peptides at the infection
site [44]. However, emerging AMP delivery systems in wound healing (nanoparticles,
cubosomes, and nanostructured lipid carriers) suffer from several limitations, such as
limited bioadhesivity, low residence time, fibroblast cell toxicity leading to biocompatibility,
biodegradability issues, and degradation of peptides [6]. The following section of emerg-
ing AMP delivery systems (nanoparticles, cubosomes, and nanostructured lipid carriers)
discusses existing AMP delivery systems with an insight into their limitations.

6. Emerging AMP Delivery Systems
6.1. Nanoparticles

The advantage of higher encapsulation efficiency and improved pharmacokinetic
profile has increased the pace of development of nanoparticles (NPs) in the field of drug
delivery [6]. Several forms of NPs were developed from different sources, namely natural
(chitosan-based [45,46]) and synthetic (PLGA [47] and gold nanoparticles [48]), which have
been widely explored and investigated in the literature. NPs (polymeric, gold, and silver)
in topicals promote the process of wound healing by targeting a factor, lactate, responsible
for one of the important biological processes in wound healing, i.e., cell remodeling and
regeneration [6,49]. The literature suggested that reactive oxygen species, such as lactate
(an end product of anaerobic glucose metabolism), play a significant role in the underlying
processes of wound healing (renewal and regeneration) [50]. Thus, significant levels of
lactate can stimulate angiogenesis [6]. Sustained and improved release of AMPs via NPs
as delivery mechanisms induces improved lactate stimulation, which further leads to cell
proliferation and migration and wound healing (Figure 3). However, limited residence time
is the major disadvantage of such AMP-based NPs, which can be detrimental to chronic
wounds like diabetic foot ulcers [47].

Fibroblast cell cytotoxicity is induced by gold NPs, which can limit the normal wound-
healing process [51]. Gold NPs [52] contain gold, which makes them unsuitable from the
perspective of biocompatibility and biodegradability for such NPs [6]. Silver nanoparti-
cles, on the other hand, tend to precipitate out free silver ions in the stratum corneum
layer, making them less preferable than gold NPs. However, due to the aforementioned
cell cytotoxicity, gold NPs are associated with issues as an AMP delivery system [6,53].
Additionally, augmented macrophage release triggered by the adsorption of gold NPs into
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wounds can generate inflammatory responses [54,55]. Limited bioadhesivity and minimal
residence time are other drawbacks for such gold and silver nanoparticles [6].
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6.2. Cubosomes

Cubosomes are amphipathic three-dimensional spatial arrangements with interwoven
water channels consisting of folded lipid bilayers, thus serving the advantage of incorpo-
rating hydrophilic, hydrophobic, and amphiphilic molecules within their structure [56].
AMPs such as AP114 [57–59], human kininogen derivative DPK-60 [57,58], gramicidin A,
melittin, alamethicin [60], and human cathelicidin LL-37 [61,62] have been incorporated
in cubosomes. Being an important part of the innate immunity system of the skin and
exhibiting wound-healing properties, LL-37 has been the preferred candidate for topical
treatment of bacterial infections [63–65].

LL-37-based cubosomes for wound infections have been explored for antimicrobial
efficacy against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli [66].
Three methods were used to prepare AMP-based cubosomes. Firstly, a pre-loading method
involved developing a liquid crystalline gel incorporating LL-37, which was then dis-
persed into cubosomes. Secondly, the post-loading approach entailed adsorbing LL-37 onto
pre-existing cubosomes. Lastly, the hydrotrope-loading technique involved using a sponta-
neous mixture of ethanol and glycerol monooleate for loading LL-37 [66]. The pre-loading
method demonstrated the most promising results due to the hydrophilic-hydrophobic
interactions between the water channels of the cubosomes and the entrapped peptide, thus
limiting exposure of the peptides to bacterial elastases (Figure 4), unlike the loading tech-
nique, where peptides are exposed over the surface, hence making it prone to proteolytic
degradation [66]. Nevertheless, this novel delivery system of cubosomes could not resolve
the issue of limited exposure at the local site of infection. Furthermore, excipient selection
during the cubosome production for topical peptide delivery requires special attention
towards the wound microenvironment, as the chronic wound microenvironment can be
highly sensitive towards certain excipients [6,66].
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6.3. Nanostructured Lipid Carriers (NLCs)

