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Abstract: Leishmaniasis and Chagas disease are parasitic diseases considered to be among
the most important neglected diseases, with implications for both developed and develop-
ing countries. Currently, there are no effective therapeutic treatments for these diseases
due to challenges in drug administration, high toxicity, high costs, and drug resistance. In
this study, a series of eleven thymol derivatives were designed, synthesized, and evaluated
for their in vitro kinetoplastid activity against Leishmania amazonensis and Trypanosoma
cruzi, as well as their cytotoxicity against a murine macrophage cell line. The most active
compounds, thymol anysoate (9) and thymol picolinate (10), displayed the highest kineto-
plastid activity with IC50 values of 22.87 and 25.16 µM against L. amazonensis and T. cruzi,
respectively. Notably, both compounds demonstrated an excellent selectivity index against
the mammal cell line. Structure–activity relationship studies revealed that the ester group
plays a crucial role in activity. The most promising derivatives, 9 and 10, activate autophagy
and apoptosis-like processes in the treated cells. Atomic force microscopy observations
showed that derivative 9 induces the formation of cytoplasmic vacuoles, indicating an au-
tophagic process, and drug-likeness analysis revealed that it meets all the pharmacokinetic
criteria. Overall, these results highlight derivative 9 as a potential lead compound for the
development of new drugs for the treatment of Trypanosomatidae infections and warrants
further studies to elucidate the cell death cascade involved.

Keywords: thymol derivatives; Leishmania amazonensis; Trypanosoma cruzi; structure–activity
relationship; mechanism of action; drug-likeness

1. Introduction
Neglected tropical diseases caused by bacteria, virus, helminth parasites, and pro-

tozoa [1] represent a serious global health problem, particularly in developing countries.

Antibiotics 2025, 14, 383 https://doi.org/10.3390/antibiotics14040383

https://doi.org/10.3390/antibiotics14040383
https://doi.org/10.3390/antibiotics14040383
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0009-0001-6213-4835
https://orcid.org/0000-0002-4306-2696
https://orcid.org/0000-0003-0131-1401
https://orcid.org/0000-0002-0641-607X
https://orcid.org/0000-0001-6233-8224
https://doi.org/10.3390/antibiotics14040383
https://www.mdpi.com/article/10.3390/antibiotics14040383?type=check_update&version=2


Antibiotics 2025, 14, 383 2 of 21

Kinetoplastid protozoan parasites are a group of flagellated protozoa [2] characterized
by a unique mitochondrial DNA structure located at the base of the flagellum, known
as ‘kDNA’ [3]. These infections have a high prevalence but remain a low priority for
investment [2]. Among unicellular protozoa, Trypanosoma brucei, Trypanosoma cruzi, and
Leishmania parasites are responsible for African sleeping sickness, Chagas disease, and
leishmaniasis, respectively [4].

Chagas disease, also known as American trypanosomiasis, is endemic in Latin Amer-
ica and causes approximately 12,000 deaths annually. Moreover, due to globalization, it has
spread to other countries and continents [5]. The causative agent, T. cruzi, is a heteroxenous
protozoan parasite that requires both mammalian hosts and triatomines to complete its life
cycle [6]. This infection manifests itself in two phases: an acute phase, which is generally
asymptomatic or may cause a self-limiting febrile illness. During this phase, therapy with
antiprotozoal drugs such as benznidazole is effective [7]. However, 10 to 30 years after infec-
tion, 30–40% of patients develop chronic disease with cardiac, digestive, or cardiodigestive
symptoms [7]. Moreover, the efficacy of therapy decreases significantly as the infection
progresses and the patient ages [8]. Leishmaniasis is considered one of the most challenging
health problems worldwide. According to the World Health Organization (WHO), this
disease is endemic in more than 88 countries. Leishmaniasis is transmitted to humans
through the bite of phlebotomine sandflies, and presents itself in various clinical forms,
including cutaneous, diffuse cutaneous, mucocutaneous (espundia), visceral (kala-azar),
post-kala-azar dermal leishmaniasis, and recidivans [9]. The prevalence of leishmaniasis
has been documented as being approximately 12 million cases, with an annual incidence
of 1.5–2 million cases of cutaneous leishmaniasis and 500,000 cases of visceral leishmani-
asis, resulting in approximately 50,000 deaths each year [10]. The current treatment for
leishmaniasis primarily relies on sodium stibogluconate, meglumine antimoniate, and pen-
tamidine as first-line drugs. Second-line treatments such as miltefosine, paromomycin, or
liposomal amphotericin B used alone or in combination have become the preferred options
to prevent the emergence of resistance [11]. Current treatments for both Chagas disease
and leishmaniasis are highly toxic to host cells and prone to resistance. Consequently, there
is an urgent need to develop new agents that are both safe and effective.

