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Abstract: We investigated the effect of two-year home-based exercise training program on oxidized
low-density lipoprotein LDL (ox-LDL) and high-density lipoprotein HDL (ox-HDL) lipids in
patients with coronary artery disease (CAD), both with and without type-2 diabetes (T2D). Analysis
of lipoprotein-oxidized lipids was based on the determination of baseline conjugated dienes in
lipoprotein lipids. In order to study the effect of an exercise load on ox-LDL and ox-HDL lipids
patients in both CAD and CAD + T2D intervention, groups were divided in three based on exercise
load (high, medium, and low). During the two-year home-based exercise training program, the study
showed that only higher training volume resulted in a decreased concentration of ox-LDL, while the
two groups with lower training volumes showed no change. This result indicates that the training
load needs to be sufficiently high in order to decrease the concentration of atherogenic ox-LDL lipids
in patients with CAD and CAD + T2D. Interestingly, the concentration of ox-HDL did not change
in any of the subgroups. This could indicate that the lipid peroxide-transporting capacity of HDL,
suggested by results from exercise training studies in healthy adults, may not function similarly in
CAD patients with or without T2D. Moreover, the lipid-lowering medication used may have had an
influence on these results.
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1. Introduction

Cardiovascular diseases (CVD) are a major global cause of premature death, chronic disability [1],
and ischaemic heart disease, including coronary artery disease (CAD), which is the leading cause of
death from CVD [2]. Major risk factors for cardiovascular diseases include hypertension, smoking,
diabetes, diet factors, being overweight, obesity, physical inactivity, and elevated levels of serum
total or LDL cholesterol, as well as low levels of HDL cholesterol [3–6]. Oxidized lipids in circulating
LDL are also shown to be strongly associated with coronary atherosclerosis, arterial dysfunctions,
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and mortality [7–10]. In addition, several studies have demonstrated the relationship between
oxidized LDL lipids (ox-LDL lipids) and CVD risk factors, such as hypertension [11], smoking [12],
and obesity [13]. However, only a few studies have investigated the role of oxidized HDL lipids
(ox-HDL lipids) in atherosclerosis and CVDs. One study observed that ox-HDL lipids are implicated
in the risk of atherosclerosis, although in an opposite manner to that of ox-LDL lipids [14].

Physical activity and exercise training are key elements in the management of CAD [15,16] and
type-2 diabetes (T2D) [17], while aerobic exercise has also shown to increase the likelihood of successful
body-weight maintenance [18–20]. Both poor cardiorespiratory and muscular fitness, and low levels
of leisure-time physical activity are also associated with higher concentrations of ox-LDL lipids [21].
However, both good cardiorespiratory fitness and muscular fitness seem to protect overweight subjects
from an atherogenic lipid profile, such as a high level of ox-LDL lipids [22]. Earlier studies have also
reported that acute exercise may induce an acute increase of ox-HDL lipids, suggesting that acute
aerobic exercise may enhance the lipid peroxide-transporting capacity of HDL [23].

Recently, we have found that the concentration of ox-HDL lipids increased during a six-month
aerobic exercise intervention, which suggests that aerobic exercise intervention may enhance the
lipid peroxide-transporting capacity of HDL [24]. In the present study, we investigated the effect of
a two-year home-based exercise training on ox-LDL and ox-HDL lipids in coronary artery disease
patients with and without type-2 diabetes.

2. Materials and Methods

2.1. Subjects and Study Protocol

The ARTEMIS (innovation to reduce cardiovascular complications of diabetes at the intersection)
study was initiated to assess the significance of autonomic, electrical, coronary angiographic,
and metabolic markers in predicting cardiovascular events among CAD patients with (CAD + T2D
patients) and without T2D (CAD patients) [25]. In addition to this, the study aimed to assess the
prognostic significance of these markers in predicting CV events among CAD patients with and without
T2D. CAD patients with and without T2D were recruited (1:1 matched in terms of age, sex, history
of recent (<3 months) myocardial infarction and type of coronary intervention after angiography)
from patients undergoing coronary angiography in the department of cardiology at Oulu University
Hospital. As a substudy, both patients with and without T2D were chosen to undergo a two-year
controlled exercise training trial with home monitoring to assess the effects of exercise training on
risk profiles. Between August 2007 and March 2011, there were approximately 539 CAD patients
with T2D and 507 CAD patients without T2D in the ARTEMIS database (Figure 1). Of those patients,
644 were deemed inappropriate to be included in the study due their failing to meet the selection
criteria, while 111 were not willing to participate in the study. That resulted in a total of 291 patients
who were eligible and willing to participate in the study. These 291 patients were divided into 2 groups
consisting of an exercise training group (n = 146) and a control group (n = 145). The patients in each
group were matched 1:1 in terms of gender and the presence of T2D. The 135 patients of the exercise
group who took part in follow-up measurements were included in the analyses of cardiovascular
risk factors according to the intention-to-treat principle. This study focused on levels of ox-LDL and
ox-HDL lipids at the main research design (intervention vs. control), and during further analysis
(results presented by exercise load and by waist circumference). The study was performed according
to the Declaration of Helsinki. The local committee of research ethics of the Northern Ostrobothnia
Hospital District approved the study protocol. All of the selected patients gave their written consent.



