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Abstract: The incidence of autoimmune diseases is increasing. Antinuclear antibody (ANA) testing
is a critical tool for their diagnosis. However, ANA prevalence in healthy persons has increased over
the last decades, especially among young people. ANA in health occurs in low concentrations, with a
prevalence up to 50% in some populations, which demands a cutoff revision. This review deals with
the origin and probable physiological or compensatory function of ANA in health, according to the
concept of immunological clearance, theory of autoimmune regulation of cell functions, and the
concept of functional autoantibodies. Considering ANA titers ≤1:320 as a serological marker of
autoimmune diseases seems inappropriate. The role of anti-DFS70/LEDGFp75 autoantibodies is
highlighted as a possible anti-risk biomarker for autoimmune rheumatic disorders. ANA prevalence
in health is different in various regions due to several underlying causes discussed in the review,
all influencing additive combinations according to the concept of the mosaic of autoimmunity.
Not only are titers, but also HEp-2 IFA) staining patterns, such as AC-2, important. Accepting
autoantibodies as a kind of bioregulator, not only the upper, but also the lower borders of their normal
range should be determined; not only their excess, but also a lack of them or “autoimmunodeficiency”
could be the reason for disorders.

Keywords: autoimmune diseases; antinuclear antibodies; antinuclear factor; functional autoantibodies;
natural autoantibodies; physiological autoimmunity

1. Introduction

The incidence of autoimmune diseases (ADs) is high worldwide among both adults
and children. According to various estimates, the total incidence of ADs in different coun-
tries and regions varies from 5% to almost 30%, and there is an annual increase [1–5].
This is particularly the case for systemic ADs with non-organ-specific autoantibodies [1].
ADs significantly impair the quality of life of patients and often lead to severe, usually
lifelong disability. They require significant costs from the health care system when diag-
nosed at late stages: for example, the annual costs of treating one case of systemic lupus
erythematosus (SLE) with renal or neuropsychiatric complications in the USA in 2013
exceeded 30,000–32,000 US $, being 6.25–6.5 times higher than the cost of treating the initial,
inactive, and uncomplicated phases of the disease [6]. Early diagnosis of ADs is desirable,
but the process often takes a long time, due to the absence of specific symptoms in early
stages of these diseases in many patients [7–10]. This factor determines the relevance of the
search for laboratory tests suitable for the early diagnosis and screening of ADs in order to
timely prescribe appropriate treatment.
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Identification of different autoantibodies is used for the diagnosis of ADs [11,12].
Some of them are associated with specific autoimmune diseases [10,13–15]. However,
the reliability of autoantibodies as pathognomonic markers of a particular disease is
far from 100%; moreover, many of them are observed in several different nosological
entities. Their association with a certain disease sometimes requires confirmation of
antigenic specificity by several different methods; therefore, the general consensus is
that the term “disease associations” should be replaced by “clinical relevance” of the
identified autoantibodies [16].

In addition, there is a growing body of evidence that the responsibility of the immune
system is not only (and even not mainly) the protection against foreign intrusions. The im-
mune system serves as a physiological sensory and analytical instrument in relation to the
antigenic structure of the multicellular organism, responsible for its maintenance and even
its formation. Therefore, auto-recognition is regarded as a normal primary function of the
immune system, which is associated with the existence of physiological autoimmunity [17,18].

In this review, we address the issue of antinuclear antibody (ANA) testing, which has
been detected by indirect immunofluorescence and known since 1958 under the traditional
name “antinuclear factor” (ANF) [19]. We discuss the ANA presence and role in healthy
individuals, the peculiarities of distinguishing between normal and pathological positive
ANA-test results, the role of ontogenetic and geographical factors in ANA prevalence—in
the context of the concept of physiological autoimmunity—and its relationship with ADs.

2. Physiological Autoimmunity and Its Bidirectional Pathological Changes

Almost all autoantibodies, including ANA, are often found not only in the sera of
patients who suffer from ADs, but also in healthy persons (including those who do not
develop a disease during follow-up), although in health, low titers of autoantibodies are
usually found [19–22].

The issue of natural autoantibodies and physiological autoimmunity has acquired
considerable relevance with the development of more sensitive laboratory tests, because
autoantibodies to many antigens, including cell nuclei and membrane receptors, have be-
come routinely registered in the blood and mucous secretions of healthy people with these
methods [23–29]. This is also true for the autoantibodies that are considered typical markers
of certain ADs, for example, IgG against the glomerular basement membrane, proteinase 3,
myeloperoxidase, myelin basic protein, etc. [30,31].

Moreover, due to the presence of both agonistic and antagonistic effects of such autoanti-
bodies of healthy donors on the receptors of neurotransmitters [32,33], hormones [34,35], auta-
coids [36,37], and IgE [38], the question of their possible physiological regulatory role has long been
raised. Indeed, there is growing evidence for this aspect of physiological autoimmunity [39–42].

2.1. Physiological Autoimmunity: Historical Perspective and Contemporary Understanding

In accordance with the assumption of the possible regulatory role of autoimmunity,
several fruitful scientific doctrines have been formulated in different periods, rooted in the
ideas of I.I. Mechnikov, who considered the immune system as a means of forming and
maintaining the multicellularity of the metazoan organism [43]. These doctrines are: the
doctrine of cytotoxins, the theory of autoimmune regulation of cellular functions, and the
theory of immunological clearance [39,41,44,45]. The term “functional autoantibodies”
(which primarily relates to the autoantibodies against plasma membrane receptors) was
coined in recent years and indicates the modern version of the mentioned ideas [32,46,47].

However, with regard to the functional properties, ANAs cannot be considered an
exception, since it was shown in vivo and in vitro that ANAs can penetrate not only into
the cytoplasm, but also into the nuclei of living cells (moreover, this occurs with the
involvement of antigen binding sites). ANAs can influence gene expression, cell growth,
and apoptosis. Therefore, not only regulation, mediated by membrane receptors, but also
repression/activation of genes through cis-regulatory elements of chromatin can be carried
out by autoimmune mechanisms [44,48–52].
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It is no coincidence that there is a growing number of studies which showed that:

1. Patients with certain ADs show a decrease in the level of certain autoantibodies and/or
the strength of antibody-mediated bioeffects in comparison with healthy donors;

2. The level of autoantibodies decreases, rather than increases during exacerbations of
some ADs;

3. Some autoantibodies are associated with a favorable outcome of the disease.

This was demonstrated both for the autoantibodies to cell surface receptors [42,53–56]
and for ANA [12,57]. For example, anti-DFS70 autoantibodies against the lens epithelium-
derived growth factor are more prevalent in healthy people than in patients with ADs,
and have been considered in recent years as an important marker of the lower probability of
rheumatic diseases, even when the ANA test is positive [58]. However, recent findings raise
some questions regarding the clinical relevance of anti-DFS70 autoantibodies. Zheng et al.
showed that the frequency of systemic autoimmune rheumatic diseases in anti-DFS70
positive pediatric patients was unexpectedly as high as 50.0% [59]. Conticini et al. reported
that 7/9 (77.8%) anti-DFS70 positive adult patients with clinical suspicion of primary
Sjogren syndrome received this diagnosis after minor salivary gland biopsy [60].

The paradigm of “beneficial autoimmunity” [18,45,61] is also supported by the use of
autoantibodies against nuclear antigens obtained from patients with ADs for the treatment
of certain cancers [42,50].

Traditionally, it was assumed in diagnostic immunology that the more autoantibodies
(either damaging or functional ones) a patient has, the more symptoms of the disease that
will be present [62].

However, apparently, the level of some autoantibodies in a healthy individual should
be no more, but no less than the optimum [53,63]. It has been suggested, by analogy
with endocrine disorders which can equally occur both from excess and deficiency of a
certain signaling molecule, that not only an increase, but also a pathological decrease in the
concentration of autoantibodies may reflect and even cause pathological processes in the
body [64]. Thus, autoimmunity and ADs are not synonymous terms.

Only a pathological intensity of the autoimmune reaction or its insufficient regulation
causes illness. Perhaps, along with the terms that have been coined long ago to denote exces-
sive (“allergy”) and insufficient (“immunodeficiency”) response of the adaptive immunity
to foreign antigens, we should start using the terms “autoallergy” and “autoimmunode-
ficiency” to indicate diseases caused by disorders of the natural self-recognition process
being polarized in opposite directions [63,64].

