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Abstract: Reactive oxygen species (ROS) overproduction and ROS-signaling pathways activation
attack the eyes. We evaluated the oxidative stress (OS) and the effects of a daily, core nutritional
supplement regimen containing antioxidants and omega 3 fatty acids (A/ω3) in type 2 diabetics
(T2DM). A case-control study was carried out in 480 participants [287 T2DM patients with (+)/without
(−) diabetic retinopathy (DR) and 193 healthy controls (CG)], randomly assigned to a daily
pill of A/ω3. Periodic evaluation through 38 months allowed to outline patient characteristics,
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DR features, and classic/OS blood parameters. Statistics were performed by the SPSS 24.0 program.
Diabetics displayed significantly higher circulating pro-oxidants (p = 0.001) and lower antioxidants
(p = 0.0001) than the controls. Significantly higher plasma malondialdehyde/thiobarbituric acid
reactive substances (MDA/TBARS; p = 0.006) and lower plasma total antioxidant capacity (TAC;
p = 0.042) and vitamin C (0.020) was found in T2DM + DR versus T2DM-DR. The differential
expression profile of solute carrier family 23 member 2 (SLC23A2) gene was seen in diabetics versus
the CG (p = 0.001), and in T2DM + DR versus T2DM − DR (p < 0.05). The A/ω3 regime significantly
reduced the pro-oxidants (p < 0.05) and augmented the antioxidants (p < 0.05). This follow-up study
supports that a regular A/ω3 supplementation reduces the oxidative load and may serve as a dietary
prophylaxis/adjunctive intervention for patients at risk of diabetic blindness.

Keywords: type 2 diabetes mellitus; retinopathy; oxidative stress; antioxidants; omega-3 fatty acids;
candidate biomarkers; prevention of blindness

1. Introduction

Diabetes mellitus (DM) is a multifactorial-polygenic disease characterized by chronic
hyperglycemia and altered metabolism of carbohydrates, lipids, and proteins. There are two major
clinical forms: Insulin-dependent DM (type 1: T1DM) and non-insulin-dependent DM (type 2: T2DM),
being the latter the most common presentation, accounting for 90% of all diabetics [1]. DM displays
alarming growth rates worldwide, being a serious health concern with an estimated number of affected
people of 600 million by the year 2030 [2,3].

Microvascular changes are clinically manifested during the natural course of DM.
Population studies reported that 20% of diabetics had retinopathy (DR) at the time of diagnosis [4].
The main pathogenic mechanisms in the diabetic retina include the activation of oxidative stress (OS),
advanced glycation end-product generation, inflammation, activation of protein kinase C, polyol,
and hexosamine pathways, etc. [5]. In addition, a series of endogenous/exogenous risk factors have
been pointed as contributing highly to the DR initiation and progression [6].

The incomplete reduction of molecular oxygen (O2) leads to the formation of reactive oxygen
species (ROS) with unpaired electrons in its outermost orbital, making these molecules extremely
unstable and reactive. The generation of superoxide anion (O2

−) and hydrogen peroxide (H2O2)
is prone to start the free radical chain reaction due to hydroxyl radical formation (OH−), by the
Fenton and Haber Weiss chemical reactions [7,8]. Furthermore, nitric oxide (NO) is a non-reactive
free radical implicated in a variety of biological functions, such as vasodilation, immune response,
neurotransmission, and apoptosis [9,10].

It is well known that redox status influences the regulation of intracellular signaling with enormous
repercussions in health and disease [11]. In this context, epidemiologic and experimental studies
demonstrated that DR is noticeably related to OS [5,12–15].

The concern of nutritional supplements in ocular health and disease has been largely
addressed [16,17]. Nutritional control has been proposed as a potential intervention for slowing
DR initiation/progression, but studies on dietary assessments in diabetics showed contradictory
results [18–23]. Moreover, nutraceuticals cannot replace eating adequate amounts of a high variety of
foods, but more than half of Americans and many Europeans take at least one dietary supplement on a
regular basis [16,17]. These may be especially beneficial to individuals with poor nutrition caused by a
variety of processes, including DM. International science-based regulatory considerations in nutrition
and nutraceutical supplements are needed to update its recommendations for the ophthalmological
population [18–23]. Antioxidant (A) vitamins (vit) are essential for a wide variety of biological functions.
Among them, the reduced form of ascorbic acid (AscH2; L-ascorbic acid; vit C), a hydrophilic vitamin,
enzymatic cofactor, and ROS scavenger, is involved in the protection against a variety of disorders.
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Abnormal dietary intake and/or plasma levels of vit C (deficiency defined as a concentration equal of
less than 35 µmol/L) have been associated to a higher risk of getting sick, including the development of
xerosis and other ophthalmic pathologies [24]. In this concern, vit C absorption and distribution to
tissues and organs is achieved by active transport across the cell membranes. Two specific protein
transporters encoded by the sodium-dependent vit C transporter genes, SLC23A1 and SLC23A2 [25],
are involved in this fact. The latter is responsible for the regulation of the intracellular levels of vit C to
protect cells from OS, as well as to promote the type I collagen maturation. In fact, genetic variations in
the SLC23A2 gene expression modify the vit C availability [24,25].

Given that early diagnosis can delay or prevent DR-related blindness, there is considerable interest
in exploring the role of its molecular diagnostics [17,18]. Up to today, studies on DR biomarkers have
dealt with pathogenic processes and risk factors involved in DR development/progression [2,3,5,26,27].
The need for more accurate diagnostics that allow advance ophthalmologic and vision care is currently
providing a critical window of opportunity for diabetics. The present study deals with improving
knowledge about the classical and new potential diagnostic/prognostic candidate biomarkers to
verify/validate them by using various endpoints like ophthalmic indicators, classical blood biochemistry,
oxidative and antioxidant parameters, as well as the SLC23A2 gene. The secondary endpoint was to
analyze the effect of a course of A and omega 3 fatty acids (A/ω3) in the form of mono-combination on
the OS presumptive biomarkers, in order to better managing the diabetic eyes.