High levels of AMPs are essential for combating chronic wound infections and fos-
tering effective healing. With the advantage of increased encapsulation efficiency (up to
96%) and elevated levels of localized concentration of AMPs (Figure 5), LL-37-based NLCs
have been investigated over wound models of mice [67]. A melt emulsification technique
was used to prepare these particles over a size range of 270 nm, and significant bioactivity
was observed after the encapsulation of peptides in the lipid-based system. However, such
systems have major drawbacks of stability in aqueous systems and restricted stay following
topical application [6]. Moreover, they trigger reactive oxygen species (ROS) production
upon lipid-based nanoparticle degradation. Thus hindering the wound-healing process via
oxidative stress [6,68,69].
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7. Key Strategies to Improve AMP Delivery for Topical Infections
As mentioned earlier, bioadhesivity, residence time, biocompatibility, conformational

stability, the effect of the microenvironment, and pH considerations are important factors
to be considered for potential AMP delivery via topical mode. There have been ample
studies attempting to balance these factors to optimize efficient formulation delivery of
AMPs (Tables 2 and 3).
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7.1. Hydrogels

Three-dimensional polymer networks with high water content, known as hydrogels,
have shown promising proof-of-concept for the delivery of AMPs for effective wound
healing applications (Figure 6) [6,70]. The improvement of such systems by aligning
them towards being more skin microenvironment-friendly has been achieved via stimuli-
responsive hydrogels [70]. AMPs susceptible to hydrolysis, oxidation, and light can be
encapsulated in NPs and then embedded in hydrogels to protect against degradation. This
approach extends the duration that AMP-loaded NPs remain at the infection site. This
combination effect is more effective than bare nanoparticles [70]. Similar observations were
noted using Staphylococcus aureus as a model pathogen where NP-stabilized liposomes were
incorporated into a hydrogel, resulting in a sustained topical drug delivery system with no
skin toxicity during seven-day treatment [71]. AMPs can be incorporated into hydrogels,
including simple mixing within the polymer network, ionic interactions with the hydrogel
material, and covalent conjugation to the polymer chains [6]. Stimuli-responsive hydrogels
based on environmental cues such as pH, temperature, or the presence of specific enzymes
allow for targeted and on-demand delivery of AMPs [6]. The release of AMPs from the
hydrogels occurs through mechanisms including diffusion through the hydrogel matrix,
swelling of the hydrogel, or chemical degradation of the hydrogel network, leading to the
release of the entrapped AMPs [6]. The rate of AMP release can be tailored by adjusting
the properties of the hydrogel, such as the degree of polymer cross-linking, the chemical
structure of the monomers, and the intensity of external stimuli in the case of responsive
hydrogels [6]. For instance, higher cross-linker concentrations generally lead to a decreased
release rate [71].

Antibiotics 2025, 14, 379 10 of 20 
 

7.1. Hydrogels 

Three-dimensional polymer networks with high water content, known as hydrogels, 
have shown promising proof-of-concept for the delivery of AMPs for effective wound 
healing applications (Figure 6) [6,70]. The improvement of such systems by aligning them 
towards being more skin microenvironment-friendly has been achieved via stimuli-
responsive hydrogels [70]. AMPs susceptible to hydrolysis, oxidation, and light can be 
encapsulated in NPs and then embedded in hydrogels to protect against degradation. This 
approach extends the duration that AMP-loaded NPs remain at the infection site. This 
combination effect is more effective than bare nanoparticles [70]. Similar observations 
were noted using Staphylococcus aureus as a model pathogen where NP-stabilized 
liposomes were incorporated into a hydrogel, resulting in a sustained topical drug 
delivery system with no skin toxicity during seven-day treatment [71]. AMPs can be 
incorporated into hydrogels, including simple mixing within the polymer network, ionic 
interactions with the hydrogel material, and covalent conjugation to the polymer chains 
[6]. Stimuli-responsive hydrogels based on environmental cues such as pH, temperature, 
or the presence of specific enzymes allow for targeted and on-demand delivery of AMPs 
[6]. The release of AMPs from the hydrogels occurs through mechanisms including 
diffusion through the hydrogel matrix, swelling of the hydrogel, or chemical degradation 
of the hydrogel network, leading to the release of the entrapped AMPs [6]. The rate of 
AMP release can be tailored by adjusting the properties of the hydrogel, such as the degree 
of polymer cross-linking, the chemical structure of the monomers, and the intensity of 
external stimuli in the case of responsive hydrogels [6]. For instance, higher cross-linker 
concentrations generally lead to a decreased release rate [71]. 

 

Figure 6. Key Strategies to improve AMP delivery for topical infections “Created with BioRender.com”. 