According to the current opinion, ANAs, similar to other autoreactive immunoglob-
ulins and lymphoid clones, belong to the integral part of the normal functioning of the
immune system [24,28,32,36,39–42,44–47,63–65].

Notably, as early as in 1984, N.K. Jerne [66] established the theory that the immunity
is controlled and restrained by nothing more than natural autoimmunity, implying an
idiotype-anti-idiotypic network of mutually recognizing antibodies and lymphoid clones.
Now this theory is complemented with the data on the origin of T- regulators which arise
from the differentiation of autoreactive clones with moderate affinity [67].

However, the role of natural autoantibodies (including ANA) in immunity and,
more broadly, in the homeostasis of the body is still not entirely clear. Since the 1980s,
some studies demonstrated the existence of “natural” autoantibodies. They are produced
by B1 cells without antigenic stimulation and are considered the part of the innate im-
mune system [28,65,68]. Their source is the so-called CD20CD27CD43CD5+ (or CD5−)
CD70− B cells, a self-sustaining population of descendants of fetal rudimentary lymphoid
cells which are generated in the liver and bone marrow in early ontogenesis. They are orig-
inally predominant in serous cavities (peritoneal and pleural), capable to settle elsewhere,
including the lamina propria of the gastrointestinal tract and inflammation foci, but only
occasionally present in encapsulated secondary lymphoid organs [69].

What distinguishes natural autoantibodies is their specificity for a wide range of
structurally unrelated antigens such as DNA and insulin, phospholipids and myelin basic
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protein, oxidized lipoproteins, etc. [70–72]. Natural autoantibodies are primarily IgM,
but sometimes they belong to other isotypes [42,73,74]. The aforementioned subset of
B cells, which is related to the paleo-immunity, undoubtedly plays an important role,
in particular in the suppression of the hypersensitivity of the mucous membranes and in
the development of oral tolerance [69]. Low titer autoantibodies in healthy organisms,
most probably, are products of autoreactive B cells that fail to receive “help” from autore-
active T cells. However, this is just the mechanism of their generation; it does not rule
out the possibility of their regulatory effects in health, because these molecules are able to
recognize and bind their targets, altering their metabolic destiny and/or lifecycle.

However, we consider that the entire phenomenon of physiological autoimmunity
cannot be attributed only to the competence of B1 lymphocytes. After all, autoantibodies
from healthy individuals often have high affinity to their targets (for example, anti-DFS70
autoantibodies and autoantibodies to receptors of various bioregulators).

Such natural autoantibodies are involved in the elimination of the body’s own antigens
and neoantigens which are formed during cell death or alteration of various
biomolecules [22,39,45,61,63,70]. They are credited with protective functions related to
the immune clearance of certain antigens, including atherogenic lipoproteins, proteins de-
posited in neurodegenerative diseases, and other pathogenic autoantibodies [55,65,70,75].

The assumption about the important role of natural autoantibodies and macrophages in
immune clearance was first made by the inventor of immunoelectrophoresis, Pierre N. Grabar,
more than half a century ago [76,77]. At that time, Mechnikov’s approach to the problems
of physiological autoimmunity gave rise to many ideas in the literature (mainly written in
Russian and French) regarding the role of natural autoantibodies, including their possible
involvement in the regulation of cellular membrane permeability and the intracellular content
of macromolecules, in antitumor protection, and even in radioprotection [78–81].

All these approaches were associated with the indisputable conviction of immunolo-
gists prevailing at that time and documented in most authoritative handbooks, that such
large molecules as immunoglobulins can perform their functions only outside the cells,
in biological fluids or on the cell surface [82].

The idea of P. N. Grabar did not require assumptions that contradicted this dogma and
immediately found supporters. It was further developed in the concept of immunochemical
homeostasis by I. E. Kovalev [83]. In accordance with the main postulate of this concept,
the levels of natural autoantibodies are regulated according to the principle of feedback by
the number/availability of molecules of the corresponding autoantigens. Since the levels
of expression and secretion into the extracellular space of any cytoplasmic, membrane,
nuclear, and other autoantigens differ little in healthy individuals, the serum levels of
autoantibodies of corresponding specificity also differ just slightly. However, with the
development of any disease, the picture changes, to the extent that the natural dynamics of
cell populations are distorted.

From this point of view, it is important not only to measure the absolute levels
of certain autoantibodies, but also to compare them with the average levels of these
autoantibodies in the population of a particular region. An individual’s autoreactivity
(i.e., the spectrum and ratios of autoantibodies of different specificity) should also be
taken into account and attention should be paid, first of all, to those autoantibodies that
produce positive or negative peaks against the background of the general “landscape”.
These principles are reflected in some approach to the immunological screening and
immunodiagnostics and continue to evolve [37,41,50,84].

2.2. Transition from Physiological Autoimmune Response to Autoimmune Disease

Many targets of naturally occurring autoantibodies, such as DNA, histones, nucleo-
proteins, and phospholipids, are typical components of apoptotic bodies. In this regard,
there is a point of view that one of the main physiological functions of moderate autoim-
munity is the elimination of apoptotic debris. Notably, that the same antigens which are
abundant among the products of apoptosis (mentioned above, as well as the products of
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apoptogenic proteases, agonists of cytokines receptors, and chemokines receptors) are also
targets of pathological autoantibodies in rheumatic ADs [63,85,86]. It is possible that this
group of diseases will someday be termed “autoimmune diseases with autoantibodies
against the components of apoptosis”, which we have already proposed [63].

Normally, the products of apoptosis are phagocyted by none antigen-presenting CD68-
positive tingible body macrophages (possibly—just by means of physiological natural
autoantibodies), but in the case of impaired clearance, a significant part of the debris is
engulfed by antigen-presenting cells. The enhanced presentation of apoptotic autoantigens
triggers an overly enhanced autoimmune response against those autoantigens (in particular,
antinuclear ones), which was noted in individuals predisposed to systemic ADs in contrast
to healthy ones [86].

It has been shown that immunization of mice with one of the proteins involved in the
clearance of apoptotic bodies (pentraxin-3) led to the emergence of protective autoimmu-
nity and was associated with the delayed development of experimental lupus nephritis [87].
Back in the early 1980s, it was found that the number of B-lymphocytes capable of recog-
nizing double-stranded DNA, one of the main autoantigens among ANA, is the same in
the blood of SLE patients and healthy donors [88]. The process of antigen presentation and
the effects of T cells on this process can determine, therefore, whether autoimmunity will
be maintained within the physiological limits, or whether it will evolve into AD.

Thus, it is possible that natural autoantibodies may precede the appearance of patho-
logical autoantibodies. An increased level of polyreactive B cells was found in patients
with ADs [88,89]. Mature naive B cells in patients with rheumatoid arthritis and SLE
secrete autoreactive/polyreactive antibodies that can recognize classic autoantigens with
low affinity [90]. Under the influence of genetic or environmental factors, these autore-
active/polyreactive mature naive B cells can be differentially activated, resulting in the
appearance of B lymphocytes which produce antibodies with high affinity for autoanti-
gens [91]. Breaking self-tolerance can occur not only due to the abnormalities of apoptosis
(see above), but also due to the modification of autoantigens during inflammatory, neoplas-
tic, or other damaging processes [64], because of cross-reactivity between foreign antigens
and autoantigens and between antigen epitopes and anti-idiotypes [36]. Several factors (e.g.,
destruction of tissues and inflammation) contribute to the production of co-stimulatory
molecules which participate in the interactions between the immune cells thus leading
to a more active autoimmune response, but when the tissues are intact, autoantibody
titers remain low [92]. ADs can be also triggered by the external influences of adjuvants,
adjuvant-like substances, and polyclonal immunostimulants, both of natural (infectious
and non-infectious) and anthropogenic origin. This polyetiological additive threshold
effect on the individuals predisposed to ADs is known as the “mosaic of autoimmunity”
concept [93], and the role of inflammatory autacoids as triggers of the intensification of the
autoimmune response is postulated by the “danger hypothesis” [92].

Since autoantibodies can appear long before the clinical manifestations of ADs,
they can potentially serve as predictive biomarkers for these diseases. Thus, there are
some data that antibodies to cyclic citrullinated peptides appear many years prior to the
symptoms of rheumatoid arthritis and are almost always absent in healthy individuals [94].
However, these autoantibodies are characterized by significantly higher sensitivity and
specificity than ANA, which makes them much more valuable as predictive biomarkers for
the laboratory diagnostics [95,96].