Antioxidants 2018, 7, 144 3 of 11Antioxidants 2018, 7, x FOR PEER REVIEW  3 of 11 

 

Figure 1. Patient selection protocol from the ARTEMIS database. Note: CAD, coronary artery 

disease; T2D, type-2 diabetes. 

2.2. Exercise Training Intervention  

Patients in the exercise training group were given a training program for the study, along with a 

diary to record their training data (training mode, duration, and mean heart rate (Polar F1; Polar 

Electro Oy, Kempele, Finland). During the first 3 months of the study, the training program 

consisted of a weekly level of three 30 min endurance-based sessions (at a 50–60% intensity level) 

and a 30 min strength-based session. For the final 6 months, the weekly program consisted of five 40 

min endurance-based sessions and one 30 min strength-based session. Of the five endurance-based 

sessions, 2 were at a 50–60% intensity level, 2 at a 60–70% intensity level, and 1 was interval training 

at a 70–80% intensity level. Patients in the control group did not receive any individually tailored 

exercise program. 

2.3. Measurement of Leisure-Time Physical Activity (LTPA) 

Patients were given a baseline health questionnaire about the frequency of their habitual LTPA. 

Based on this information, 4 physical activity groups were formed by modifying a scale originally 

developed by Saltin and Grimby [26]. 

(1) No LTPA (very little physical activity or light housework). 

Figure 1. Patient selection protocol from the ARTEMIS database. Note: CAD, coronary artery disease;
T2D, type-2 diabetes.

2.2. Exercise Training Intervention

Patients in the exercise training group were given a training program for the study, along with
a diary to record their training data (training mode, duration, and mean heart rate (Polar F1; Polar
Electro Oy, Kempele, Finland). During the first 3 months of the study, the training program consisted
of a weekly level of three 30 min endurance-based sessions (at a 50–60% intensity level) and a
30 min strength-based session. For the final 6 months, the weekly program consisted of five 40 min
endurance-based sessions and one 30 min strength-based session. Of the five endurance-based sessions,
2 were at a 50–60% intensity level, 2 at a 60–70% intensity level, and 1 was interval training at a 70–80%
intensity level. Patients in the control group did not receive any individually tailored exercise program.

2.3. Measurement of Leisure-Time Physical Activity (LTPA)

Patients were given a baseline health questionnaire about the frequency of their habitual LTPA.
Based on this information, 4 physical activity groups were formed by modifying a scale originally
developed by Saltin and Grimby [26].

(1) No LTPA (very little physical activity or light housework).
(2) Random LTPA (random light physical activity like walking or cycling).
(3) Moderate LTPA (Engages in physical activity at moderate level 2 to 3 times per week).
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(4) Moderate or high LTPA (Engages in physical activity at moderate or high level more than 3 times
per week).

The Saltin–Grimby Physical Activity-Level Scale has shown good validity [27] and has been shown to
be related to both CV risk factors [27,28] and CV outcomes [29].

2.4. Exercise-Capacity Measurement

To assess exercise capacity, the patients were all asked to perform an incremental symptom-limited
maximal exercise test on a bicycle ergometer (Monark Ergomedic 839 E; Monark Exercise AB, Vansbro,
Sweden). The test was performed with a starting work rate level of 30 W. After that, the level was
increased every 60 s by 15 W for male patients and 10 W for female patients. The test ended at
voluntary exhaustion or ST depression 0.2 mV in electrocardiogram (ECG) (CAM-14; GE Healthcare,
Freiburg, Germany). The maximal workload of the patients was calculated as the mean workload
during the last minute of the test. Based on this maximal workload, maximal exercise capacity was
then calculated.

2.5. Exercise Training Load

The weekly training load for the intervention group was calculated as the mean training impulse
(TRIMP) using the following formula: TRIMP = ABC, in which A is the exercise time in minutes, B is
the heart rate (proportioned to the heart rate reserve), and C is e1·92B for men and e1·67B for women [30].
TRIMP was used to divide the participants into 3 groups based on the exercise load (high, medium,
and low training load).