The primary role of hydrogels is to serve as a delivery vehicle and a protective matrix 
for the AMPs [6]. It enhances the effectiveness of AMPs by providing higher AMP 
concentration at the target area [6]. In the case of nanoparticle-embedded hydrogels [71], 
the hydrogel first releases the AMPs through diffusion, which interacts with the bacteria, 

Figure 6. Key Strategies to improve AMP delivery for topical infections “Created with BioRender.com”.

The primary role of hydrogels is to serve as a delivery vehicle and a protective ma-
trix for the AMPs [6]. It enhances the effectiveness of AMPs by providing higher AMP
concentration at the target area [6]. In the case of nanoparticle-embedded hydrogels [71],
the hydrogel first releases the AMPs through diffusion, which interacts with the bacteria,
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and the AMPs exert their antimicrobial action [71]. Hydrogels also contribute to prolonged
contact time of the AMPs with the target area [6].

In summary, hydrogels facilitate AMP delivery by providing a protective environ-
ment, localizing the AMP action at the target site, thereby enhancing the AMPs’ inherent
antimicrobial mechanism of action. They serve as a crucial tool to overcome the limitations
of bare AMPs, such as susceptibility to degradation and short residence time.

7.2. Self-Assembling Peptides

The structural and compositional versatility of peptide nanomaterials establishes
the idea for designing self-assembling peptides promising better conformational stability
of AMPs (Figure 6) [72]. The effect of self-assembling peptides has shown a broader
spectrum antimicrobial effect, including multidrug-resistant (MDR) ones. The mechanism
of cell lysis via pore formation (barrel-stave model) of antimicrobial peptides, namely
alamethicin, is more efficient via self-assembling [73]. The process of AMP delivery via
self-assembling peptides involves two approaches. One approach involves conjugating
AMPs to self-assembling peptide sequences, which further form nanostructures and act
as carriers for the AMP [72]. Another is by assembling AMPs with other biomaterials to
enhance their properties and delivery [73]. The concept of enzyme-instructed self-assembly
(EISA), where enzymes trigger the self-assembly of peptide precursors, has also been
explored [72]. Both the hydrophilic and hydrophobic properties of the amino acids within
the self-assembling peptide sequence play a crucial role in the self-assembly process and
the resulting nanostructure’s morphology [72].

However, the toxicity and limited enzymatic stability of such peptides are major
concerns to be considered, which have been addressed via the incorporation of such
self-assemblies into thermosensitive polymeric carriers [73].

7.3. Other Strategies to Improve AMP Delivery Systems

Regarding the formulation of AMPs, wafers have been an interesting approach that
solves the limited contact time issue presented by cream and ointment formulations of
some AMPs [6]. Initially, the flexibility of AMP needs to be considered, which is challenging
for wafers. However, using a flexible linker, conjugation of AMPs over the surface of wafers
has been shown to address this limitation [74].

Wound dressings and other skin-pertaining delivery systems, for instance, electrospun
fibers for AMP delivery, offer better exude absorption, oxygen permeability, and enhanced
cell proliferation. However, most of these systems have been focusing more on small
molecules, whereas considerably less attention has been placed on AMPs. The reason
is that the hydrophobicity of polymers like polycaprolactone (PCL), which is used in
electrospinning, are incapable of solubilizing charged AMPs. However, by combining with
other hydrophilic polymers, the possibility of incorporating AMPs can be improved [75].
For example, polyethylene oxide (PEO) or polyvinyl alcohol (PVA) can electrospin in
polar solvents, which renders compatibility with AMPs. Thus, promoting dissolution and
swelling of peptides (Figure 6) [75].

Multiple delivery strategies have been under investigation for improving the existing
AMP delivery systems either by modifying the starting material or AMP, by modifying the
formulation process (Tables 2 and 3), and by completely establishing new delivery systems
for AMPs such as mesoporous silica nanoparticles (MSNs), antimicrobial peptide conju-
gates (APCs), bacteria-absorbing sponges, layered nanoclays, and titanium nanoparticles
(Table 3).
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Table 2. Strategies to improve novel AMP delivery for topical infections.