At the same time, although there is some evidence confirming that ANA can also be de-
tected in patients with rheumatic diseases long before their clinical manifestations [97–99],
ANA-positive patients do not necessarily develop ADs in the follow-up, at least for those
diseases which are generally recognized as autoimmune ones [100–102].

2.3. Functional Autoantibodies

The theory of immunological clearance as the main function of natural autoimmu-
nity has evolved in recent years into the concept of functional autoantibodies and their
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homeostatic role. It is expounded in several papers cited above [29,38,42] and the most
recent [103] publications.

However, the authors of these works, as it was before, still see the homeostatic role
of autoimmunity only in the possibility of natural self-correction of certain disorders by
such autoantibodies (related to the elimination of autoantigens and/or to the interference
in their metabolism). In this interpretation, autoimmunity, albeit “beneficial” in such cases,
is still related to the disease. That is, according to this view, autoimmunity is more likely
not a normal, but a compensatory phenomenon.

The ideological influence of the famous Paul Ehrlich’s “horror autotoxicus” [104] can
be read between the lines of this advanced work on functional autoantibodies. For many
years, this postulate prevented the majority of the immunologists not influenced by I.I.
Mechnikov’s concepts, from the recognition that autoantibodies can be physiological.

At the same time, there was also a more radical interpretation of the phenomenon
of physiological autoimmunity, based on the theory of the autoimmune regulation of cell
growth and cell functions. The formation of this theory goes back to the works of A.A.
Bogomolets and L.R. Perelman on the effect of small doses of organ-specific antisera (in
the terminology of that time—“cytotoxins”)—on target organs. According to the modern
interpretation of this theory, autoantibodies act as adaptive bioregulators of cell functions
such as neurotransmitters or hormones both in health and disease [39,44,105].

That is, physiological autoantibodies represent specific signals addressed not only to
superficial, but also to intracellular receptors, including genomic ones. These signals are the
part of the network of idiotype-anti-idiotypic interactions and target not only immune cells,
but also other cell types, taking part in the regulation of the cell growth, gene expression,
and renewal of cell populations [36,39,44,105–108].

It was shown in a number of works on the model of endocrine cells (adrenal cortex,
adenohypophysis, thyroid gland) that IgG against tissue-specific antigens of the cell nuclei,
represented by the complexes of DNA and non-histone proteins, is able to stimulate hor-
mone biosynthesis in these cells in specific ways and influence their proliferation (which
results in hyperplasia of targeted organs with prolonged exposure). The effect of cytostim-
ulating IgGs targeting the adrenal cortex was reproduced after hypophysectomy in rats
and was able to inhibit atrophy of the adrenal cortex in these animals. These antibodies
gave a picture similar to ANA in the reaction of indirect immunofluorescence, and sero-
logically identical immunoglobulins were detected in the serum of intact animals by the
Ouchterlony test [39,44,64].

For a long time, the development of this concept was restrained by the prevailing
opinion about the inability of antibodies to penetrate into living cells (see above), but the
work of the Mexican scientist D. Alarcon-Segovia and Russian authors A.S. Zaichik et al.,
later confirmed by many other scientists [39,48–50,52,89,109], demonstrated the ability
of ANAs (both experimentally obtained and isolated from the sera of SLE patients) to
penetrate into living cells in vitro and in vivo, and showed the biological effects of such
immunoglobulins on various genetically determined processes. This concept is also con-
sistent with the data on the enzymatic activity of some antibodies to nuclear antigens in
relation to their target antigens (the concept of abzymes) [110].

Thus, an important aspect of the natural autoantibody functioning is their involvement
in immune–neuroendocrine regulation as recognizing, signaling or catalytic molecules.

The protective function of autoantibodies in human ADs, especially regarding natural
IgM, is equally important [65]. An inverse correlation was found between the level of IgM
autoantibodies and disease activity, severity of lupus nephritis, and cardiac manifestations
in SLE [111–113], articular lesions in rheumatoid arthritis [75] as well as with the severity
of non-rheumatic ADs [70]. It was found that natural IgM autoantibodies are involved
in the regulation of IgG reactivity in normal sera by binding and neutralizing them [114].
A similar role is attributed to natural autoantibodies against the IgE receptors—namely,
down-regulation of immediate hypersensitivity [38]. It should be noted that pathological
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processes in immune-dependent diseases are more often mediated by autoantibodies of
the IgG isotype, although other isotypes may also contribute [115].

In light of the concepts of physiological autoimmunity and natural autoantibodies, it can
be expected that not only the upper, but also the lower cut-off levels of some autoantibodies
may be diagnostically significant, and protective autoantibodies (including ones against
nuclear antigens) will be found to contribute not to the disease, but to the homeostasis.
This has been recently shown for anti-DFS-70 autoantibodies in rheumatic ADs [12,16,57,58].

3. ANA: Detection, Polyspecificity, and Relation to AD Pathogenesis

ANAs are found in the sera of more than 90% of patients with systemic ADs and can
also be detected in many other autoimmune, infectious, and oncological diseases [5,116–121].
ANAs represent a wide family of autoantibodies of various specificities that bind to nucleic
acids and associated nuclear proteins [115,122,123].

ANF was detected in 1957 in the sera of patients with SLE [122]. Since then, it has become
one of the diagnostic criteria for SLE [7,124,125], as well as for other systemic ADs with
non-organ-specific autoantibodies: systemic scleroderma [14,120,121], Sjogren’s syndrome,
and mixed connective tissue disease [7,23]. ANAs are also present in rheumatoid arthritis [23],
autoimmune hepatitis [126], pernicious anemia associated with primary autoimmune atrophic
gastritis [127], Hashimoto’s thyroiditis, and immune thrombocytopenic purpura [128].

Certain nuclear staining patterns for ANAs have been described as clinically signifi-
cant also in dermatomyositis, autoimmune myopathies, primary biliary cirrhosis, Crohn’s
disease, antiphospholipid syndrome, autoimmune cytopenias, and occasionally among
paraneoplastic phenomena [16].

Several new associations have been revealed between the presence of ANAs and
diseases which are not generally considered to be related to autoimmunity: for exam-
ple, ANAs have been found in idiopathic epilepsy [129], ischemic brain disease [130],
interstitial lung diseases [131], schizophrenia [132], and other ailments. According to
O.V. Danilenko et al. (2020), the level of autoantibodies to double-stranded DNA belonging
to the ANA group is increased in various forms of chronic fatigue syndrome (myalgic en-
cephalomyelitis), especially, when the disease manifests after herpes virus infections [133].

ANF is a historical term introduced in 1960 by the British rheumatologist Eric John
Holborow (1918–2009) [134] which was used to characterize the totality of antinuclear
antibodies of different specificity, detected by indirect immunofluorescence assay (IFA).
IFA is the “gold standard” for ANA detection. Until the mid-1980s, it was carried out
on frozen sections of internal organs of animals or humans (spleen, kidney, liver, etc.),
which resulted in additional variability of the test results and hindered interlaboratory
comparison. In 1983, a standardized object for the ANA-IFA test was proposed [135],
namely, HEp-2 cells, which had been cultured by that time for about 30 years in the
laboratory as a human laryngeal epithelioma strain [136,137]. The reaction of indirect
immunofluorescence with patient sera and fluorescently labeled heterologous antibodies
against human immunoglobulins of one or another isotype is carried out according to the
standard technique and the result is viewed with a fluorescence microscope. The serum
titer and the fluorescence pattern are assessed [138]. Since 2003–2004, solid-phase ANA
testing using multiplex fluorescence immunoassay and similar solid-phase methods began
to gain popularity as an alternative to IFA. However, IFA on HEp-2 cells, which serve as a
kind of natural “microplates or even nanoplates” with a set of autoantigens (circa 100 of
them), is still recognized as the most sensitive (and, importantly, visual) method for ANA
detection, despite the improvement of the solid-phase immunoassay methods [16,138,139].

When lysates of HEp-2 cells are used as complex antigens in solid-phase immunoassay
methods, minor antigenic specificities present in natural cells remain underrepresented,
and are therefore not detected. In addition, antigens are present on cells in the native
conformation and among natural microenvironments, while other epitopes can be exposed
in solution and on a solid-phase carrier. Therefore, except for cost reduction and increased
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productivity, solid-phase methods, from our point of view, do not provide any other
indisputable advantages over IFA.