2.6. Measurements of CV Risk Factors

Weight, waist, and hip measurements were taken to assess body composition. After a 10 min
resting period, blood pressure was measured with the patients in a supine position. Blood samples
were obtained after a 12 h overnight fast for analysis of blood lipids using standardized methods.

2.7. Determination of Oxidized Lipoprotein Lipids

Examination of lipoprotein oxidized lipids was based on a determination of the baseline level of
conjugated dienes in the lipoprotein lipids and it has been reported earlier in detail [31]. Appearance
of conjugated dienes has traditionally been utilized as the index of oxidation in vitro and ex vivo
examinations of LDL oxidation. First, serum LDL is isolated by precipitation with buffered heparin [31].
Isolation of the HDL part from serum samples is done using phosphotungstic acid precipitation [32].
The isolation methodology is validated for this purpose and it does not influence the level of
oxidized lipids [31]. Lipids are removed from isolated lipoproteins by chloroform–methanol (2:1),
dried under nitrogen, and thereafter redissolved in cyclohexane. The amount of peroxidized lipids
in the lipoprotein lipids is evaluated by spectrophotometry as the amount of diene conjugation
(AT 234 nm). Studies investigating assay validation have eliminated interference by nonspecific
materials, and have demonstrated that diene conjugation is a measure of oxidative LDL modification
that is found in all LDL lipid classes. Along with the particular absorption spectra at 234 nm, the
existence of conjugated dienes has been confirmed by NMR studies [7]. The coefficient of variation
for within-examination accuracy for the assurance of oxidized lipoprotein lipids was 4.4%, and the
coefficient of variation for the between-examination accuracy was 4.5%.

2.8. Statistical Analysis

First, the effect of the 2-year home-based exercise training intervention on ox-LDL and ox-HDL
lipids was analyzed comparing intervention and control patients, both in coronary artery disease
patients with and without type-2 diabetes. In order to study the effect of exercise load on ox-LDL
and ox-HDL lipids, patients in both the CAD and CAD + T2D intervention groups were combined
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and the subjects were divided into 3 groups based on exercise load (high, medium, and low training
load). Further, both in the CAD and in the CAD + T2D group, we divided the intervention group
into 3 subgroups based on waist measurements. The men were divided into subgroups with waist
measurements of <94, 94–102, and >102 cm. The women were divided into subgroups with waist
measurements of <80, 80–88, and >88 cm. Descriptive group characteristics are shown as means with
standard deviation (SD) or number of units (N) with percentages. Analysis of covariance (Ancova)
adjusted for age, sex, and baseline value of outcome variable was used to estimate the effect of
intervention and exercise on change in lipids. A p-value lower than 0.05 was considered statistically
significant. All statistical analyses were conducted using IBM SPSS Statistics for Windows (Version
24.0: IBM Corp., Armonk, NY, USA).

3. Results

The baseline means of the plasma lipids between the CAD + T2D intervention and control group,
and between the CAD intervention and the control group, did not differ in any of the measures before
the study (Table 1), nor were there any changes during the intervention between the CAD + T2D
intervention and control group, and between the CAD intervention and the control group.

Table 1. Clinical characteristics of the participants.

Measures
CAD and CAD + T2D

Control Baseline
(n = 126–132)

CAD and CAD +
T2D Control 2 Years

(n = 128–132)

CAD and CAD + T2D
Exercise Intervention
Baseline (n = 84–93)

CAD and CAD + T2D
Exercise Intervention

2 Years (n = 85–93)

Age (years) 61.2 (6.1) 63.2 (6.1) 62.0 (5.2) 64.0 (5.2)
Gender, male (%) 98 (74%) 98 (74%) 72 (77%) 72 (77%)
Diabetics, n (%) 64 (50%) 64 (50%) 43 (46%) 43 (46%)
Smoking, n (%) 14 (10%) 18 (13%) 6 (7%) 8 (9%)

Height (cm) 172 (8) 172 (8) 171 (9) 171 (9)
Weight (kg) 83.6 (15.2) 84.0 (15.4) 82.1 (13.6) 81.4 (14.0)

BMI (kg/m2) 28.3 (3.9) 28.4 (4.1) 28.1 (3.7) 27.8 (3.7)
Waist (cm) 98.8 (12.9) 100.5 (13.6) 97.5 (11.2) 96.6 (11.1)

Systolic RR (mmHg) 145 (23) 145 (26) 145 (23) 144 (21)
Diastolic RR (mmHg) 82 (11) 80 (13) 83 (12) 80 (10)