In the field of drug discovery, particularly for anti-infective agents, natural products
and medicinal plants have served as essential sources for developing new bioactive com-
pounds since ancient times [12–14], including those with antiparasitic properties [15]. In
particular, several studies have confirmed the pharmacological properties of thymol, a
phenolic monoterpenoid [16], which exhibits analgesic, antispasmodic, antibacterial, anti-
fungal, antioxidant, anti-inflammatory, and antitumoral activities [17]. Moreover, thymol
has demonstrated significant efficacy against Trypanosoma cruzi and various Leishmania
species. Specifically, thymol exhibits inhibitory activity against intracellular amastigotes of
T. cruzi, comparable to standard treatments such as benznidazole. Likewise, thymol has
shown potent leishmanicidal effects against both promastigote and amastigote forms of
Leishmania amazonensis and L. chagasi. Furthermore, its high selectivity index and low cyto-
toxicity enhance thymol’s therapeutic potential, making its derivatives a promising focus
for further research in the fight against parasitic diseases [18,19]. Despite its widespread
use in the pharmaceutical sector, thymol remains underutilized due to its low aqueous
solubility, strong odor, and intense taste [20]. To overcome these limitations and improve
thymol’s pharmacological profile, a series of eleven ester derivatives were synthesized and
evaluated against two kinetoplastid models: Trypanosoma cruzi and Leishmania amazonensis.
The cell death mechanism of the most selective derivatives on clinically relevant cell types
was also analyzed. Additionally, a preliminary structure–activity relationship (SAR) study
and predicted ADME properties are discussed.
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2. Results and Discussion
2.1. Chemistry

Natural products and their semisynthetic derivatives continue to serve as crucial
sources of potential drug leads in medicinal chemistry. Indeed, there is increasing interest
among organic chemists and biologists to investigate these compounds due to their use as
excellent starting materials for derivative design and synthesis, often exhibiting enhanced
biological activities compared to their natural counterparts [12,13]. In this context, the
activity of thymol (1) prompted the initiation of a hit-to-lead program aimed at improving
its kinetoplastid activity. Consequently, eleven thymol derivatives (2–12) were synthesized
and evaluated against Leishmania and Trypanosoma parasites. To obtain the corresponding
ester derivatives, thymol was esterified with different carboxylic acid derivatives (Figure 1).
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Figure 1. (A) Synthesis pathway of thymol derivatives. (B) Chemical structures of thymol derivatives
2–12.

The structures of the derivatives were elucidated based on their spectroscopic analysis,
including 1H and 13C NMR spectra and high-resolution mass spectroscopy (see Supple-
mentary Materials, Figures S1–S35). Their spectral data were compared with those reported
in the literature for confirmation. Thus, the derivatives were identified as: thymyl ac-
etate (2) [21], thymyl chloroacetate (3) [22], 2-thymyl-2′-(chloro)-acetic anhydride (4) [23],
thymyl butyrate (5) [22], thymyl hemisuccinate (6) [23], thymyl benzoate (7) [21], thymyl-
4-nitrobenzoate (8) [24], thymyl anysoate (9) [24], thymyl picolinate (10) [25] thymyl-4-
nitrophenylcarbonate (11) [23], and thymyl N,N-dimethyl carbamate (12) [23].

2.2. In Vitro Kinetoplastid Activity on L. amazonensis and T. cruzi

Thymol (1) and its derivatives (2–12) were evaluated for their in vitro kinetoplastid
activity against the promastigote stage of L. amazonensis and the epimastigote stage of T.
cruzi. In addition, their safety profiles were assessed on a murine macrophage cell line
J774.A1. The results of the antikinetoplastid assays (Table 1, see Supplementary Materials,
Figures S48–S50) revealed that derivatives 9 and 10 were the most potent inhibitors of both
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parasites, with IC50 values of 29.1 and 34.4 µM, respectively, against L. amazonensis, and
26.8 and 35.5 µM against T. cruzi. Derivatives 9 and 10 also demonstrated significantly
enhanced potency compared to the parent compound (1), exhibiting an 11- and 9-fold
increase in potency against L. amazonensis, respectively. Similarly, both derivatives showed
a 7- and 5-fold increase in potency against T. cruzi, respectively. Additionally, derivatives 3,
4, 7, 8, and 11 displayed moderate activity, with IC50 values ranging from 50.0 to 150.0 µM,
slightly higher than the parent compound. By contrast, derivatives 5 and 12 exhibited weak
activity, with IC50 values between 150.0 and 250.0 µM. The remaining derivatives 2 and 6
were inactive (IC50 > 350 µM).

Table 1. Kinetoplastid activity of thymol (1) and derivatives (2–12) against L. amazonensis promastig-
otes, T. cruzi epimastigotes, and cytotoxicity against murine macrophage cells.

Cmpds
L. amazonensis
Promastigote

T. cruzi
Epimastigote Cytotoxicity Selectivity

Leishmania
Selectivity

Trypanosoma

IC50
a IC50

a CC50
b SI c SI c

1 317.6 ± 21.4 206.0 ± 2.8 >300 >0.9 >1.5
3 78.8 ± 15.9 49.5 ± 3.2 >300 >3.8 >6.1
4 147.6 ± 10.0 123.7 ± 6.0 120.9 ± 0.4 0.8 0.9
5 216.5 ± 7.5 211.2 ± 7.3 >300 >1.4 >1.4
7 56.0 ± 5.6 66.0 ± 1.7 >300 >5.4 >4.5
8 76.4 ± 6.2 44.4 ± 2.5 >300 >3.9 >6.8
9 29.1 ± 3.8 26.8 ± 2.2 >300 >10.3 >11.2

10 34.4 ± 2.3 35.5 ± 2.5 254.5 ± 1.9 7.4 7.2
11 56.9 ± 7.2 66.9 ± 3.8 >300 >5.2 >4.5
12 228.6 ± 21.4 157.8 ± 2.9 >300 >1.3 >1.9

M d 6.5 ± 0.3 72.2 ± 8.9 11.1
B e 6.9 ± 0.8 399.9 ± 1.4 58.0

a IC50: Concentrations able to inhibit 50% of parasites expressed as µM ± standard deviation (SD). b CC50: Con-
centration able to inhibit 50% of murine macrophages expressed as µM ± standard deviation (SD). c SI: Selectivity
index (CC50/IC50). d M: Miltefosine was used as a positive control against L. amazonensis. e B: Benznidazole was
used as the positive controls against T. cruzi. Antikinetoplastid activity and cytotoxicity assays were performed as
independent experiments in triplicates. Derivatives 2 and 6 were excluded due to their low antiparasitic activity.