The use of standardized HEp-2 cells as a substrate for IFA makes it possible to de-
scribe various fluorescence patterns, which reflect the presence of immunoglobulins with
different antigenic specificity. Each of the fluorescence patterns (to date, the International
consensus on ANA patterns (ICAP) describes 29 such patterns) is clinically significant for
certain ADs [16]. Detection of ANAs with a description of the type of fluorescence is an
important step for the selection of solid-phase immunoassay methods (immunoblotting,
enzyme immunoassay, multiplex bead immunoassay, etc.), which are applied to determine
antigen specificity.

However, the IFA pattern does not always coincide with the results of the solid-
phase assay [140]. In addition, IFA is a more laborious and time-consuming technique
in comparison with fully automated biochemical tests, and the visual interpretation of
the results could be subjective. Moreover, there are IFA patterns for which the clinical
significance has not been unequivocally established.

Being relevant for the diagnosis and prognosis of mixed connective tissue disease
and systemic sclerosis and even criterial for diagnosis of SLE (with sensitivities 90–95%),
the HEp-2 ANA test is only helpful (with 45–80% sensitivities) for the diagnosis of a
few other autoimmune diseases (autoimmune hepatitis, dermatomyositis/polymyositis,
Sjogren’s syndrome), and irrelevant in the iagnosis of Hashimoto’ s disease or rheumatoid
arthritis (due to sensitivities of only 10–20%) [139]. Therefore, according to a survey
conducted among the laboratories, only about 50% ANA tests in the USA and up to 75% in
other countries as of 2020 were performed by indirect immunofluorescence [141].

This survey showed that genetically engineered HEp-2000 cells with the overexpres-
sion of the SS-A/Ro autoantigen (underrepresented in original HEp-2 cell culture) are
becoming more common as a substrate for the determination of ANA staining patterns and
are already used by about 24% of the laboratories in the USA, but only by about 3% in the
other countries. The establishment of automated platforms for the reading of the IFA results
to a certain degree made it possible to overcome the subjectivity of the method during the
last decade. The agreement between the results of manual and automated HEp-2 ANA tests
reached 92–99%, although the hardships are still great in recognition of mixed patterns,
and an automated test is combined with manual reading, with still imperfect interobserver
agreement [139]. Hence, there are persisting doubts if ANAs revealed by a single HEp-2
IFA-test may serve as an entry criterion even for SLE, and therefore a recommendation was
made to use combined IFA and solid-phase assay data [142,143].

In 2020, about 33% of the laboratories used an automated platform for slide prepara-
tion; 16% captured images by the automated platform, but only 5% used automation for
the interpretation of the images [141]. Modern consensus guidelines for the interpretation
of the results of ANA testing by IFA [16], known as ICAP, developed in 2014–2018, have be-
come an important step towards standardization of the interpretation and unification of the
nomenclature in this area. Interestingly, in ICAP workshops, it was agreed that regarding
the 29 defined fluorescence patterns, the term “disease associations” should be replaced by
“clinical relevance”.

With the new knowledge and experience gained in the usage of modern modifications
of the old ANA test, it became clear that not only the classic term “ANF”, but also the
other ubiquitous one “ANA test” does not fully reflect the variety of IFA data. The fact
is that IFA with HEp2 cells allows us to register not only 15 nuclear staining patterns,
but also nine cytoplasmic ones, as well as five other ones associated with mitosis, where not
only chromosomal autoantigens, but also autoantigens related to the cytoskeleton are
involved [16]. The most radical proposal was to rename the detection of ANA by IFA
to “a test for anticellular autoantibodies” [144]. However, later a more precise name was
suggested: “the HEp-2 IFA” [145,146].

Of course, one can recall in this connection the famous: “A rose by any other name
would smell as sweet...”—from the mouth of Shakespeare’s Juliet [147]. However, in this
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case, the name of the test is an important detail, because different laboratories, reporting to
the customer the test result, interpret the detection of cytoplasmic fluorescence patterns
during the ANA test in different ways—sometimes as “ANA negative”, although its clinical
relevance is obvious [16,141,145].

4. Detection of ANAs in Healthy Individuals

There is ample evidence in the literature that ANAs can be detected in healthy subjects
by both IFA and biochemical immunoassay methods [148–153]. Autoantibodies to nuclear
proteins are normally present in the sera of healthy people and intact animals [154,155].
Moreover, in healthy individuals, autoantibodies to double-stranded DNA and their anti-
idiotypes are found in blood plasma [156]. Some of the autoantibodies of DNA in the sera
of healthy donors are masked by complexes with serum poly-anionic proteins and can be
detected after special sample processing, which indicates their wider prevalence under
normal conditions than routine laboratory methods show [157]. Therefore, it is especially
important to distinguish between normal and pathological levels of autoantibodies for the
diagnosis of ADs, also when the HEp-2 IFA test is performed.

4.1. HEp-2 IFA Cut-Off Titers

The main disadvantage of the HEp-2 IFA test is its quite low specificity due to the
presence of ANAs in the sera of healthy donors. In most published sources, includ-
ing methodological guidelines, only the upper limit of a normal ANA titer is indicated,
since their complete absence is considered the most frequent normal variant (although not
the only one). In view of the above (see Sections 1 and 2), this approach appears insufficient
and not up to date.

Autoimmunology is moving towards the recognition of the importance of the normal
range of the levels of several autoantibodies, as it has long been accepted for hormonal and
any other bioregulators.

In the literature, different values are mentioned as a cut-off from which the HEp-2 IFA
test should be considered positive: 1/40–1/80 [158], 1/80 [152], 1/100 [117], 1/160 [159,160],
and 1/200 [161,162]. Therefore, the frequency of ANA-positiveness in different studies will
be different depending on the chosen cutoff. According to a laboratory practice survey
published in 2020 [141], 50% of laboratories in the world accepted a 1/40 titer as a cutoff.

In a review article by Saikia et al., the importance of the ANA cutoff titer is dis-
cussed [163]. The authors showed that with 1/40 serum dilution, about 20–30% of clinically
healthy people had a positive result. When a 1/80 titer was used as a cutoff, this share
reduced to 10–12%; when 1/160 and 1/320 titers were used—it decreased to 5% and 3%,
respectively. A similar picture is observed when comparing any data of the authors who
indicate in their articles the prevalence of ANA in different titers (Table 1).

Table 1. Prevalence of ANAs among healthy adults depending on the cut-off titer.

Author(s), Year,
(Reference)

Country(ies) Age, Years n
Share of ANA Positive Depending on Titers, %

1/40 1/80 1/100 1/160 ≥1/320 Total

Tan E.M. et al., 1997
[165]

International (USA,
Europe, Australia,

Canada, Japan)
21–60 125 31.7 1.3 N/A 5.0 3.3 41.3

Fernandez S. et al.,
2003 [97] Brazil 18–60 500 14.6 4.6 N/A 2.0 1,4 22.6

Cacciapaglia F. et al.,
2008 [166]

Italy (Filipinos) 25–65 80 N/A N/A 23.7 N/A N/A 23.7

Italy (Italians) 25–69 60 N/A N/A 8.3 N/A N/A 8.3

Marin G.G. et al.,
2009 [20] Mexico 12–72 304 35.4 13.4 N/A 3.2 1.6 53.6
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Table 1. Cont.

Author(s), Year,
(Reference)

Country(ies) Age, Years n
Share of ANA Positive Depending on Titers, %

1/40 1/80 1/100 1/160 ≥1/320 Total

Mariz H. et al., 2011
[164] Brazil 18–66 918 N/A 5.9 N/A 1.0 5.9 12.9

Satoh M. et al., 2012
[21] USA

20–29 686 N/A 13.1 N/A N/A N/A 13.1

30–39 642 N/A 13.4 N/A N/A N/A 13.4

40–49 581 N/A 11.5 N/A N/A N/A 11.5

50–59 478 N/A 17.4 N/A N/A N/A 17.4

60–69 525 N/A 13.8 N/A N/A N/A 13.8

>70 625 N/A 19.2 N/A N/A N/A 19.2

Racoubian E. et al.,
2016 [167] Lebanon <20–>70 10,814 N/A N/A 20.0 3.7 2.8 26.5

Morawiec-Szymonik
E. et al., 2020 [127] Poland 18–>60 41 N/A N/A N/A N/A N/A 4.9

For example, in a Brazilian study of 500 healthy adults, 22.6% of samples were found
to be positive for ANAs with 1/40 as a diagnostic titer [97]. However, at 1/80, 1/160,
and 1/320 dilutions, the rates of positive results were much lower. Other authors from
Brazil [164] did not use the 1/40 dilution in their study; therefore, ANA prevalence among
their patients was almost two times lower than in the study by Fernandez et al. (Table 1).
Moreover, it was [164] who pointed out the connection between the special pattern of
fluorescence associated with autoantibodies targeting the DFS-70 antigen and the absence
of rheumatic diseases.