HbA1c, % 6.5 (1.2) 6.2 (0.9) 6.2 (0.7) 6.0 (0.7)
Plasma glucose

(mmol/L) 6.5 (1.7) 6.5 (1.6) 6.0 (1.1) 6.2 (1.2)

Total cholesterol
(mmol/L) 4.0 (0.9) 4.0 (0.8) 4.0 (0.8) 4.1 (0.8)

Triglycerides
(mmol/L) 1.4 (0.9) 1.5 (0.8) 1.5 (0.8) 1.5 (0.7)

Ox-HDL (µmol/L) 29.9 (4.6) 32.3 (4.9) 30.2 (5.1) 32.9 (6.2)
HDL cholesterol

(mmol/L) 1.3 (0.3) 1.3 (0.3) 1.2 (0.3) 1.3 (0.3)

Ox-HDL/HDL-cholesterol 24.6 (6.5) 26.3 (7.1) 25.7 (7.3) 27.2 (8.9)
Ox-LDL (µmol/L) 41.8 (9.3) 41.2 (9.2) 43.1 (8.2) 42.1 (8.4)

LDL cholesterol
(mmol/L)) 2.3 (0.8) 2.3 (0.7) 2.3 (0.7) 2.4 (0.8)

Ox-LDL/LDL-cholesterol 19.9 (7.7) 19.9 (7.6) 20.0 (7.4) 19.4 (7.2)
Lipid-lowering

medication, n (%) 119 (90%) 118 (90%) 84 (90%) 86 (93%)

Abbreviations: CAD: coronary artery disease; T2D: type 2 diabetes; BMI: body mass index; HDL: high density
lipoprotein; LDL: low density lipoprotein; RR: blood pressure; HbA1c: glycated hemoglobin; Ox-HDL: oxidized
HDL lipids; Ox-LDL: oxidized LDL lipids. The values denote mean (standard deviation) or number (%). Numbers
of the participants differ somewhat between the measures.

3.1. Ox-LDL and Ox-HDL in Training Load Subgroups

In order to study the effect of training volume on ox-LDL and ox-HDL lipid changes, subjects in
the intervention group (CAD and CAD + T2D patients combined) were divided into three subgroups
based on the training load. The concentration of ox-LDL lipids in the subgroup with the high training
load (41.3 ± 8.6 µmol/L at baseline and 39.4 ± 7.4 µmol/L at 2 years) decreased compared to the
subgroup with a low training load (42.5 ± 9.3 µmol/L at baseline and 43.5 ± 10.4 µmol/L at 2 years)
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(the change, p = 0.016, Figure 2). No significant differences were seen between the medium training-load
(44.9 ± 7.1 µmol/L at baseline and 43.5 ± 7.6 µmol/L at 2 years) and the low training-load subgroups
in ox-LDL lipids (p = 0.093). In ox-HDL lipids, no significant differences were seen between the
high training-load (28.8 ± 5.2 µmol/L at baseline and 32.0 ± 5.6 µmol/L at 2 years) and the low
training-load subgroups (31.2 ± 5.9 µmol/L at baseline and 33.4 ± 7.3 µmol/L at 2 years) (p = 0.243)
or between the medium training-load (30.6 ± 4.4 µmol/L at baseline and 33.3 ± 6.2 µmol/L at 2 years)
and the low training-load subgroups (p = 0.473) (Figure 3).
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Figure 2. The change of oxidized LDL lipids in the intervention group (CAD and CAD + T2D) based
on the exercise training load of the subgroups. Mean and confidence intervals, CI.
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3.2. Ox-LDL and Ox-HDL Lipids in the Intervention Waist Circumference Subgroups

In CAD patients, the concentration of ox-LDL lipids decreased during intervention in the
subgroups with the widest baseline waist circumference (>102 men/88 women: 45.9 ± 10.4 µmol/L
at baseline and 43.1 ± 9.4 µmol/L at 2 years, n = 19) compared to the CAD control group
(40.4 ± 9.7 µmol/L at baseline and 40.2 ± 10.0 µmol/L at 2 years; n = 65) (p = 0.035), while no
significant changes were seen between other CAD waist-circumference subgroups (waist circumference
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94–102 men/80–88 women: 42.4 ± 7.5 µmol/L at baseline and 42.0 ± 8.6 µmol/L at 2 years, n = 30;
and waist circumference <94 men/<80 women: 40.9 ± 9.4 µmol/L at baseline and 41.5 ± 10.9 µmol/L
at 2 years, n = 19) and controls (Figure 4). No changes were observed in ox-HDL lipids between CAD
waist-circumference subgroups (waist circumference >102 men/88 women: 28.5 ± 4.8 µmol/L at
baseline and 32.2 ± 5.7 µmol/L at 2 years, n = 19; waist circumference 94–102 men/80–88 women:
32.3 ± 3.6 µmol/L at baseline and 34.9 ± 4.2 µmol/L at 2 years, n = 30; and waist circumference <94
men/<80 women: 33.1 ± 5.7 µmol/L at baseline and 35.6 ± 5.9 µmol/L at 2 years n = 19) and controls
(31.5 ± 4.1 µmol/L at baseline and 33.7 ± 4.5 µmol/L at 2 years; n = 65) (Figure 5), nor were there any
changes seen in ox-LDL or ox-HDL lipids between CAD + T2D waist-circumference subgroups.
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4. Discussion

