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Abstract: Ischemia/reperfusion (I/R) is one of the major causes of acute kidney injury (AKI) and
associated with increased mortality and progression to chronic kidney injury (CKI). Molecular
mechanisms underlying I/R injury involve the production and excessive accumulation of reactive
oxygen species (ROS). Peroxiredoxin (Prx) V, a cysteine-dependent peroxidase, is located in the cytosol,
mitochondria, and peroxisome and has an intensive ROS scavenging activity. Therefore, we focused
on the role of Prx V during I/R-induced AKI using Prx V knockout (KO) mice. Ablation of
Prx V augmented tubular damage, apoptosis, and declined renal function. Prx V deletion also
showed higher susceptibility to I/R injury with increased markers for oxidative stress, ER stress,
and inflammation in the kidney. Overall, these results demonstrate that Prx V protects the kidneys
against I/R-induced injury.
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1. Introduction

The kidneys are important organs of excretory systems, and these bean-shaped organs are about
the size of one’s fist. Despite its small size, the kidney is highly vascularized, so the kidney receives
high renal blood flow (RBF), about 20–25% of the cardiac output, 1000–1200 mL/min [1]. The waste
products in the blood are filtered out into urine by glomerulus in which nephrons, the structural and
functionally basic unit of the kidney, are located. The filtration function of the kidney is important for
maintaining homeostasis. While, the prevalence of kidney disease has been increasing, but treatment
of kidney failure is only limited to dialysis or transplant [2,3].

The kidney is highly sensitive to reactive oxygen species (ROS) [4–6]. The abnormal RBF induces
oxidative stress through the generation of ROS. I/R is well recognized to cause RBF declines and
stimulate ROS generation [7]. Along with chemotherapy-induced nephrotoxicity, ischemia/reperfusion
(I/R) is one of the most causes of oxidative stress and is commonly used as an AKI. Ischemia initiates
restriction of blood flow to the kidney which leads to hypoxia and expression of transcriptional genes
such as hypoxia-inducible factor 1 (HIF1) and nuclear factor-kB (NF-kB). Subsequent reperfusion
causes ROS generation through reoxygenation. This further induces inflammatory responses, such as
cytokine (Interleukin-1β; IL-1β, Interleukin-6; IL-6, Interleukin-8; IL-8, tumor necrosis factor-α; TNF-α)
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and adhesion molecule adhering leukocyte (intercellular adhesion molecule; ICAM, vascular cell
adhesion molecule; VCAM), infiltration of leukocyte, coagulation, and ROS generation. The generated
ROS causes oxidative damage of lipid membrane, protein, DNA; cell death such as apoptosis,
necrosis; microvascular dysfunction; and eventually kidney failure [8–10]. ROS includes superoxide,
hydrogen peroxide, highly reactive hydroxyl radical, and is produced by UV light, ionizing radiation,
an anti-cancer drug such as cisplatin, and renal vascular disease. The superoxide is reduced by
superoxide dismutase (SOD). Hydrogen-peroxide-eliminating enzyme includes catalase, glutathione
peroxidases (Gpxs), and Prxs in the enzymatic antioxidant system. Renal oxidative stress is developed
from an imbalance between ROS production and antioxidant defense systems. Many antioxidant
enzymes including Prxs maintain an appropriate level of ROS and prevent oxidative damages.

Prxs are a family of peroxidases that reduce peroxides and expressed in six forms in mammals
(Prx I–VI) [11–13]. Prxs prevent oxidative damage in various tissue [14,15]. Among Prxs, Prx V
eliminates not only peroxides but also peroxynitrites [16]. Recently, it was reported that Prx V
inhibits adipogenesis by modulating ROS generation and adipogenic gene expression in vivo [17].
Prx V deletion in mice increased the susceptibility to high-fat diet-induced obesity and several of
its associated metabolic disorders. Prx V contains two cysteine residues and thiol of the cysteine is
oxidized to disulfenic acid and disulfide bond for peroxides reduction. Prx V gene of humans is
located on chromosome 11q13 [18]. This gene contains two start codons; it is expressed as long-form
Prx V (L-Prx V) containing mitochondria targeting sequence (MTS) and short-form Prx V (S-Prx V).
MTS contains positively charged amino acids, so that L-Prx V is imported into inner mitochondria,
which is negatively charged by pumping out of hydrogen ion through an electron transport system (ETS).
S-Prx V contains a weak peroxisomal targeting sequence (PTS) at C-terminus and distributed in cytosol
and peroxisome [19–21].