Based on the IC50 values of thymol (1) and its derivatives (2–12) against the promastig-
ote and epimastigote stages of L. amazonensis and T. cruzi, respectively. Derivatives 9 and
10 were selected for further evaluation against the intracellular stage of both protozoan
models (Table 2).

Table 2. Kinetoplastid activity of derivatives (9 and 10) against intramacrophage of L. amazonensis
and T. cruzi, and cytotoxicity against murine macrophage cells.

Cmpds
L. amazonensis

Intracellular
T. cruzi

Intracellular Cytotoxicity Selectivity
Leishmania

Selectivity
Trypanosoma

IC50
a IC50

a CC50
b SI c SI d

9 15.2 ± 0.8 9.1 ± 0.5 >300 >19.7 >33.0
10 25.3 ± 0.8 28.8 ± 5.6 254.5 ± 1.9 10.1 8.8

M d 3.1 ± 0.3 72.2 ± 8.9 23.3
B e 2.7 ± 0.4 399.9 ± 1.4 148.1

a IC50: Concentrations able to inhibit 50% of parasites expressed as µM ± standard deviation (SD). b CC50: Con-
centration able to inhibit 50% of murine macrophages expressed as µM ± standard deviation (SD). c SI: Selectivity
index (CC50/IC50). d M: Miltefosine was used as a positive control against L. amazonensis. e B: Benznidazole was
used as the positive controls against T. cruzi. Antikinetoplastid activity and cytotoxicity assays were performed as
independent experiments in triplicates.

Derivative 9 showed higher activity than derivative 10, with IC50 values of 15.2 and
9.1 µM against the intramacrophage forms of L. amazonensis and T. cruzi, respectively.
Furthermore, the selectivity index of derivative 9 against L. amazonensis was higher than
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that of miltefosine, the only orally approved drug currently available for the treatment of
leishmaniasis [26].

These results are consistent with previous studies demonstrating that oregano essential
oil exhibits significant in vitro and in vivo effects against L. amazonensis [27]. Additionally,
the dichloromethane fraction from Oliveira decumbens has shown activity against L. major
and L. tropica [28], both of which contain thymol as one of their main components. Notably,
thymol has been reported as inactive against the promastigote stage of L. major and L.
tropica [28], yet it has demonstrated activity against L. infantum (IC50 = 7.2 µg/mL) [29], L.
chagasi (IC50 = 28.0 µg/mL) [30], and L. amazonensis (IC50 = 26.8 µg/mL) [31]. Moreover,
thymol derivatives such as acetyl and benzoyl derivatives have shown promising activity
against the promastigote (EC50 = 9.07 and 8.67 µg/mL, respectively) and amastigote
(EC50 = 10.95 and 15.09 µg/mL, respectively) stages of L. infantum and L. chagasi [21].
Regarding trypanocidal properties, Limonium oleofolium essential oil, which contains thymol,
has demonstrated its effectiveness [32]. Additionally, thymol carbonate derivatives have
been reported as promising trypanocidal agents [33].

2.3. Preliminary Structure–Activity Relationship

The influence of the substitution pattern of the tested ester derivatives on their antipar-
asitic activity was analyzed, revealing the following features (Figure 2): (a) The presence of
an O-saturated aliphatic ester (2–5) enhanced activity against L. amazonensis and T. cruzi
compared to the parent compound, thymol (1). A comparative analysis between derivatives
2 and 3 showed that while the acetate ester (2) was inactive against both parasites, derivative
3 was the most potent among the aliphatic derivatives. This suggests that the incorporation
of a chlorine atom into the structure enhances the antiparasitic activity, contributing to
the moderate potency of derivative 3. (b) The presence of an O-aromatic ester (7–10) also
improved antiparasitic activity compared to the parent compound, with derivatives 9 and
10 standing out as the most active against both parasites. This finding suggests that the
electron-donating group in derivative 9 and the pyridine moiety in derivative 10 contribute
to increased potency. (c) A comparative analysis between derivatives 5 and 6 showed that
replacing a methyl group with a carboxylic acid one reduced activity, from moderate (5) to
inactive in the hemisuccinate derivative (6). (d) The introduction of a carbonate group in
derivative 11 or a carbamate group in derivative 12 increased activity compared to thymol
(1), particularly in the case of derivative 11.
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In addition, the results of an SAR analysis, in accordance with previous works [21,33],
clearly indicate that acylation enhances antiparasitic activity against both parasites. This
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suggests that the type of ester group plays a crucial role in determining the activity of this
series of thymol derivatives.

Our results, along with previous studies, motivated us to further investigate the
potential and mechanism of antikinetoplastid action of a series of thymol derivatives. These
were synthesized to enhance their potency and the selectivity index of thymol against L.
amazonensis and T. cruzi. Furthermore, an attempt to elucidate the mechanism of action
of thymol derivatives 9 and 10 in both protozoan models. To do so, various image base
fluorescence assays have been used to seek the effect of both molecules and cells feature
including chromatin condensation, the cell’s permeability, and mitochondria function.