The concentration of ox-LDL was decreased in the subgroup with the highest training load
during the two-year home-based exercise training in patients with CAD and CAD + T2D. The present
study showed that only the higher training volume resulted in a decreased concentration of ox-LDL,
while the two groups with lower training volumes did not result in decreased concentration of ox-LDL.
This result indicates that training load needs to be sufficiently demanding in order to decrease the
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concentration of atherogenic ox-LDL lipids patients with CAD and CAD + T2D. Our study is in
line with earlier studies, where exercise training intervention decreased concentration of ox-LDL in
subjects without CAD [33]. Interestingly, the concentration of ox-HDL was not changed even in the
subgroup that performed the greatest volume of exercise. Therefore, although a six-month aerobic
exercise intervention was shown to increase the concentration of ox-HDL lipids in healthy menopausal
women [24], this was not the case in patients with CAD and CAD + T2D patients during this two-year
home-based exercise training program. This could indicate that the lipid peroxide-transporting
capacity of HDL, suggested by results from an exercise training study in healthy adults, may not
similarly function in CAD patients with and without T2D. Moreover, the lipid-lowering medication
used may have had an influence on these results, since it has been presented that statins may decrease
the concentration of native LDL cholesterol, while it does not influence the concentration of oxidatively
modified LDL particles [34]. However, nearly all participants used statins because all of them had CAD.

In this two-year controlled exercise training, we investigated the effects of home-based exercise
training on oxidized LDL and HDL lipids in coronary artery disease patients with and without type-2
diabetes. When comparing the CAD and CAD + T2D intervention and control groups as a whole,
we found no significant changes in the concentration of ox-HDL lipids. However, earlier studies
have reported that a high volume of physical activity and exercise training are known to be valuable
nonpharmacological means of managing CAD and T2D [15–17]. The exercise training intervention
that resulted in a 19% increase in maximal oxygen uptake also decreased the concentration of ox-LDL
in healthy adults [33]. Similarly, good aerobic fitness is associated with a low concentration of ox-LDL
lipids [21]. However, this two-year home-based exercise training was not intensive enough to induce
changes in serum lipids [25], and ox-LDL and ox-HDL lipids.

The CAD patients with the highest waist circumference at baseline reported significant changes in
ox-LDL concentration. This finding is supported by an earlier study, where both good cardiorespiratory
fitness and muscular fitness seemed to protect overweight subjects from atherogenic lipid profile,
such as a high level of ox-LDL lipids [22]. Further, successful maintenance of weight loss has been
reported to be accompanied by reduced ox-LDL lipids in obese men, which could indicate a decreased
risk of atherosclerosis [13]. However, no statistically significant differences were seen between the
waist-circumference subgroups in CAD + T2D patients. This could mean that the altered glucose
metabolism in T2D patients might have influenced the ox-LDL lipid metabolism.

Earlier studies have reported that intense exercise, such as vigorous running, may induce an
acute increase of ox-HDL [23]. Several studies have also indicated that acute and prolonged physical
exercise decreases the concentration of ox-LDL lipids [33,35–37]. To our knowledge, no earlier studies
have been published where the effects of exercise training on oxidized HDL and LDL lipids have been
studied in CAD patients. Although the current study did not report significant changes in ox-HDL
and ox-LDL lipids in all patients in the intervention group, high-volume training was accompanied
with a decreased concentration of ox-LDL lipids. Therefore, physical activity and exercise training is
considered to prevent atherogenic changes in lipids and to be an effective nonpharmacological method
of preventing atherosclerosis.

5. Conclusions

This study shows that a two-year home-based exercise training program with a high volume is
accompanied by a decreased concentration of oxidized LDL lipids. The concentration of oxidized HDL
lipids did not change during intervention. Our results indicate that a high volume of physical activity
and exercise training may protect even CAD patients from both an atherogenic lipid profile and a high
level of oxidized LDL lipids; however, a lower volume of training may not have similar influence.
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