Prx V has been recently reported to prevent TGF-β-induced kidney injury through inhibition of
signal transducer and activator of transcription 3 (STAT3) activation [22]. However, the role of Prx V in
mediating the pathogenesis of AKI remains unclear. Thus, we hypothesize that Prx V is protective
against I/R-induced kidney injury, which simulates oxidative stress.

2. Materials and Methods

2.1. Animals

Prx V WT and KO mice were generated by breeding of Prx V heterozygous mice [17]. Prx V WT
and KO mice were identify by genotyping using polymerase chain reaction (PCR). Prx V mice were
maintained on a 12/12 h (light/dark) cycle at 23 ◦C and supplied normal chow (LabDieat St. Louis, MO,
USA) and water. All animal experiments were permitted by Ewha Womans University’s Institutional
Animal Care and Use Committee (IACUC 17-059).

2.2. I/R Model

The mice were anesthetized with avertin (250 mg/kg, Sigma-Aldrich, St. Louis, MO, USA).
Anesthetized mice were placed on a heating pad set at 37 ◦C, then shaved, perform a surgical site
preparation of the incision site. Applying a 7.5% povidone solution with clean gauze in a circular
fashion starting at the surgical incision site and rotating outward, then wiped with 70% ethanol.
The renal pedicles were prepared by bilateral dorsal flank incision (1–1.5 cm) of the skin and muscle.
Exposed two renal veins and arteries were tied using 3.0 non-absorbable suture (Ailee Co., Busan,
Korea) at once to block blood flow to induce ischemia for 30 min. The color of the kidney was
changed from red to purple. After color change, opened muscle and skin are sutured using a 3.0
non-absorbable suture. After 30 min, the suture that blocked the kidney’s vein and artery was removed
to induce reperfusion [23]. Sham-operated mice underwent the same surgical procedure, except for
the block blood flow to induce ischemia.
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2.3. Subcellular Fractionation

After perfusion through the heart by phosphate-buffered saline (PBS, pH 7.4), kidneys were rinsed
away any remaining blood and then collected kidneys were chopped and homogenized using a 7 mL
Dounce homogenizer (Wheaton, NJ, USA) in 3 mL isolation buffer (10 mM Tris-HCl pH 7.4, 230 mM
mannitol, 70 mM sucrose, 1 mM EDTA, 1 mM EGTA, 0.1% BSA) per a kidney on ice in order to break
the cell membrane. The kidney homogenate was centrifuged at 1000× g, 4 ◦C for 10 min. The pellet
which contained nuclei and the unbroken cell was removed. The supernatant was centrifuged at
12,000× g, 4 ◦C for 10 min. The resulting pellet contained mitochondria and peroxisomes and the
supernatant contained cytosolic proteins. The resulting pellet was resuspended gently with 2 mL cold
wash buffer (10 mM Tris-HCl pH 7.4, 230 mM mannitol, 70 mM sucrose) and centrifuged at 12,000× g,
4 ◦C for 10 min and repeated twice to wash [24,25].