As early as 1997, Tan et al. obtained similar results on the optimal ANA titer cut-
off. [165]. They concluded that the 1/40 titer includes almost all patients (high sensitivity),
but also a significant part of healthy individuals (low specificity). At the same time, a titer of
1/160 excludes more than 95% of healthy people, but “does not notice” a significant part of
patients. Therefore, laboratories must report the results for both titers. Moreover, according
to these authors, the detection of low-affinity ANAs in small dilutions in persons consid-
ered healthy is also biologically and clinically significant. An inspection of laboratories
determining ANAs, conducted in 2001 in the USA, showed that almost 60% of laboratories
used 1/40 as a cutoff titer, 23% used 1/80, and only 14% used a 1/160 dilution [163].

A similar survey was repeated 19 years later on a larger scale, involving not only
942 American laboratories, but also 264 ones from the other countries [141]. It was shown
that modern practice in the countries of the Old and New Worlds is very different: While
in the USA, a 1/40 titer was used as a cutoff by 73% of laboratories (that is, more than what
was registered 19 years ago), experts from other countries were clearly inclined to a stricter
criterion—only 41% relied on the presence of ANAs at a titer of 1/40, and the majority of
non-American laboratories considered a cut-off titer of 1/80 (44%).

The authors of one of the papers cited above [163] concluded that each laboratory
should determine a regional diagnostic titer for the population, and the authors of the other
study [141] reinforced the importance of the reporting to the physicians the titer at which
the result is registered, as well as the inadmissibility of labeling the ANA test results as
negative if only a non-nuclear pattern of fluorescence is detected.

However, the use of different cut-off levels in the laboratories makes the results
inconsistent. For example, parallel testing of 26 samples in two independent laboratories
revealed a discrepancy in titers in 18 cases. Since 1/40 and 1/20 titers were used as
diagnostic in the first and in the second laboratories, respectively, fluorescence at a dilution
of 1/20 was not found and therefore reported as negative in the first laboratory. Moreover,



Antibodies 2021, 10, 9 11 of 26

the second laboratory regularly tested the sera in dilutions of 1/320 and 1/1280, which also
led to differences in the results [148].

Malleson et al. [168,169], based on the results of the analysis of their own data and
literature reviews, noted that ANAs are detected in healthy individuals (children and
adults) up to a titer of 1/320. The authors conclude that if these antibodies are found
in low titers (<1/640) and there are no clinical symptoms, laboratory results should be
ignored. Gilbrio et al. also believe that ANAs are not necessarily associated with AD,
sometimes even despite high titers [149]. They concluded that an ANA test is required
only in individuals with clinical signs of ADs.

However, if one follows the above logic, then the same ANA titers in the presence of
clinical symptoms should be considered, and in their absence should be ignored.

The question naturally arises, what to do with atypical, subtle symptoms of ADs?
Further, what is the meaning and medico-economic justification of a laboratory study

if it does not verify a clinically reasonable diagnosis? Such a dual diagnostic interpretation
of the test results reduces the significance of these autoantibodies.

This conclusion is confirmed by the results of Abeles et al. [151]. According to these
authors, the positive predictive value of ANAs for the diagnosis of ADs with the 1/160 cut-
off titer was 11.6%. Even with a titer of 1/640, the positive predictive value for rheumatic
diseases was low—26.9%, for SLE—6%, and with a titer of 1/1280, it was 38.9% and
5.6%, respectively.

Similar results were obtained by Turkish researchers [100]. Of the 409 examined
children with suspected systemic ADs with non-organ-specific autoantibodies who lived
in Turkey, 27.6% had positive ANA titers, and only 15% were ultimately diagnosed with
ADs. None of the 13 patients with an ANA titer of less than 1/160 had rheumatic diseases.
The positive predictive value of ANAs was 16% for any systemic AD and 13% for SLE [100].

Only 1968 (57.3%) of 3432 patients with suspected systemic AD had ANAs at the
titer 1/100 or more, and only in 293 (14.9%) from the “positive” 1968 cases was the
suspected diagnosis confirmed [101], that is, the applied efficiency of this laboratory test
was very low. In a study conducted in Taiwan (China), which involved 355 patients from a
rheumatological clinic with positive results of the HEp-2 IFA test, systemic ADs were more
common in those with ANA titers of 1/640 or higher than in those who had ANA titers in
the range of 1/40–1/320 [128].

In another study of 205 children with rheumatic diseases, ANAs at a titer of 1/20 or
more were detected in 67% of cases, but in 494 children with non-rheumatic diseases—in
64% of cases, which completely negates the value of detection of ANAs at low titer for
rheumatic ADs [169].

The relevance of ANA testing for the diagnosis of those diseases characterized by
the rarity of high titers of autoantibodies, for example, for juvenile idiopathic arthritis,
is especially doubtful, according to the literature data [170] and our practice [171]. How-
ever, for the diagnosis of SLE, detection of ANAs is more significant, since the disease is
usually characterized by higher levels of autoantibodies [171,172]. However, even for SLE,
the diagnostic value of ANAs in the studies cited above did not exceed 15% [100,151].

4.2. Regional, Social, and Racial-Ethnic Aspects of ANA Prevalence

In different cohorts of healthy individuals, the prevalence of ANAs can vary signifi-
cantly. Cacciapaglia et al. found that results of the HEp-2 IFA test were positive in 23.7%
of healthy Filipinos who migrated to Italy, compared with permanent residents of Italy,
in whom the prevalence of ANAs was 8.3% [166]. Probably, different socio-economic living
conditions of these cohorts could be one of the reasons for such discrepancy. Migrants often
have a lower socio-economic status than the indigenous population, and this can be the
reason for the worse health status. In addition, the authors suggested that the prevalence
of ANAs in migrants can be related to the influence of the environment in which they
lived before moving. There is evidence that rural residents have a higher incidence of
ANAs than the urban population, possibly due to exposure to toxic substances used in
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agriculture [173,174]. It was shown that 282 (42%) of 668 men living in North Carolina
and working with pesticides had ANAs in the sera at a dilution of 1/80 or more [175].
The authors of the study concluded that organochlorine compounds could play a role in
the increasing level of ANAs, and, over time, in the development of ADs.

Satoh et al. reported that the prevalence of ANAs in different groups of healthy adults
(donors, healthcare workers, healthy volunteers, residents of small towns) varies widely
from 1.1% to 20%, depending on the occupation and place of residence [21]. Mexican
researchers found that when healthy subjects were tested for ANAs, the titers in health care
professionals were higher than in healthy donors and even than in the relatives of patients
with rheumatic diseases [20]. Health care workers are often enrolled as healthy volunteers
giving control sera in comparative studies: for example, according to Tan et al. [165], up to
two-thirds of the control sera were received from employees of the universities where the
laboratories were located, including 13% from healthy individuals who professionally were
directly involved in sera testing.

At the same time, there are data from studies (albeit rather old ones), which show
that ANAs to DNA in healthy volunteers enrolled from the laboratory staff were identified
more frequently than in the overall healthy population [176,177].

The geographical features of the ANA prevalence are worth mentioning because their
prevalence varies in different countries. For example, when 557 healthy volunteers from
different countries were tested for ANAs (by HEp-2 IFA), these autoantibodies were found
in 45% of Colombians, 38% of residents of Kitava Island in Papua New Guinea, 26% of
Mexicans, 12% of Italians and Dutch, and 11% of Israel residents [150]. According to the
Italian authors, the detection rate of ANAs by ELISA was 1.3% in a cohort of 149 healthy
adults [13]. When the same laboratory method was used to examine 401 healthy residents
of Texas (USA), 25% of them have positive results [178]. With the HEp-2 IFA test, the same
tendencies can be noted. Authors of the publications from European countries (where,
as mentioned above, laboratories are more likely to take higher dilutions of serum as a
cutoff) usually report a rather low prevalence of ANAs in healthy populations. For example,
ANAs were detected only in 4.9% of 41 healthy residents of Poland (the titer was not
indicated) [127]; among blood donors in the Netherlands at the dilution of more than 1:80,
the value was about 4%, although lower titers were found in 12.7% of cases [179].