2.4. Mechanism of Action of Derivatives 9 and 10

In this study, a double staining assay was performed using Hoechst and PI dyes to
determine the type of cell death induced by both derivatives, 9 and 10, in L. amazonensis
and T. cruzi. After 24 h of incubation with the corresponding IC90 of each derivative, the
fluorescence emitted by treated and untreated cells was measured using an image-based
cytometer, EVOS M5000. The results are presented as a violin plot to depict the differences
in fluorescence distribution between treated and untreated cells (Figure 3).

For both staining procedures, treated cells have a much more elongated distribution
compared to the negative control. Among treated cells, one-way ANOVA analysis revealed
that derivative 9 induced higher fluorescence intensities for both Hoechst and PI staining,
reflecting a higher percentage of cells undergoing late stages of apoptosis. Consequently,
derivatives 9 and 10 appear to trigger apoptosis by increasing the chromatin condensation.
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Figure 3. Evaluation of chromatin condensation using Hoechst/PI Staining after 24 h incubation
with IC90 against L. amazonensis promastigotes (A) and T. cruzi epimastigotes (B). Images (63×) are
representative of the observed cell population, obtained using a Leica SPE confocal microscopy. The
violin plot depicts distributions of fluorescence intensities for each sample obtained by EVOS M5000
software. Differences between the values were assessed using one-way analysis of variance (ANOVA).
** p < 0.01; *** p < 0.001; **** p < 0.0001 and ns: non-significance.

Monodansylcadaverine (MDC) staining was used to check on the presence of au-
tophagic vacuoles. This dye has autofluorescence that stains the lipid component of the
autophagy membrane. After 24 h of treatment with both derivatives (9 and 10), cells were
viewed under a confocal microscope (Figure 4). The MDC-labeled autophagic vacuoles
appeared as distinct punctuate structures in the cytoplasm.

The SYTOX® Green staining, a DNA specific stain, was used to study the effect of
derivatives 9 and 10 on membrane permeability in cells. The fluorochrome enters cells
with compromised membrane permeability and emit green fluorescence upon binding to
DNA [34]. After 24 h of treatment, the fluorescence intensity was measured using the EVOS
M5000. The resulting fluorescence intensities are presented in violin plot. As shown in
Figure 5, derivative 10 caused greater damage to membrane permeability in both parasites,
as indicated by higher green fluorescence compared to derivative 9.

To study the effect of both derivatives on the mitochondria, three assays were conducted:
the mitochondrial membrane potential using the JC-1 dye, the ATP level, and the intracellular
ROS level. The mitochondria constitute the principal organelle to produce intracellular energy
and to define the type of cell death occurring in the cells. JC-1 was used to differentiate
between healthy and damaged mitochondria. After 24 h incubation with derivative 9, an
increase in green fluorescence was observed, reflecting the inability of JC-1 to form aggregates
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due to the low ∆Ψm. The mean fluorescence for both forms of JC-1 (aggregate and monomeric)
was determined using the EVOS M5000 software and the ratio of red fluorescence to green
fluorescence was calculated. As shown in the histogram, the potential of the mitochondrial
membrane of L. amazonensis treated with derivative decreased by 80% compared to untreated
cells. Moreover, in T. cruzi, derivative 9 was also able to decrease significantly the ∆Ψm by
70%. Thus, derivative 9 led to higher depolarization of the mitochondrial membrane potential
in T. cruzi, as confirmed by confocal microscopy (Figure 6A,B).
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Figure 4. Induction of autophagy by derivatives 9 and 10 in L. amazonensis promastigotes (A) and T.
cruzi epimastigotes (B) using monodansylcadaverine staining. Cells were observed under a Leica
SPE confocal microscopy.
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Figure 5. Detection of plasma membrane permeability in L. amazonensis (A) and T. cruzi (B) Using
SYTOX® Green staining after 24 h incubation with Derivatives 9 and 10. Images (63×) are representa-
tive of the cell population observed in the performed experiments. Images were obtained using a
Leica SPE confocal microscopy. The violin plot depicts distributions of fluorescence intensities for
each sample obtained by EVOS M5000 software. Differences between the values were assessed using
one-way analysis of variance (ANOVA). * p < 0.05; ** p < 0.01; **** p < 0.0001 and ns: non-significance.
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Figure 6. (A). Detection of mitochondrial membrane potential in L. amazonensis promastigotes using
JC-1 staining after 24 h incubation with derivatives 9 and 10. Images (63×) are representative of the
cell population observed in the performed experiments. Images were obtained using a Leica SPE
confocal microscopy. The histogram graphs depict the ratio of mean fluorescence obtained by an
Enspire plate reader. A Tukey test was conducted to compare the mean between different samples.
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(B). Detection of mitochondrial membrane potential in T. cruzi epimastigotes using JC-1 staining after
24 h incubation with derivatives 9 and 10. Images (63×) are representative of the cell population
observed in the performed experiments. Images were obtained using a Leica SPE confocal microscopy.
The histogram graphs depict the ratio of mean fluorescence obtained by an Enspire plate reader. A
Tukey test was conducted to compare the mean between different samples. ** p < 0.01; **** p < 0.0001
and ns: non-significance.