2.4. Western Blotting

Kidneys were lysed with cold lysis buffer (20 mM HEPES pH 7.0, 0.15 M NaCl, 10% glycerol, 1%
triton X-100, 1 mM EDTA, 1 mM EGTA, 10 mM β-phosphoglycerate, 1 mM NaVO4, 5 mM NaF, 1 µg/mL
aprotinin, 1 µg/mL leupeptin, 100 µM PMSF) using homogenizer (Polytron, Brinkmann, Germany).
The homogenates were centrifuged at 20,000× g, 4 ◦C for 15 min. After protein concentration of the
lysates was quantified using Bradford assay (Bio-Rad, CA, USA), lysates were mixed with sample buffer
(62.5 mM Tris-HCl pH 6.8, 10% glycerol, 2% sodium dodecyl sulfate (SDS), 0.0125% bromophenol blue,
2.5%β-mercaptoethanol) and boiled at 95 ◦C for 3 min. Samples were loaded onto a SDS-polyacrylamide
gel electrophoresis gel and electrophoresed with SDS buffer (3 g/L Tris, 14.35 g/L glycine, 1 g/L SDS)
to separate the proteins by size in the sample. The proteins were transferred onto the activated
polyvinylidene difluoride (PVDF) membrane (Millipore, Darmstadt, Germany) with transfer buffer
(3.03 g/L Tris, 14.17 g/L glycine, 20% methanol). The membrane was incubated with 5% skim
milk in tris buffered saline with Tween-20 (TBST) at room temperature for 20 min using rocker to
block nonspecific attachment of antibody on empty membrane between protein bands, followed
by incubation at 4 ◦C for overnight using rocker with antibodies (1:2000 dilution). Anti-Prx I to
VI [26,27], anti-GAPDH, anti-thioredoxin reductase (TR) [28], anti-thioredoxin (Trx) (Young In Frontier,
Seoul, Korea), anti-sulfiredoxin (Srx) [26,27], anti-VDAC (Santa Cruz, CA, USA), anti-GPx I, anti-SOD
(AbFrontier, Seoul, Korea) antibodies were used. The membrane was washed with TBST for 10 min each,
in the high-speed rocker (FINEPCR, Gunpo, Korea). The membrane was incubated with horseradish
peroxidase (HRP) conjugated-secondary antibodies (Bio-Rad, CA, USA) diluted 1:5000 and washed
with TBST for 10 min each, in the high-speed rocker. Positive immunoreactive bands were detected
with enhanced chemiluminescence (ECL) reagent (AbFrontier, Seoul, Korea) using the LAS-3000
(Fujifilm, Tokyo, Japan). The bands were quantified using the Multi Gauge 3.0 program (Fujifilm,
Tokyo, Japan).

2.5. Histology

The isolated perfused kidney was fixed with 4% formaldehyde w/v at 4 ◦C for overnight,
dehydrated, embedded in paraffin, cut into thickness of 4 µm using a microtome, and placed on a
slide glass. The slide was incubated at 60 ◦C for 30 min, then deparaffinized with xylene, then hydrated
with ethanol and distilled water [14,29].

Hematoxylin and eosin staining (H&E staining): The hydrated section on slide was immersed
in mayer’s hematoxylin (Thermo Scientific, MA, USA) for 10 min and dipped twice in eosin Y
(BBC Biochemical, VA, USA), then dehydrated with ethanol and xylene. Toluene was used for mounting.

Immunohistochemistry staining (IHC staining): A circular dam around the sections was made
using a Dako-pen (Dako, Glostrup, Denmark), which is a hydrophobic pen. The slide was quenched
endogenous peroxidase with blocking reagent (3% hydrogen peroxide, 97% methanol) for 15 min,
then washed with PBS, then incubated with the blocking solution of the Impress Reagent Kit (Vector,
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CA, USA) at room temperature for 60 min, then incubated with 1:500 diluted anti-3-nitrotyrosine (3-NT)
(Millipore, Darmstadt, Germany), anti-4-hydroxynonenal (4-HNE) (JalCA, Tokyo, Japan), anti-F4/80
(Abcam, Bristol, UK) antibodies at 4 ◦C for overnight. After washing with PBS, the slide was incubated
with HRP-conjugated secondary antibodies at 4 ◦C for 150 min, then washed with PBS, then stained
with 3,3′-diaminobenzidine (DAB, Vector, CA, USA) which was substrate of HRP and oxidized to
brown color.