AMP Limitation Strategies Results Reference

LL-37 Proteolytic
degradation

• New AMP EFK17
derived from LL-37

• Terminal amidation
and acetylation

➢ Increased conformational
stability and proteolytic
susceptibility—target
organisms: S. aureus
aureolysin and V8 protease;
P. aeruginosa elastase

[64]

Amphiphilic peptides Proteolytic
degradation

• Self-assembly of
C17H35GR7RGDS
peptide or
Arginine nanoparticle

➢ Arginine imparts more
positive charge and
improves membrane
interactions

➢ Augment the selectivity for
healthy cells

➢ Strong activity against
Gram-positive bacteria with
minimal toxicity

[76]

Peptide
(KIGAKI)3-NH2

Conformational
stability

• Stimuli-responsive
hydrogel prepared by
combining two AMP
sequences with a
central
tetrapeptide linker

➢ Abrupt structural
transformation from random
coil to more stable β-hairpin
conformation

➢ Form hydrogel in the
presence of external stimuli
like pH, heat, and ionic
strength

➢ Inherent antibacterial
activity against E. coli
was preserved

[77]

AMP, SWLSK-
TAKKLFKKIPKKIP-

KKRFPRPR
PWPRPNMI-NH 2,

purity at >95%)

Less vascularization
and prolonged
inflammatory

phase-Diabetic
wound healing

• Incorporation of
hyaluronic acid-based
hydrogels along with
platelet-rich
plasma (PRP)

➢ Suppresses inflammation
➢ Promotes angiogenesis and

collagen deposition
(incorporation of PRP)

➢ Effective against S. aureus,
E. coli, and P. aeruginosa

➢ Fibroblast
proliferation-improved
wound healing in mice

[78]

Human antimicrobial
peptide (AP-57)

Limited knowledge
of its stability
and efficacy

• In situ gel formation
using biodegradable
poly (L-lactic
acid)-Pluronic L35-poly
(L-lactic acid)
(PLLA-L35-PLLA)

• Thermosensitive
biodegradable system

➢ High drug loading and
encapsulation efficiency

➢ AP-57 showed release over
an extended period

➢ Sol-to-gel conversion
without any cross-linking
agent once applied to
wounds

➢ Reduced cytotoxicity and
enhanced in vitro
antioxidant activity

➢ Enhanced angiogenesis and
increased collagen
deposition-promoting
cutaneous wound healing

[79]
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Table 2. Cont.

AMP Limitation Strategies Results Reference

Octapeptide
(IKFQFHFD)

Potential
pH-switchable

antimicrobial effect

• Effective acetylation
and amidation at the N
and C terminus of this
peptide

• pH-responsive
nanofiber-based
hydrogels

• Incorporation of cypate
(photothermal
compound) and proline
(pro-collagen compound)

➢ Antimicrobial activity at
acidic pH (5.5–5.6), which is
prevalent in chronic wounds

➢ At acidic pH, destabilization
of nanofibers, releasing
peptides

➢ Complete healing of
MRSA-infected wounds in
mice within 20 days

[80]

Hydrophilic
peptide (dalargin)

Lower encapsulation
efficiency in

PLGA nanoparticles

• Modifying the method
of preparation

• Use of ionic additive
SDS (sodium
dodecyl sulphate)

➢ SDS improved the
entrapment efficiency of
dalargin with solvent
diffusion (91.2%) and
evaporation methods (68.6%)

[81]

Nisin

Electrostatic
repulsion with

divalent cations
associated with

bacterial cell surface

• Liposomes of
phosphatidylcholine
(PC) and phosphatidyl
glycerol (PG)
were prepared

➢ PC/PG with ratio of 8:2 and
6:4 showed ~70–90%
entrapment efficiency

➢ Peptides were stable within
the liposomes at elevated
temperatures and alkaline or
acidic pH

[82]

Table 3. Improved peptide delivery systems for AMPs.

Peptide Delivery
System AMP Description Result Reference

Mesoporous silica
nanoparticles (MSNs)

Nisin A (bacteriocin
isolated from Lactococcus

lactis subsp. Lactis)

• SBA-15 and MCM-41 type
mesoporous
nanomaterials prepared

➢ Limited proteolytic degradation
➢ MCM-41 type MSN provided the

highest adsorption (pertaining to
smaller pore size ~2.8 nm)

[83]

Trichogin GA IV (short
sequence),

ampullosporin A
(medium length

sequence)

• Continuous wave (CW)
electron paramagnetic
resonance

• (EPR) and pulsed
electron-electron double
resonance (PELDOR)
techniques utilized for
adsorption onto
silica nanoparticles

➢ Conformational stability
established for the AMPs [84]

Melittin

• MSNs capped with
β-cyclodextrin and
magnetic core
(adamantane)

• Melittin was loaded along
with ofloxacin, and its
release was compared with
the free drug

➢ Higher suppression of P.
aeruginosa biofilms

➢ Limited cell toxicity
[85]
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Table 3. Cont.