The collapse of the mitochondrial membrane potential can lead to the inhibition
of ATP production. In the assay, a luminescence-based method was used to measure
the level of ATP produced by both treated and untreated kinetoplastids. As shown in
Figure 7, derivatives 9 and 10 decreased ATP production by 84% and 67% in L. amazonensis
(Figure 7A), and by 65% and 50% in T. cruzi (Figure 7B), compared to the negative controls.
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Figure 7. Results of the ATP levels of treated L. amazonensis (A) and T. cruzi (B) after 24 h of incubation
with thymol derivatives 9 and 10. A Tukey test was performed with the GraphPad.PRISM® 9.0.0
software. * p < 0.05; *** p < 0.001; **** p < 0.0001.

Damaging mitochondrial function would affect the redox state of the cells, resulting
in an imbalance between free radicals and antioxidant levels. The levels of intracellular
reactive oxygen species (ROS) were measured after 24 h of incubation using CellROX Deep
Red™. As shown in the histogram (Figure 8), treatment noticeably increased the emitted
fluorescence, indicating that derivative 9 induced oxidative stress in L. amazonensis and T.
cruzi by increasing ROS.

The morphological effects of derivative 9 on L. amazonensis and T. cruzi were studied
using atomic force microscopy (AFM). Both parasites were treated for 12 and 24 h with
the IC90 concentration, then centrifuged and resuspended in a physiological serum. The
results show representative AFM images of the treated cells, as well as those of the un-
treated control cells (Figure 9). Derivative 9 induced the formation of giant vacuoles in the
cytoplasm of both kinetoplastids. Various cavities of different sizes were observed, with
the largest measuring over 1 µm in diameter and up to 300 nm deep. Additionally, several
smaller cavities of around 1 µm in diameter and 250–260 nm deep as well as others of
approximately 300 nm in diameter and 240–250 nm deep were seen (white arrow). Notably,
after 12 h of treatment, the edges of the membrane were clearly visible, whereas after 24 h,
the damage progressed in depth, leading to membrane destruction (black arrow).
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Figure 8. Oxidative stress assays of derivatives 9 and 10 in L. amazonensis (A) and T. cruzi (B), showing
yellow fluorescence indicative of intracellular accumulation. Images (63×) are representative of the
cell population observed in the performed experiments. The violin plots were obtained using an
EVOS M5000 Cell Imaging System, Life Technologies, Spain. * p < 0.05; **** p < 0.0001.
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Figure 9. Morphological damage observed by atomic force microscopy on L. amazonensis (A) and T.
cruzi (B) treated with compound 9 after 12 and 24 h. The cytoplasmic vacuoles are indicated with a
white arrow while the damage induced in the cytoplasmic membrane is indicated with a black arrow.

Overall, our findings suggest that both derivatives could induce programmed cell
death via apoptosis and autophagic pathways. To date, the relationship between autophagy
and apoptosis remains complex and not fully understood [35]. Depending on the type
of cell and environmental conditions, autophagy may act as an agonist or antagonist to
apoptosis [35]. In this study, derivatives 9 and 10 primarily affect the mitochondria, as
well as other cellular compartments, notably the nucleus and plasma membrane. Based
on confocal microscopy observations, thymol derivative 9 was selected for atomic force
microscopy (AFM) analysis. The AFM images of treated epimastigotes and promastigotes
revealed significant changes to the parasite’s cell surface and the presence of various
cytoplasmic vacuoles. These microstructures, consistent with MDC staining, are likely
to be autophagic vacuoles or autophagosomes. Previous studies have reported that the
cytoplasm can become overwhelmed by autophagic and empty vacuoles, disturbing cellular
membrane homeostasis and leading to membrane dysfunction [36,37]. Based on these
observations, our findings suggest that derivative 9 inhibits both kinetoplastid models
through a combination of autophagy and apoptosis. However, it remains unclear whether
the programmed cell death in the parasites is induced by a combination of autophagy and
apoptosis, or if autophagy-mediated cell death triggers apoptosis [38]. Further assays will
be required to confirm the specific type of cell death involved in this study, including the
assessment of protein expression such as ATG8.
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2.5. Pharmacokinetic and Drug-Likeness Properties of Derivatives 9 and 10

Furthermore, to effectively develop safe agents, it is crucial to assess their phar-
macokinetic and bioavailability profiles while minimizing toxicity risks. In this regard,
Swiss ADME software [39] was used to predict drug-likeness and pharmacokinetic proper-
ties, shedding light on essential characteristics such as oral bioavailability, permeability,
solubility, oral absorption, and metabolism. The derivatives demonstrated a favorable
drug-likeness profile and met the key pharmacokinetic criteria (see Supplementary Ma-
terials, Figures S36–S47 and Table 3). Analysis of important pharmacokinetic parameters,
including hydrogen bond acceptors, hydrogen bond donors, topological polar surface area,
lipophilicity, molecular weight, and rotatable bonds, revealed that the most active deriva-
tives, thymyl anysoate (9) and thymyl picolinate (10), exhibited excellent phytochemical
properties and lipophilicity [40]. Moreover, this study demonstrated that all derivatives
exhibited an excellent ADME profile (see Supplementary Materials, Figures S25–S36 and
Table 4).

Table 3. Predicted physicochemical parameters according to Lipinski’s rule and drug-likeness for
derivatives 9 and 10.