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed
on the paraffin sections with an in situ cell death detection kit (Sigma-Aldrich, St. Louis, MO, USA),
according to the manufacturer’s instructions. They were examined with a confocal microscope (Nikon
A1R, Tokyo, Japan). Images were processed using NIS-Elements software. Instruments (Nikon A1R)
was supported by the Fluorescence Core Imaging Center on Ewha Womans University.

2.6. Measurements of Blood Parameters

Before sacrifice, blood samples were collected. The blood was collected from the inferior vena
cava and the plasma was separated via centrifugation at 800× g for 15 min at 4 ◦C. Serum creatinine
concentration (Scr) was measured with Creatinine Assay Kit (Bioassay System, CA, USA). Blood urea
nitrogen (BUN) concentration was measured with an urea assay kit (Bioassay System, CA, USA).

2.7. RNA Isolation

The kidney was lysed with 1 mL TRIzol (Invitrogen, CA, USA) using an homogenizer on ice,
then added 200 µL chloroform and vigorously vortexed for 15 sec and rested for 3 min in order
to separate the phenol from lysate, then centrifuged at 12,000× g, 4 ◦C for 15 min. The lysate was
separated into three layers. The aqueous-top layer contained RNA and was transferred to another tube.
The tube was added 500 µL isopropanol and inverted gently four times and kept at −80 ◦C for 16 h
for precipitation. Frozen mixture in the tube was melted on ice, then centrifuged at 12,000× g, 4 ◦C
for 10 min. The pellet was washed twice with 70% ethanol in RNase free water and centrifuged at
12,000× g, 4 ◦C for 10 min, then dried. RNA pellet was resuspended with RNase free water. RNA purity
and concentration were determined using Nano Drop ND-1000 spectrophotometer (Daemyung,
Seoul, Korea).

2.8. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Quantitative Real-Time PCR (qPCR)

The isolated RNA was subjected to RT-PCR in order to convert single-stranded RNA into stable
double-stranded complementary DNA (cDNA). Two µg of RNA diluted with diethyl pyrocarbonate
(DEPC) water (final volume 20 µL), then added to cDNA premix (EcoDry, CA, USA) which contained
reverse transcriptase, deoxy-nucleotide (dNTP), random hexamer primers, and buffer. The tube
was incubated at 42 ◦C for 60 min (reverse transcription) and then at 70 ◦C for 10 min (reverse
transcriptase inactivation). The resulting cDNA was subjected to qPCR using ABI 7300 real time PCR
system (Applied Biosystems, CA, USA). The reaction had 20 µL of a total volume, including 2 µL
(40 ng) of cDNA, 10 µL of SYBR Green premix (Bioline, Bristol, UK), 0.25 pM of each forward and
reverse primers, autoclaved DW. The primer sequences were listed in Table 1.

Table 1. Sequence of quantitative real-time polymerase chain reaction (qPCR) primers.

Target Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) Size

GADPH AGAACATCATCCCTGCATCC GGTCCTCAGTGTAGCCCAAG 228

LPrx V AGAAGCAGGTTGGGAGTGTG CTTTCTTGCCCTTGAACAGC 158

SPrx V GGCATTTACACCTGGCTGTT CGACGATTCCCAAAGAGAGA 242

Nrf-2 CTCTCTGAACTCCTGGACGG GGGTCTCCGTAAATGGAAG 182

Srx GGAAGGAAGAAAGGAGATGG AGAGTTCAGGCTATGGGGAT 155

ATF4 ATGGCCGGCTATGGATGAT CGAAGTCAAACTCTTTCAGATCCATT 113
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Table 1. Cont.