Peptide Delivery
System AMP Description Result Reference

Antimicrobial peptide
conjugates

Aurein 2.2
(α-helical AMP)

• Replace PEGylated
conjugation with
hyperbranched glycerol
(HPG) conjugation

• Peptide density over
conjugation measured as a
function of
antimicrobial activity

➢ Greater biocompatibility
➢ Non-toxic to fibroblasts
➢ Active against S. aureus and

S. epidermidis
[86]

Anoplin (decapeptide,
short AMP)

• Grafting over chitosan
polymers

• Copper-catalyzed
alkyne-azide coupling
(CuAAC chemistry)

➢ Addresses the limitation of
increased hemolytic activity
associated with improving the
antimicrobial potency of anoplin

[87]

Nisin
• Porous graphene oxide

membrane used
for conjugation

➢ 100% MRSA can be removed and
destroyed using the
developed membrane

[88]

Bacteria-absorbing
sponge

Host defense peptides
(HDPs)

(peptidomimetics)

• Guanidium-rich
lipopeptide incorporated
in liquid-crystalline
hydrogel

• Trap and kill mechanism

➢ The developed sponge removes
~98.8% of bacteria

➢ Addresses the limitations of
HDPs in topical formulations
like prolonged preparation time,
insignificant toxicity reduction,
and inefficient
bacterial capturing

[89]

Layered nanoclays LL-37 • Laponite-based
nanoparticles

➢ Both bacterial flocculation and
membrane lysis were observed
upon LL-37 loading into
laponite nanoparticles

[90]

Carbon nanotubes TP359

• Silver-coated carbon
nanotubes were
functionalized with TP359
in both covalent and
non-covalent technique

➢ Addresses individual limitations
of stability and toxicity in
human cells for AMPs and
carbon nanotubes, respectively

➢ Covalent functionalization gave
synergistic antibacterial activity
and reduced toxicity

[91]

Titanium nanoparticles Lactoferrin-derived
hLf1–11

• Three different techniques
of covalent immobilization
were tested for
antibacterial activity
against oral strains
(Streptococcus sanguinis and
Lactobacillus salivarius)

• 3-Aminopropy
ltriethoxysilane (APTES)
and polymer brush-based
coatings with
two different silanes

➢ ATRP (atom transfer radical
polymerization) showed a
greater decrease in
bacterial attachment

[92]

8. Discussion and Outlook
AMR poses a significant challenge in the treatment of infections, as bacteria continue to

evolve mechanisms to evade the effects of conventional antibiotics. AMPs, though promis-
ing, are not immune to resistance development. Enterococci, for example, have shown the
ability to develop resistance to peptides, which can result in serious infections [34]. Delving
into the ground molecular mechanisms responsible for the emerging resistance to AMPs
is the major outlook in peptide antibiotics [93,94]. Susceptibility testing and other factors,
similar to antibiotics, should be considered for the application of such AMPs to minimize
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the risk of bacterial resistance [95]. As mentioned earlier, several mechanisms of bacterial
resistance against AMPs have already been defined; many of these, however, require major
adaptations and further modifications concerning bacteria [96].

AMP delivery from the context of topical infections has always been shown to pos-
sess formidable challenges due to its large size and hydrophilicity. As a consequence,
several systems like nanoparticles [47], cubosomes [66], nanostructured lipid carriers [67],
mesoporous matrices [85,97], microgels [98], and hydrogels [99] have been explored and
established. Despite these advancements, each system has its limitations of limited local
residence time, limited bioadhesivity, fibroblast cell toxicity, and ROS toxicity. The enhance-
ment of such existing topical delivery systems of AMP has been discussed in this paper
both from the starting material (i.e., peptide improvement) (Table 2) and the formulation
perspective (Table 3). In cases where the skin barrier is impaired, such as in atopic dermati-
tis, medical device approaches such as microneedles, sonophoresis, and iontophoresis have
been explored to improve AMP delivery [100].

In conclusion, this review complements other literature on AMP delivery [6,16–18]
by addressing specific gaps related to skin microbiome considerations, peptide stability,
and market insights. It reinforces shared concerns about delivery system limitations and
emphasizes optimization strategies as a path forward for AMP therapeutics.

From a future perspective, the targeting of genes responsible for emerging bacterial
resistance against such peptides is currently being explored as a possibility for successful
topical delivery of AMPs. For example, AMP sensing systems (a strategy to overcome
the resistance mechanism, which is guided by the Aps gene regulated by the dlt operon in
S. aureus) have been reported to confer sensitivity to certain AMPs [101].

Overall, careful consideration of all the factors, like conformational stability of pep-
tides, microbiome nature (pH) at the site of infection, and proteolytic stability, shall lead to
the development of an efficient AMP delivery system for topical infections.
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