Cmpds
Parameters of Lipinski’s Rule Drug-Likeness

Log P TPSA MW HBA HBD RB Vs

9 4.25 35.53 284.35 3 0 5 0 Yes
10 3.48 39.19 255.31 3 0 4 0 Yes

Log P: Octanol/water partition coefficient. TPSA: Topological polar surface area. MW: Molecular weight. HBA:
Number of hydrogen bond acceptors. HBD: Number of hydrogen bond donors. RB: Number of rotatable bonds.
Vs: Number of violations from Lipinski’s rule.

Table 4. Bioavailability—pharmacokinetic and metabolic properties of derivatives 9 and 10.

Properties
Derivatives

Properties
Derivatives

9 10 9 10

BA 0.55 0.55 CYP1A2 Yes Yes
GI High High CYP2C19 Yes Yes

BBB Yes Yes CYP2C9 No Yes
P-gp No No CYP2D6 Yes Yes

Log Kp −4.63 −5.51 CYP3A4 No No
BA: Bioavaibility. GI: Gastrointestinal absorption. BBB: Blood–brain barrier permeation. P-gp: P-glycoprotein sub-
strate. Log Kp: Skin permeation. Cytochrome isoenzymes: CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4.

In particular, the selected derivatives 9 and 10 displayed outstanding drug-likeness
and medicinal chemistry properties. Their pharmacokinetic profiles indicated high gas-
trointestinal absorption and good blood-brain barrier permeability. Notably, none of the
derivatives were identified as P-gp substrates. Regarding metabolism, both derivatives
exhibited inhibitory activity against all tested cytochrome P450 isoenzymes (CYP1A2,
CYP2C19, CYP2C9, CYP2D6, and CYP3A4), except for CYP3A4, where neither derivative
showed inhibition, and CYP2C9, where derivative 10 was not an inhibitor.

The bioavailability radar also played a crucial role in evaluating the drug-likeness
properties based on six descriptors: lipophilicity, size, polarity, solubility, unsaturation,
and flexibility; each descriptor had an optimal range. In this regard, derivatives 9 and
10 demonstrated excellent bioavailability, as they met all the criteria and were positioned
within the pink zone of the radar (Figure 10).
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3. Material and Methods
3.1. General Procedures

1H NMR and 13C NMR were recorded at 300 K on Bruker Advance 500 (500 MHz
for 1H-NMRand 125 13C-NMR) and 600 (600 MHz for 1H-NMRand 150 13C-NMR) NMR
spectrometers. Chemical shifts were reported in δ (ppm), while coupling constants were
expressed in Hz, with reference to the residual deuterated solvent (CDCl3: δH 7.26, δC 77.16),
and TMS was utilized as an internal reference. For the 1H NMR experiments, the relaxation
delay was 90◦ pulse, spectral width of 5500 Hz, and 32 k data points. The Gaussian function
was applied to enhance the spectral resolution using −0.4 and 0.9 for Lorentzian broadening
and Gaussian broadening, respectively. For the 13C NMR experiments, the corresponding
parameters were 30◦ pulse, 21,000 Hz, and 62 k data points, and 3.0 s of relaxation delay.
ESIMS and HRESIMS (positive mode) analyses were conducted using an LCT Premier XE
Micromass Autospec spectrometer. Column chromatography was performed using silica
gel 60 (particle sizes 15–40 and 63–200 µm), and for analytical and preparative TLC, we
used Polygram Sil G/UV254 plates (Panreac, Barcelona, Spain). Reaction progress was
monitored by TLC, and visualization of spots was achieved through UV light exposure
and heating of silica gel plates sprayed with H2O-H2SO4-AcOH (1:4:20). Unless specified
otherwise, solvents and reagents were procured from commercial suppliers and used
without further purification. Analytical-grade solvents from Panreac and reagents from
Sigma Aldrich (St Louis, MO, USA) were employed. Thymol (1), used as starting material,
was sourced from Panreac (Barcelona, Spain).

3.2. General Procedure of Derivatives Synthesis 2–12

An excess of the corresponding carboxylic acid derivative was added to a mixture
of compound 1, dry triethylamine (Et3N), and a catalytic amount of 4-(dimethylamino)-
pyridine (DMAP) in dry dichloromethane (CH2Cl2, 1 mL). The reaction progress was
monitored by TLC using a hexane-CH2Cl2 (5:5) system. After concentration to dryness
under reduced pressure, the residue was purified by column chromatography (CC) on silica
gel, using hexane-CH2Cl2 mixtures of increasing polarity (7:3 to 5:5) as the eluent, affording
the corresponding derivative. Their structures were confirmed by NMR spectroscopy (see
Supplementary Materials, Figures S1–S24).

3.2.1. Preparation of Derivatives 2–7 and 11–12

These derivatives were synthesized following the present procedure [23].
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3.2.2. Preparation of Derivative 8

A mixture of 1 (30.2 mg, 0.2 mmol), Et3N (4 drops), DMAP (4.0 mg), and 4-nitrobenzoyl
chloride (40.0 mg, 0.2 mmol) in CH2Cl2, was stirred at room temperature for 2 h. The
residue was purified by CC, yielding derivative 8 (55.9 mg, 18.7%).

3.2.3. Preparation of Derivative 9

A mixture of 1 (30.5 mg, 0.2 mmol), Et3N (6 drops), DMAP (4.5 mg), and anisoyl
chloride (0.1 mL, 0.7 mmol) in CH2Cl2, was stirred at room temperature for 2 h. The residue
was purified by CC, yielding derivative 9 (18.3 mg, 6.4%).