Target Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) Size

TRB3 CTCTGAGGCTCCAGGACAAG GGCTCAGGCTCATCTCTCAC 142

XBP1s GAGTCCGCAGCAGGTG GTGTCAGAGTCCATGGGA 149

Edem 1 GCAATGAAGGAGAAGGAGACCC TAGAAGGCGTGTAGGCAGATGG 157

IL-1β TCGTGCTGTCGGACCCATAT GTCGTTGCTTGGTTCTCCTTGT 110

TNF-α GCCACCACGCTCTTCTG GGTGTGGGTGAGGAGCA 294

2.9. Statistical Analysis

The western blot protein bands were quantified via densitometry using ImageJ software
(ImageJ 1.50I, Bethesda, MD, USA). All values were expressed as means ± standard error (SE).
Statistical significance was analyzed via 2-factor ANOVA for multiple comparisons using the Graph
Pad Prism software, version 6 (GraphPad, Bethesda, MD, USA). A p-value of <0.05 was considered
statistically significant.

3. Results

3.1. IR-Induced AKI is Exacerbated by Ablation of Prx V

We first examined how Prx V protein changes during renal I/R. I/R was initiated by clipping the
renal blood vessels for 30 min followed by release. Thereafter, the kidney damage was examined
at 72 h after ischemia, which is the acute kidney injury stage. Prx V is remarkably widespread
among subcellular compartments compared to other Prxs. To confirm this, mitochondrial and cytosolic
fractionated from kidney cells and then were subjected to immunoblot analysis. There was no significant
difference between whole and cytosolic Prx V level, and mitochondrial Prx V was significantly reduced
in I/R injured mice (Figure 1A). The mRNA levels of mitochondrial Prx V (L-Prx V) and total Prx V
were not changed (Figure 1B).
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Figure 1. Prx V expression in mice during renal I/R. (A) Protein expression of Prx V was analyzed
by immunoblotting. Kidneys were subjected to subcellular fractionation. W: whole lysates, C:
cytosol fraction, M: mitochondrial fraction. (B) Prx V protein level of (A) was quantified by Multi
Gauge V3.0 software (Fujifilm, Tokyo, Japan) and normalized to GAPDH as control of cytosolic protein
or VDAC as control of mitochondrial protein. (C) The mRNA expression level of mitochondrial Prx V
(L-Prx V) and total Prx V in I/R induced kidney. Data are shown as means ± SE. n = 4–6/group * p < 0.05
vs. sham, not significant; n.s.

Next, we investigated the kidney function of Prx V WT and KO mice, to confirm the effects of
Prx V on I/R injury. The kidneys were subjected to H&E staining to observe the structural change of
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the kidney. As a result, loss of brush border on the proximal tubule and formation of the cast in the
tubule was more severe in Prx V KO mice than Prx V WT (Figure 2A). The cast leads to stenosis and
dilation in the tubule, and renal dysfunction. We also evaluated ischemic bodyweight. As represented
in Figure 2B, the ischemic bodyweight of Prx V KO was more decreased compared to Prx V WT after
I/R induced acute injury. BUN and Scr that are the byproducts of metabolism of protein and muscle
in the body and filtered out from the kidney are used to evaluate the kidney function. In particular,
creatinine is filtered but not reabsorbed as regards the index of glomerular filtration. The serum level
of BUN and Scr indicated AKI was significantly enhanced in Prx V KO mice compared with Prx V WT
mice (Figure 2C). Ischemic damage markers showed no significant difference between Prx V WT and
KO sham-operated mice. Prx I and II are also well recognized ROS scavenger in vivo [14,30], so we
tried I/R injury to Prx I or II KO mice to confirm their effects. To assess whether Prx I or II KO mice
exhibit the kinetics of renal function decline, BUN and Scr were measured. There was no difference in
renal function decline between WT and KO mice (Figure 2D,E).
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Figure 2. Effect of Prx V ablation on renal structure and function during renal I/R. Prx V WT and KO
male mice were subjected to renal ischemia for 30 min followed by up to three days of reperfusion or
sham surgery. (A) The kidney sections were subjected to H&E staining. Original magnification, 400×.
Quantification of the swelling area of the renal tubular cells. NIS-Elements AR 3.1 software was
used to quantify. (B) Changes of body weight were measured before sacrificed. (C) BUN and Scr
concentrations were measured from serum of the mice. Prx I (D) or II (E) WT or KO mice were subjected
to renal ischemia for 30 min followed by up to 3 days of reperfusion or sham surgery. BUN and Scr
concentrations were measured from serum of the mice. Data are shown as means ± SE. n = 5–6/group,
** p < 0.01 vs. WT, + p < 0.05 vs. sham, ++ p < 0.01 vs. sham, not significant; n.s.