ANA-positivity in the Americas, according to literature, is higher than in Eurasia.
Thus, out of 304 healthy Mexicans, 17.9% had ANAs at a titer of 1/80 and more, but only
1.3% of these individuals were positive at a 1/320 titer [20]. In a study performed in the
USA which involved 4754 healthy individuals over the age of twelve years old, 12.8%
of ethnic Mexicans, 13.7% of Caucasians, and 15.5% of African Americans were positive
for ANAs at the titer of 1/80 [21]. In East Beirut (Lebanon), 10,814 healthy individuals
were tested; ANAs at a titer of 1/100 were detected in 26.4% of cases, and the prevalence
in population aged over seven years has increased 2.5 times since 2008 [167]. However,
in a geographically close region of Turkey, ANAs at a titer of 1/100 were detected only
in four people out of 507 healthy individuals (0.78%) [23]. In studies conducted in the
countries of Indochina and the Far East, several different results of ANA prevalence
have been reported. For example, among 100 healthy adults from Thailand, only eight
had ANAs (1/80 cut-off titer) [180]. In an extensive study conducted in Baoding City,
Hebei Province, China, just over 5.9% of nearly 20,500 healthy donors tested positive for
ANAs, mostly women [181]. Among 33 healthy adults living in Japan, two had ANAs at a
titer of 1/40, and two more—at titers 1/80–1/160 [182]. In the international study cited
above, conducted in 15 laboratories (Europe, USA, Canada, Australia, Japan), positive
results in healthy adults at a titer of 1/80 were detected in 13.3% of cases, and at a titer
1/40—in 31.7% [165].

It is interesting to trace the dynamics of the ANA prevalence in the same country (or
population group) for long periods of time. Since this requires referring to biobanks col-
lected over many years according to standard rules, such attempts are rare [167]. A recent
research project from the USA which used a biobank, created during the National Survey of
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Health and Nutrition of Americans, is outstanding because of its scope. Sera of 14,211 US
residents over 12 years of age collected over three time periods (1988–1991, 1999–2004,
and 2011–2012) were routinely tested for ANAs in one laboratory by HEp-2 IFA, and the
results were correlated with medical history and questionnaires completed by the partici-
pants [183]. Findings indicate that there is a clear, statistically significant trend towards an
increase in the number of seropositive Americans over the years, especially in the most
recent time period (from 11% and 11.5% to 15.5%). ANAs are more common in women
(20.1%) than in men (11.4%), in those over 50 (20.5%) than in young people (13%), and in
African-Americans (18, 1%) than in other racial groups. It does not show a correlation
with body mass index (although over the observation period, BMI increased, as did the
consumption of alcohol and tobacco products). Contrary to expectations, ANAs are some-
what less likely to be present in active smokers (13.1%) than among non-smokers (17.1%),
and are more often found among teetotalers (21.3%) than among those who consume alco-
hol moderately or frequently (14.8%). The recent increase in ANA seropositivity is most
pronounced among white men (from 10.2 to 16.4%) and is especially significant among
adolescents (from 5% at the turn of the 1980s–1990s—to 12.8% in 2011–2012 years). Dis-
cussing these data, the authors vaguely mention the role of factors acting during gestation
and in early life.

However, we consider that the most significant change in early life that occurred
between 1989 and 2012 in this case is the establishment of more intense national immuniza-
tion programs and the adjuvant load associated with these programs, as well as increasing
intensity of other anthropogenic adjuvant factors. In 1988, in the United States, only 2.9%
among 241 healthy children and adolescents aged four months to 16 years had ANAs at
serum dilutions 1/10–1/40 [184], and in 2012, the test turned out to be positive already in
11.2% of the tested American adolescents 12–19 years old, although a higher dilution of
serum (1/80) was considered as a cutoff [21].

There are practically no data on the occurrence of ANAs in healthy children and
adults living in the largest multinational country of the world—the Russian Federation.
We detected ANAs at a titer of 1/80 or higher—in 22 healthy donors out of 100, in the
Urals, in the Sverdlovsk region, of which five people had an ANA titer of 1/320, 1–1/640
and 1–1/1280 [185].

Currently, it is common knowledge that geographical differences exist not only in
the ANA prevalence among healthy individuals, but in the regional distribution in ADs.
For example, Lerner et al. [1] reported that in the 21st century, the most significant increase
in the incidence and prevalence of ADs has occurred in the West and North compared to
the East and South. This difference is usually associated with a decrease in the incidence of
infectious and parasitic diseases in some regions (according to so-called “hygienic hypoth-
esis”). However, there is also an impact of vitamin D supply under conditions of different
latitudinal sunlight exposure and additional factors associated with urbanization [1,150].

It can be pointed out that the above information on the ANA frequencies in healthy
inhabitants of the New World, in comparison with Europeans, correlates with the data
by Roberts et al. [186], who showed, using 52 million medical observation cards from the
period 2010–2016, that the multiracial population of the United States also had a higher
prevalence of ADs, than the population of Europe. They identified regional intra-American
variations in the prevalence of ADs: SLE was more common in African Americans in
the West North Central and South Atlantic regions of the country; multiple sclerosis—in
African Americans in the South Atlantic and Pacific regions; rheumatoid arthritis—in
Native Americans in the Pacific, West North Central, and Mountain areas. These findings
represent more evidence for the role of the genetic factors in the etiology of ADs.

Due to the complexity of comparing data from different laboratories, it is preferable to
implement large-scale multicenter studies performed according to a single method with
the same test systems.
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4.3. Ontogenetic Aspects of Autoimmunity to the Nuclear Antigens

Many parameters used in modern laboratory diagnostics have different reference inter-
vals, depending on gender and age. However, methodological guidelines and publications
related to AD diagnosis are often devoid of any reference to the differences in the normal
values for males and females and for people of different ages [23,152,158,162]. Indeed,
there is a general tendency with age to immunosuppression against the background of
a chronic systemic excess of pro-inflammatory autacoids, the activation of autoimmune
processes in the body, and expansion of their spectrum [187]. However, there are few
studies which describe the ontogenetic dynamics of ANA levels, detected by the same
laboratory, although it is methodologically difficult to compare the results of different
laboratories analyzing this question.

In general, the incidence of ANAs in children is comparable to that in adults. However,
in the reviewed publications of authors from Europe, Asia, Australia, North and South
America, different age groups were tested and different ANA cutoff titers were used
(Table 2).

Table 2. Share of ANA-test positive cases among healthy children and adolescents (N/A—for absence of data).

Author(s),
Year (Reference)

Country(ies) Age, mo/Years n
Share of ANA Positive Depending on Titers, %

1/40 1/80 1/160 ≥1/320 ≥1/640 Total

Arroyave C. et al.,
1988 [184] USA 4 months—16

years 241 0.4 N/A N/A N/A N/A 0.4

Allen R.C. et al., 1991
[148] Australia 1–16 years 100 9.0 N/A 7.0 N/A 2.0 18.0

Hilário M.O. et al.,
2004 [149] Brazil

6 months–5 years 63 N/A 3.2 1.5 1.5 1.5 8.0

5–10 years 77 N/A 9.1 5.2 2.6 2.6 19.5

10–15 years 49 N/A 2.0 4.0 2.0 2.0 10.0

15–20 years 25 N/A 0.0 0.0 8.0 0.0 8.0

Wananukul S.et al.,
2005 [188] Thailand 7–15 years 207 9.6 2.9 2.9 0.0 0.0 15.4

Satoh M. et al., 2012
[21] USA 12–19 years 1190 N/A 11.2 N/A N/A N/A 11.2

Somers E.C. et al.,
2017 [152] Mexico 9–17 years 114 N/A 5.3 3.5 7.0 N/A 15.8

Attilakos A. et al.,
2020 [129] Greece 4–14 years 40 N/A N/A 5.0 N/A N/A 5.0

Some of the authors who analyzed the age-related characteristics of the ANA-positivity
concluded that its prevalence increases with age [21,167,168]. According to other re-
searchers, no correlation was found between ANA titers and the age of adult donors [20],
at least in the range of 20–60 years [165].

Interesting results have been obtained in the study by Fernandez et al. [97]. The au-
thors showed that among 394 adult donors under 40 years old, ANAs were detected in
21.1% of cases at a titer of 1/40 and higher, and in 106 adults over 40 years old, positive
results were observed in 28.3% of cases. At the same time, at a cut-off titer of 1/320, the op-
posite results were obtained: the detection rate in the younger group was 1.5%, and in the
older one 0.9%. The data on the children and adolescents of different ages are presented in
the publication by Hilbrio et al. [149]. Among the surveyed age groups: 6 months–5 years,
5–10 years, 10–15 years, and 15–20 years, ANAs were most often detected in children from
5 to 10 years old (Table 2).