3.2.4. Preparation of Derivative 10

A mixture of 1 (30.0 mg, 0.2 mmol), Et3N (4 drops), DMAP (4.5 mg), N,N-
dicyclohexylcarbodiimide (5 mg), and picolinic acid (35.1 mg, 0.3 mmol) in CH2Cl2, was
stirred at room temperature for 2 h. The residue was purified by CC, yielding derivative 10
(2.9 mg, 1.1%).

3.3. Biological Activity
3.3.1. In Vitro Effect on Promastigote Stage of Leishmania amazonensis

The assay was conducted using the alamarBlue® method as previously described [41].
Briefly, promastigotes of L. amazonensis were grown at 26 ◦C in Schneider’s medium (US Bi-
ological, Life sciences) and supplemented with 10% heat-inactivated fetal bovine serum and
0.04% of sodium bicarbonate. In a 96-well microtiter plates (Corning™, Corning, NY, USA)
a serial dilutions of thymol derivatives were first prepared, and later, 106 parasites/mL
were added into each well. Subsequently, 10% of alamarBlue® was added to the entire
plate. The plates were incubated for 72 h at 26 ◦C.

3.3.2. In Vitro Effect on Epimastigotes Stage of Trypanosoma cruzi

In a 96-well plate, a serial dilution of the tested derivatives was performed in liver
infusion tryptose medium supplemented with 10% heat inactivated fetal bovine serum.
Later, 100 µL of 5× 105 cells/mL of epimastigotes was added to each well. Afterwards,
20 µL of alamarBlue® was added to each well, and the plate was maintained at 26 ◦C for
72 h.

3.3.3. In Vitro Assay on the Intramacrophagic Stage

The most active molecules against promastigotes of L. amazonensis and epimastigotes
of T. cruzi were evaluated against the intramacrophagic stage of both models as previously
described [42,43]. Briefly, in a 96-well plate, macrophages from the J774.A1 cell line were
seeded at a final concentration of 2× 105 cells/mL in Dulbecco’s Modified Eagle Medium
(DMEM) and maintained at 37 ◦C in a 5% CO2 atmosphere until fully adhesion. Cells were
infected either with L. amazonensis promastigotes (at a ratio of 1:10) or epimastigotes of
T. cruzi (at a ratio of 1:7) (macrophage: parasite) and incubated at 37 ◦C in 5% CO2 for
24 h for Leishmania and 48 h for Trypanosoma. After infection, plates were washed using
DMEM to eliminate external parasites. Subsequently, infected macrophages were treated
with different concentrations of active compounds for 24 h. Later, macrophages were
lysed using 30 µL of medium, Schneider for Leishmania, and in liver infusion tryptose for
Trypanosoma, containing 0.05% of sodium dodecyl sulfate (SDS) for 30 s under agitation.
Afterwards, 170 µL of the appropriated medium was derivatives added to each well to give
a final volume of 200 µL. Subsequently, 10% of alamarBlue® was added into each well and
the plate was incubated at 26 ◦C for 72 h.
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3.3.4. Cytotoxicity Assay on Murine Macrophages

Cytotoxicity effect of the tested derivatives was conducted using macrophages of
the murine cell line J774.A1 (American Type Culture Collection #TIB-67, city, country),
as previously described [42]. The cells were maintained in DMEM at 37 ◦C in a 5% CO2

humidified incubator. All the plates containing alamarBlue® were analyzed using a plate
reader EnSpire Multimode Plate Reader® at excitation and emission wavelengths of 570
and 585 nm, respectively (PerkinElmer, ThermoFisher Scientific, Madrid, Spain). The IC50

(concentrations able to inhibit 50% of parasites), IC90 (concentrations able to inhibit 90%
of parasites), and CC50 (concentration able to inhibit 50% of murine macrophages) values
were determined for each compound by nonlinear regression using GraphPad software.

3.4. Mechanism of Action Elucidation

The effect of derivatives 9 and 10 to modulate cell features was studied in the tested
protozoa parasites, using various specific commercial kits. Parasite cells were incubated
with the derivative at the previously calculated IC90 for 24 h. Subsequently, cells were
washed and submitted to different treatments as mentioned by the manufacturer’s instruc-
tions. In all the assays, a plate reader EnSpire Multimode Plate Reader® and/or an image
base system fluorescence microscope EVOS M5000 were used for the fluorescence intensity
quantification. For each protocol, images of representative population cells were obtained
using an inverted confocal microscope Leica DMI 4000 B with LAS X software, and Leica
HC PL APO 63×/1.40 OIL CS2 Objective (Barcelona, Spain).

3.4.1. Double-Stain Assay for Programmed Cell Death (PCD) Determination

To identify the type of cell death occurring in both kinetoplastids after treatment,
Hoechst 33342 and propidium iodide (PI) dyes were used. Even though both dyes are DNA
affine, the Hoechst 33342 stain is cell permeable and known to distinguish apoptotic cells
from healthy or necrotic cells [44], whereas the PI is cell impermeable and stain dead cells
as late apoptotic or necrosis. After treatment, three types of staining could be observed:
blue fluorescence for cells undergoing apoptosis, violet color as the merge of blue and red
fluorescence for late apoptotic cells, and red color for dead cells.