In order to confirm the change of antioxidant proteins during I/R, the kidneys lysates were
subjected to immunoblot analysis. The levels of antioxidant proteins Prxs, Gpx I, TR, SOD, and Trx
appeared to be not significantly different between the sham-operated and I/R group both in Prx V WT
and KO mice (Figure 3A). Immunoblots confirmed that Srx was increased in kidneys from the I/R
group (Figure 3A). Srx that is an oxidative stress induced-protein as the target gene of Nrf2 [31,32] was
increased during I/R injury. Prx V KO mice have significantly increased Srx induction compared to Prx
V WT during I/R (Figure 3A,B).
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Figure 3. Effect of Prx V ablation on antioxidant proteins during renal I/R. (A) The expression of
antioxidant proteins was analyzed by immunoblotting. (B) Srx protein level in (A) was quantified by
Multi Gauge V3.0 software and normalized to GAPDH. Data are shown as means ± SE. n = 4–6/group *
p < 0.05 vs. sham, ** p < 0.01 vs. sham, ++ p < 0.01 vs. sham.

From these results, we could hypothesize that Prx V is an important antioxidant enzyme for
kidney injury.

3.2. Ablation of Prx V Induces More Inflammatory Responses by Renal I/R Injury

Excessive inflammation is commonly found in AKI [33,34]. To confirm whether there is any
difference in the infiltration of immune cells, we stained the sections for macrophages (F4/80).
The macrophage infiltration was increased in I/R induced kidney and was highly enhanced in KO mice
compared with Prx V WT (Figure 4A). The mRNA levels of pro-inflammatory mediators, i.e., TNF-α
and IL-1β were highly elevated in Prx V KO mice compared to Prx V WT mice during I/R (Figure 4B).
Altogether, the inflammatory response due to in I/R injury was exaggerated in Prx V KO mice.
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Figure 4. Effect of Prx V ablation on macrophage infiltration and oxidative stress-related mRNA
levels during renal I/R. (A) The kidney sections were subjected to IHC with antibodies to F4/80 as
macrophage marker. NIS-Elements AR 3.1 software was used to quantify. Graph is relative macrophage
(F4/80) infiltration area fold change. Original magnification, 400× (B) The mRNA expression level
of oxidative stress, ER stress and apoptosis-related genes in the mice kidney. Data are shown as
means ± SE. n = 5–6 * p < 0.05 vs. WT, ** p < 0.01 vs. WT, + p < 0.05 vs. sham, ++ p < 0.01 vs. sham.
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3.3. Ablation of Prx V Induces Highly Enhanced Oxidative Stress, ER Stress, and Apoptosis by Renal I/R Injury

Ischemia induced-hypoxia leads to Nrf2 expression and Srx expression as downstream of Nrf2.
mRNA level of Nrf2 and Srx in the kidney of Prx V KO was increased compared to that in the
kidney of Prx V WT during I/R (Figure 4B). Oxidative stress in sham and I/R-indueced kidneys
was assessed by staining for 3-NT, a marker of peroxynitrite formation, and 4-HNE, a marker
of lipid peroxidation. Immunohistochemical analyses presented that the expression of 4-HNE
and 3-NT adducts in the centrilobular areas of the kidneys were increased by I/R induced injury
and were increased further by I/R induced in Prx V KO mice (Figure 5A,B). Oxidative stress was
exaggerated in I/R-induced Prx V KO mice presented by an increased IHC-stained kidney section.
Oxidative stress in AKI induces ER stress and apoptosis [35,36]. Furthermore, mRNA abundance
of the ER stress markers, i.e., ER degradation-enhancing a-mannosidase-like protein 1 (Edem),
Tribbles homolog 3 (TRB 3), x box-binding protein 1 (XBP1s), and AMP-dependent transcription
factor (ATF 4) were significantly elevated in I/R induced mice, ER stress was enhanced by ablation
of Prx V (Figure 4B). Quantification of TUNEL-positive cells, representing internucleosomal DNA
fragmentation, showed more TUNEL-positive cells in Prx V KO than Prx V WT mice (Figure 5C).
These results suggest that Prx V serves to protect acute kidney injury from apoptosis caused by I/R.
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Original magnification, 400×. Data are shown as means ± SE. n = 5–6, ** p < 0.01 vs. WT, + p < 0.05
vs. sham, ++ p < 0.01 vs. sham.
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4. Discussion