Presumably, the most common among young people (30–35 years old) was the anti-
DFS70 immunofluorescence pattern of the HEp-2 IFA-test, which is suggested to be protec-
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tive for rheumatic ADs [57,189]. Finally, a large-scale study from the USA cited above [183]
registered a trend towards an increase in the detection of ANAs with age (and especially—
over 50 years old) and a flattening of the differences between adolescents and young
adults, which were observed among individuals whose samples were taken 30 years ago,
but almost disappeared in subsequent periods due to the recently increased frequency of
ANA-positiveness in adolescents. The frequency of the detection of ANA increases with
age, but non-linearly.

4.4. ANA IFA Patterns in Health

The ICAP of 2014–2015 describes 28 types of variants of the picture recorded when
determining ANAs by IFA [189]. A modernized version of the ICAP 2018–2019 added to
them the 29th pattern, verified by experts [16]. The patterns are denoted by the acronym
AC (anti-cell) and numbers [190].

Among all nuclear patterns observed in HEp-2 IIFA analysis, the main ones and
minimally mandatory for the identification by any laboratory during routine analysis
are homogeneous (AC-1), speckled (subtypes which should be reported by “expert-level”
laboratories: AC-2, 4, 5), centromere (AC-3), and nucleolar (expert-level subtypes: AC-
8, 9, 10). Among the cytoplasmic patterns, those mandatory for routine description are
fibrillar (expert-level subtypes: AC-15, 16, 17), speckled (expert-level subtypes: AC-18, 19,
20, 21), polar/Golgi-like (AC-22), and a pattern of rods and rings (AC-23). Mitotic patterns
(AC-24–AC-28) are verified exclusively by the experts.

A homogeneous pattern is characteristic of the presence of antibodies in response to
the main components of nucleosomes: double-strained DNA and histones; it is clinically
significant for the diagnosis of SLE, juvenile idiopathic arthritis, and chronic autoimmune
hepatitis [16,140,190,191]. The speckled type of fluorescence is observed in a wide range of
rheumatic diseases (Sjogren’s syndrome, rheumatoid arthritis, juvenile idiopathic arthritis,
various forms of lupus erythematosus, systemic sclerosis, dermatomyositis, mixed connec-
tive tissue disease, overlap syndromes, and undifferentiated connective tissue disease) and
is divided into three expert-level sub-types (Figure 1) [12,16,158,171,172,191].

Regarding ANA IFA patterns in healthy people, the most interesting pattern is AC-2—
dense fine speckled (DFS) [12,16] (see below).

ANAs to nucleolar antigens are associated with three nucleolar patterns, which are
most clinically relevant for systemic scleroderma, but can be also identified in mixed
connective tissue disease, Sjogren’s syndrome, and occasionally present as a paraneoplastic
phenomenon) [16,140,158,190].

A distinct pattern AC-29 has been recently described and associated with antibodies
to Scl-70 (DNA-topoisomerase I), which could also cause a homogeneous pattern, since the
concentration of DNA-topoisomerase is maximal in the nucleoles. The AC-29 pattern is
highly significant for systemic sclerosis but can also be found in overlap syndrome between
this disease and dermatomyositis [16,146,192].

The centromere pattern is important for cutaneous forms of scleroderma and CREST syn-
drome; it can manifest itself long before the manifestation of other symptoms and, together with
Raynaud’s phenomenon, is prognostically extremely valuable for early diagnosis [16,144,193].

The clinical significance of cytoplasmic and mitotic staining patterns is discussed in
detail elsewhere [16,140,143].

When ANAs are detected in health, the speckled pattern is the most common, followed
by the homogeneous one. For example, Brazilian authors showed that 78% of healthy
children positive for ANAs had the speckled pattern and 11%—the homogeneous one [149].
In an Australian study, when ANAs were detected above the cutoff titer in healthy children,
speckled, nucleolar, homogeneous, and mixed types of fluorescence were arranged in
decreasing order of frequency [148]. In healthy Mexican children, positive for ANAs,
the speckled pattern was found in 50% of cases, homogeneous—in 44%, and nucleolar—in
6% [152]. The results of ANA testing in healthy children in Thailand were somewhat
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different: when positive results were detected, the homogeneous pattern was determined
in 47% of patients, speckled—in 20%, and nucleolar—in 10% [188].

Figure 1. Classification of the main patterns of fluorescence in HEp-2 IFA. On a yellow background, there are patterns
mandatory for registration in routine laboratory practice, on a white background—those verified by experts. * metaphase
plate is stained (from: [189]).

The results of studies involving healthy adults are similar to those obtained in children.
Mexican [20] and Brazilian scientists [164] reported that about half of healthy subjects with
positive results of ANA tests had a speckled type of fluorescence. When examining healthy
subjects in the USA, speckled and homogeneous patterns were found in 84.6% of cases [21].
In our study, when positive results of ANA tests were found in healthy Russians, the most
common pattern was speckled (more than 60% of positive results), followed in descending
order by homogeneous, nucleolar, cytoplasmic, and mixed ones [185].

It should be noted that the speckled and homogeneous patterns are the most common
ones also in rheumatic ADs [16]. Both these patterns may be due to the presence of
antibodies to multiple antigens and are not specific for any particular disease. All this
makes the diagnostic process even more difficult because the type of staining pattern cannot
be a specific criterion for distinguishing between sick and healthy among the examined
persons. Therefore, the reasonable determination of the cutoff for the ANA titer is the
most important.

In recent years, special attention has been paid to the AC-2 or DFS (dense fine speckled)
pattern, which is a subtype of speckled sub-pattern, commonly detected in healthy individ-
uals (especially in young adults) who are positive for ANAs [12,16,23,57,58,101,164,189].

This is a fluorescence of interphase nuclei in the form of small dense specks, with a
fine-speckled fluorescence of chromosomal regions (but not nucleolar ones) in metaphase
cells. It is associated with autoantibodies against the protein DFS70 (see above). The antigen
is lens epithelium-derived growth factor or transcription co-activator with a molecular
weight of 75 kD.

This transcriptional co-regulator produces an important signal, activating a number
of intracellular mechanisms, non-specifically increasing the survival of various cells in
response to damaging influences.

The AC-2 pattern is rarely found in persons who develop rheumatic AD (0.5–3%),
but in healthy people it is present more often (6–11%) [16,57,58].
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Currently, there is evidence that this pattern, when confirming the presence of anti-
DFS-70 autoantibodies by immunoassay methods, can serve as a biomarker for the ex-
clusion of systemic rheumatic AD with borderline ANA titers [12,16,23,57,58,101,164,189].
It is possible that these autoantibodies are a characteristic manifestation of “beneficial
autoimmunity” (see above) [61]. However, according to the ICAP, they can be considered
an “anti-marker” only in the absence of other autoantibodies associated with systemic
rheumatic AD [16]. In individuals with the AC-2 pattern it is possible to identify autoan-
tibodies typical for the specific diseases by immunoassay methods and to establish the
corresponding diagnoses in about 11–12% of cases [194,195]. Therefore, the presence of
the AC-2 pattern is not an “indulgence” of rheumatological health, but a sign that requires
clarifying tests by means of other laboratory methods.

Comparing the cytokine profiles and immune cell subtypes of healthy subjects and
SLE patients positive for ANA, the American authors found that healthy individuals
had significantly lower levels of several endogenous adjuvant-like cytokines (interfer-
ons, B-lymphocyte stimulation factor BlyS). Both pro-inflammatory IL-12 and stem cell
factor c-Ki levels were significantly lower in healthy people, while the levels of the anti-
inflammatory IL-1 receptor antagonist—IL-1Ra, on the contrary, turned out to be lower in
SLE patients [196]. This corresponds to the danger model and the concept of adjuvant-like
effects in defining the line between physiological and pathological autoimmunity (see
above). The same research group recently highlighted the importance of race in early au-
toimmune profiles and identified a novel immune endotype with hallmarks of suppression
in European American ANA(+) healthy individuals [197]. This immune endotype includes
lower expression of T-cell activation markers, lower plasma levels of IL-6, reduced num-
bers of T cells, NK cells, and autoimmunity-associated B cells. Regarding the mechanism
underlying the transition from an ANA(+) healthy status to SLE, the authors reported T-cell
immune suppression signature in ANA(+) healthy individuals characterized by the marked
downregulation of interferon-inducible genes and HLA class I genes in T cells of these
individuals compared with ANA(−) controls and patients with SLE. It was suggested that
suppression may be a form of regulation in response to early autoreactivity or a pathogenic
result of unseen immune activation in European American ANA(+) healthy individuals.