3.4.2. Labeling of Autophagic Vacuoles Using Monodansylcadaverine (MDC) Staining

The present method consists of staining the autophagic vacuoles with the treated
cells by ion trapping and specific interactions with the vesicle membrane lipids. The
experiment was carried out by following the manufacturer’s recommendations, and as
described previously [45]. After 24 h of incubation, cells were stained with MDC reagent at
5 mM and incubated at 26 ◦C for 30 min in µ-Slide 8 (Ibidi, Gräfelfing, Germany). Later,
the cells were washed with PBS and observed with Leica DMI 4000 B.

3.4.3. Plasma Membrane Permeability

The SYTOX™ Green (Life Technologies, Madrid, Spain), a cell impermeable DNA
binding stain, was used to evaluate the membrane permeability and integrity. The assay
was conducted as detailed in the manufacture instructions, and as previously described [46].

3.4.4. Analysis of the Mitochondrial Function

To evaluate the damage caused by the tested derivatives on the mitochondrial function,
mitochondrial membrane potential, adenosine triphosphate (ATP) level, and reactive
oxygen species (ROS) were measured as follows.

The measurement of mitochondrial membrane potential was carried out using the
JC-1 assay. JC-1 is a mitochondria-specific stain whose fluorescence emission depends on
the mitochondrial membrane potential. In healthy mitochondria, JC-1 aggregates and emits



Antibiotics 2025, 14, 383 18 of 21

red fluorescence, whereas in unhealthy mitochondria, it remains in monomeric form and
emits green fluorescence. Therefore, mitochondria with a collapsed membrane potential
exhibit a low red-to-green fluorescence intensity ratio. The assay was performed according
to the manufacturer’s instructions, as detailed in a previous study [46].

The adenosine triphosphate (ATP) level was measured using the CellTiter-Glo Lumi-
nescent Cell Viability Assay (Promega, Madrid, Spain) [46]. The mitochondria in which
most cellular oxidations occur is considered the main source of cell’s ATP; any damage
and/or malfunction of this organelle generate the depletion of ATP levels.

The measure of reactive oxygen species (ROS) was measured after treatment of 24 h
using CellROX® Deep Red fluorescent probe (Invitrogen, Madrid, Spain) [46]. The mito-
chondria constitute an essential organelle to neutralize the reactive oxygen species; the
malfunction of this organelle would generate an imbalance between the antioxidants and
the reactive oxygen.

3.4.5. Atomic Force Microscopy (AFM) Analysis

Cultures of L. amazonensis and T. cruzi were incubated with derivative 9 at a final
concentration equivalent to IC90 for 24 h. After incubation, cells were washed twice with
PBS, and 10 µL of a 105 cells/mL suspension was smeared onto glass slides. Prior to AFM
analysis, samples were dried for 10 min. AFM topographic images were acquired in Peak
Force mode using a multimode microscope equipped with a Nanoscope V control unit
(Bruker). Scans were performed at rates of 0.5–1.2 Hz, employing FESP tips (50–100 kHz,
1–5 N/m) from Bruker. The damage caused by derivative 9 in both parasites was assessed
by recording images at scales ranging from 100 µm × 100 µm to 0.6 µm × 0.6 µm, with a
resolution of 512 points per line [47].

3.5. Statistical Analysis

All antiprotozoal tests were performed in triplicate, and results are presented as mean
values ± standard deviation. Differences between values were assessed using one-way
analysis of variance (ANOVA). Statistical significance was indicated as follows: *** p < 0.001;
**** p < 0.0001; ns: not significant.

3.6. Swiss ADME Analysis

The pharmacokinetic and drug-like properties of thymol (1) and its derivatives (2–12)
were estimated using Swiss ADME tools [39].

4. Conclusions
In summary, the initial hit, thymol, which exhibits biological activity in the micromolar

range against T. cruzi and L. amazonensis, was investigated. The effect of esterification
on its bioactivity was explored. In this study, we synthesized eleven derivatives using a
structure-based design strategy to gain insights into this modification. Their antikinetoplas-
tid structure–activity relationship analysis revealed that the acylation of thymol enhances
its activity, with thymol anisate (9) and thymol picolinate (10) displaying the highest activity
against both parasites. Furthermore, an ADME analysis was conducted to complement the
hit-to-lead optimization process, showing that both derivatives possess favorable physic-
ochemical and drug-likeness properties. The mechanism of action of compounds 9 and
10 in parasite inhibition was further investigated through fluorescence analysis, which
indicated a positive regulation of the apoptosis and autophagy pathways. Through the es-
terification of thymol, we have successfully addressed several of its inherent disadvantages:
volatility, odor, solubility, and lipophilicity. Moreover, compounds 9 and 10 offer notable
advantages over the current treatment strategy: (a) Accessibility and cost-effectiveness: as
derivatives from thymol, which is widely available and cheap, they surpass many synthetic
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treatments that require costly, complex precursors; (b) Synthetic simplicity: their synthesis
via esterification is straightforward, scalable, and efficient, yielding high product amounts.
This reduces production costs, simplifies quality control, and enables rapid scale-up for
larger demands. The present research supports the potential of thymol as a source of lead
compounds, enhancing our understanding of the antikinetoplastid therapeutic potential of
naturally occurring phenolic monoterpenes targeting leishmaniasis and Chagas disease,
and highlighting the need for further research in this field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics14040383/s1. Spectroscopic Data, ADME Profiles, and
IC50/CC50 Measurements.
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