There is accumulating evidence that suggests that an important consequence of I/R injury at least
partly contributes to the high morbidity and mortality rates of patients with AKI [37]. A number
of conditions, including kidney transplantation, induce renal I/R injury; this causes problems for
many recipients of kidneys and may therefore negatively impact postoperative consequences [38].
Oxidative stress, induced by the pathological overproduction of ROS and reactive nitrogen species,
plays a substantial role in the development of renal I/R injury [39]. Ischemia leads to hypoxia by
restriction of blood flow supply, lack of oxygen causes change of aerobic metabolism to anaerobic
metabolism for cell survival, but subsequently reperfusion leads to ROS generation by rapid restoration
of blood. The outburst of highly electrophilic ROS in the reperfusion process perturbs the balance
of renal redox state, which directly causes renal tubular cell damage functionally and structurally by
extensive membrane lipid peroxidation, DNA breakdown, and protein inactivation [40]. Furthermore,
the excessive ROS attacks the cells, leads to immune responses, cell apoptosis. Many antioxidant
enzymes including Prxs maintain an appropriate level of ROS and prevent oxidative damage. Prx V
is ubiquitously expressed in many subcellular compartments [41–43] considered as a cytoprotective
antioxidant without being inactivated by hyperoxidation [16,44,45]. Prx V has an intensive ROS
scavenging activity and has a unique activity for peroxides and peroxynitrites [16].

To demonstrate the role of Prx V in I/R-indueced AKI in vivo, we employed a KO mouse. This I/R
model explained the protective effect of Prx V in correlation to ROS and AKI. In the present study,
mitochondrial Prx V (L-Prx V) decreased in protein level without accompanied by changes in mRNA
level in response to I/R operation (Figure 1). Prx V KO kidneys showed excessive body weight
loss and decline in renal function during I/R when compared to the I/R-Prx V WT mice (Figure 2).
These phenotypic changes support that Prx V mediates AKI. Srx protein as an oxidative stress marker
was more increased in I/R-Prx V KO mice (Figure 3). Immunohistochemical analyses presented that
the expression of 4-HNE and 3-NT adducts were increased further by I/R induced in Prx V KO mice
(Figure 5). These results indicated that ablation of Prx V exacerbated oxidative stress. Prx V deletion
also aggravated I/R injury, supported by increased markers of inflammation, ER stress, and apoptosis
in mouse kidney (Figures 4 and 5).

5. Conclusions

Our results indicate that Prx V plays a protective role in I/R induced-kidney injury and that it
could be a potential therapeutic target for AKI or chronic kidney disease.
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Abbreviations

AKI acute kidney injury
ATF 4 AMP-dependent transcription factor
BUN Blood urea nitrogen
Edem ER degradation-enhancing a-mannosidase-like protein 1
Gpx glutathione peroxidase
I/R Ischemia/reperfusion
KO knockout
L-Prx V long form Prx V
MTS mitochondrial targeting sequence
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NF-kB nuclear factor-kB
Prxs peroxiredoxins
ROS Reactive oxygen species
Scr Serum creatinine
S-Prx V short form Prx V
Srx Sulfiredoxin
SOD superoxide dismutase
Trx thioredixin
TR thioredoxin reductase
TRB 3 Tribbles homolog 3
WT wild type
XBP1s x box binding protein 1
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