Thus, for the correct interpretation of ANA tests, not only the ANA titer, but also
the presence or absence of certain qualitative features of the HEp-2 IFA staining pattern,
the presence of “protective” anti-DFS70 autoantibodies, and the features of some other
parameters of the immune reactivity should be used.

Whether anti-DFS70 autoantibodies, in addition to the properties of an “anti-marker”
of systemic autoimmune rheumatic pathology, represents a biomarker for the presence
of any other AD is unclear, although they are often detected in Vogt-Koyanagi-Harada
uveomeningitis, which occurs with frequent systemic lesions, in chronic fatigue syn-
drome/myalgic encephalomyelitis, in atopic dermatitis and interstitial cystitis, less of-
ten in Hashimoto’s thyroiditis, alopecia areata, sarcoidosis, and paraneoplastic phenom-
ena [195,198]. According to Ochs et al. [198], at least 5–10% of healthy people who do
not develop rheumatic diseases during follow-up can be anti-DFS70 carriers. It has been
recently shown that an anti-DFS70 antibody test could help to avoid unnecessary follow-up
diagnostic procedures in ANA-positive subjects with undifferentiated features of systemic
autoimmune disease and minimize the use of health resources [199].

Since the LEDGFp75 autoantigen, which is the target of these antibodies, is involved
in the activation of nonspecific cell responses to damage and coordination of some mech-
anisms that ensure cell survival, it can be suggested that the generation of anti-DFS70
antibodies may reflect the physiological autoimmunity response to the hyperexpression
of LEDGF antigen by the cells exposed to damaging agents—as postulated by the theory
of immunological clearance described above [41,45]. These antibodies can also arise by
the idiotype-anti-idiotypic mechanism, in response to the generation of antibodies against
pathogenic factors that address the lens epithelial growth factor receptor [36,60].
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In a recent study from Italy, treatment of rheumatoid arthritis with a TNFα blocker was
associated with the increased expression of anti-DFS70 antibodies, which is an additional
argument in favor of their sanogenic rather than pathogenic role [200].

While, from the fundamental standpoint, these autoantibodies are one piece of the
evidence for the existence of physiological autoimmunity, but from a clinical point of
view they remain a mysterious tile in the ANA mosaic. Recently established antigen
knockout DFS70 HEp-2 cells for ANA testing will contribute to the development of the
approach to the differential diagnosis between physiologic and pathological autoimmunity.
It is also necessary to consider the epitope differences of the LEDGFp75 domains used in
immunoassay methods designed for the detection of these autoantibodies [58,187]. As for
the biological significance of anti-DFS-70 autoantibodies, we cannot determine this without
direct experimental study of their effect on living cells and laboratory animals.

5. Conclusions

To summarize, ANAs can be detected in healthy adults, adolescents, and children.
This should be interpreted considering concepts of physiological autoimmunity as well
as natural regulatory and functional autoantibodies. Most often in healthy individuals,
ANAs are found at low titers, which makes it important to revise the cutoff for ANA testing.
It is advisable to consider ANAs at titers 1/320 or greater as positive in the diagnostic
process. It is of great importance to take into account the HEp-2 IFA staining patterns,
especially the AC-2 pattern, in view of its role as an anti-marker of rheumatic pathology.

There are geo-epidemiological differences in ANA prevalence among healthy indi-
viduals. The reasons may be the genetic characteristics of the population, the level of
environmental pollution and degree of urbanization, natural and geographical factors,
the standards of living, and health care in particular areas; however, there is no complete
parallelism between the detection of ANAs in healthy people and the regional prevalence
of ADs.

In clinical practice, it is necessary to verify the cutoff for the ANA titer in each
particular country or region and rationally combine in practical algorithms both data
obtained by IFA and solid-phase assays. The first steps to suggest such an algorithm were
already performed recently [201–203]. Further development of international documents
and recommendations covering this area [204] is relevant. Such recommendations should
consider regional and age-related population studies and should also be based on modern
achievements in biomedical science and a paradigm shift in the question of the existence of
physiologic autoimmunity.
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Denis, G.; et al. Arthritis in primary Sjőgren’s syndrome: Characteristics, outcome and treatment from French multicenter
retrospective study. Autoimmun. Rev. 2019, 18, 9–14. [CrossRef] [PubMed]

11. Enocsson, H.; Sjöwall Ch Wirestam, L.; Dahle Ch Kastbom, A.; Rönnelid, J.; Wetterö, J.; Skogh, T. Four Anti-dsDNA Antibody
Assays in Relation to Systemic Lupus Erythematosus Disease Specificity and Activity. J. Rheumatol. 2015, 42, 817–825. [CrossRef]
[PubMed]

12. Infantino, M.; Pregnolato, F.; Bentow, C.; Mahler, M.; Benucci, M.; Li Gobbi, F.; Damiani, A.; Grossi, V.; Franceschini, F.;
Bodio, C.; et al. Only monospecific anti-DFS70 antibodies aid in the exclusion of antinuclear antibody associated rheumatic
diseases: An Italian experience. Clin. Chem. Lab. Med. 2019, 57, 1764–1769. [CrossRef]

13. Giacomelli, R.; Afeltra, A.; Alunno, A.; Bartoloni-Bocci, E.; Berardicurti, O.; Bombardieri, M.; Bortoluzzi, A.; Caporali, R.; Caso, F.;
Cervera, R.; et al. Guidelines for biomarkers in autoimmune rheumatic diseases-evidence based analysis. Autoimmun. Rev. 2019,
18, 93–106. [CrossRef]

14. D’Aoust, J.; Hudson, M.; Tatibouet, S.; Wick, J.; Mahler, M.; Baron, M.; Fritzler, M.; The Canadian Scleroderma Research
Group. Clinical and serologic correlates of anti-PM/Scl antibodies in systemic sclerosis: A multicenter study of 763 patients.
Arthritis Rheumatol. 2014, 66, 1608–1615. [CrossRef]

15. Sur, L.M.; Floca, E.; Sur, D.G.; Colceriu, M.C.; Samasca, G.; Sur, G. Antinuclear Antibodies: Marker of Diagnosis and Evolution in
Autoimmune Diseases. Lab. Med. 2018, 49, 62–73. [CrossRef] [PubMed]

16. Damoiseaux, J.; Andrade, L.E.C.; Carballo, O.G.; Conrad, K.; Francescantonio, P.L.C.; Fritzler, M.J.; De La Torre, I.G.; Herold, M.;
Klotz, W.; Cruvinel, W.D.M.; et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns: The International Consensus
on ANA patterns (ICAP) perspective. Ann. Rheum. Dis. 2019, 78, 879–889. [CrossRef]

17. Zaichik, A.S.; Poletaev, A.B.; Churilov, L.P. Self-recognition and interaction with self as a main form of adaptive immune system
activity. Vestn. St. Petersburg Univ. Med. 2013, 8, 6–27. Available online: https://elibrary.ru/download/elibrary_18943091_27775
552.pdf (accessed on 27 December 2020). (In Russian).

18. Schwartz, M.; Cohen, I.R. Autoimmunity can benefit self-maintenance. Immunol. Today 2000, 21, 65–68. [CrossRef]
19. Friou, G.J. Identification of the nuclear component of the interaction of lupus erythematosus globulin and nuclei. J. Immunol.

1958, 80, 476–481. [PubMed]
20. Marin, G.G.; Cardiel, M.H.; Cornejo, H.; Viveros, M.E. Prevalence of antinuclear antibodies in 3 groups of healthy individuals:

Blood donors, hospital personnel, and relatives of patients with autoimmune diseases. J. Clin. Rheumatol. 2009, 15, 325–329.
[CrossRef] [PubMed]

21. Satoh, M.; Chan, E.K.L.; Ho, L.A.; Rose, K.M.; Parks, C.h.G.; Cohn, R.D.; Jusko, T.A.; Walker, N.J.; Germolec, D.R.; Whitt, I.Z.; et al.
Prevalence and Sociodemographic Correlates of Antinuclear Antibodies in the United States. Arthritis Rheum. 2012, 64, 2319–2327.
[CrossRef] [PubMed]
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