2. Materials and Methods

2.1. Community-Based Study Design

The study adheres to the Declaration of Helsinki (Edinburgh, 2000), the Ethics Committee
standards of the study centers (no. 12/33), and the Spanish Agency of Medicines and Medical
Devices (AEMPS). All requirements for clinical research and to maintain the privacy of the data
obtained were met. A prospective interventional open-label multicenter case-control study was
conducted between 2014–2015/2018–2019. Part of the study design and sampling methodology has
been described in detail [19]. The main purpose was outlining T2DM patient characteristics, risk factors,
precise blood-based biochemical parameters, and typical DR features to identify novel clinical and
molecular-genetic biomarkers for DR. The second objective was to look at the effects of a course of
(A/ω3) in the health and vision care among T2DM patients with (+) and without (−) DR.

2.2. Participants

575 potential participants of both sexes aged 25–80 years [300 T2DM patients and 275 healthy
controls (CG)] were carefully recruited by general practitioners and ophthalmologists (listed at the end
of the manuscript) to ensure consistency and efficacy of the study sample, interviewed according to
the study inclusion/exclusion criteria (Table 1) and appointed to the first selection step.

2.3. Screening Procedures

2.3.1. Selection and Appointment Schedules

Baseline data were recorded as: Socio-demographics, personal/familial background (DM duration
and treatment) and personal characteristics [nutrition-mediterranean diet (MedDiet) adherence by
the validated 14-items questionnaire; Prevención con Dieta Mediterránea (PREDIMED), as previously
reported [19], body mass index (BMI) and regular physical activity classified as to practice
(1) or no (2) exercise. At the first visit, patients underwent an ophthalmological examination
in both eyes: best-corrected visual acuity (BCVA), intraocular pressure (IOP), ocular fundus
examination/retinography, and spectral domain optical coherence tomography (SD-OCT).
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Table 1. Inclusion and exclusion criteria for the study on diabetic retinopathy.

INCLUSION

Males/Females, aged > 25 and < 80 years with type 2 diabetes, as the TDM2 group.

Healthy individuals, as the CG.

No comorbidities. No ocular surgery or laser for 12 months (at least). No other oral supplements with
antioxidants and/or omega 3 fatty acids, including vitamins in eyedrops.

Provided written informed consent before starting any related activities.

Participants able to attend the visits and to follow the study guidelines during the study period.

EXCLUSION

Males and females, aged < 25 years and > 80 years.

T1DM patients.

Patients with proliferative diabetic retinopathy, diabetic macular edema, or ocular or systemic diseases or
aggressive treatments. Previous ocular surgery or laser for 12 months (at least). Other oral supplements

with antioxidants and/or omega 3 fatty acids, including vitamins in eyedrops.

No acceptance for the study participation and/or not signing the informed consent. Unable to attend the
visits or to follow the study guidelines during the study period.

DM, diabetes mellitus; TDM2, type 2 diabetes mellitus; T1DM, type 1 diabetes mellitus; CG: Control group.

Of the initial recruitment, 480 suitable participants were verbally informed and signed on the
consent form. The participants were then classified into: T2DM patients (n = 287) and CG (n = 193)
(Figure 1). Diabetics were also sub-classified according to having retinopathy “+DR” (n = 129) or not
“−DR” (n = 158). (Figure 1).
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regimen in the study participants.

Diabetics and controls were homogeneously divided into those randomly assigned to “a pill of
A/ω3 per day: +A/ω3” or “no-pill condition: −A/ω3”, as reflected in the Figure 1. Pills containing vit
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(E, C, B1, B2, B3, B6, B9, B12), lutein, zeaxanthin, glutathione (GSH), hydroxytyrosol, trace elements
(Se, Mn, Zn, Cu) and docosahexaenoic acid (DHA), commercialized as Nutrof Omega® in packs of
35 capsules of 33.49 g each (Laboratorios Thea SA, Barcelona, Spain) were gently provided by the
manufacturer and given to the participants without any charge (Figure 2). Ophthalmic visits were
scheduled every 6 months throughout the 38-months follow-up. Patients with proliferative DR (PDR)
or diabetic macular edema (DME) were excluded by its special vulnerability to severe complications
and the need to receive specific treatments immediately.
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2.3.2. Ophthalmologic Procedures

Ocular examination in each eye included: BCVA, ocular fundus inspection/photographs (ImageNet;
Topcon, Barcelona, Spain), and SD-OCT (Carl Zeiss Meditec, Madrid, Spain). OCT parameters were
measured by the direct cross-sectional imaging device. Retinographies and SD-OCT data were
evaluated by retina specialists to obtain optimal nonproliferative DR (NPDR) diagnosis-grading in
each eye, according to the Early Treatment of Diabetic Retinopathy Study (ETDRS) [28] severity
scale. The presence and number of microaneurysms/hemorrhages, venous beading, and intraretinal
microvascular abnormalities were considered for DR diagnosis/progression. Worsening was considered
an augmentation of the above signs. As reflected in Table 1, those patients with new vessel growth
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on the retinal surface (PDR) and the presence of focal-diffuse DME were also excluded from final
data processing.

2.3.3. Biosample Processing

Blood sampling was scheduled from baseline and every 6 months (during the 38-month follow-up)
to biochemical and molecular-genetic probes. Antecubital vein blood was collected into 4.5 mL
ethylene-diamine-tetra-acetic acid (EDTA) or sodium citrate vacutainer tubes (Becton Dickinson,
Auckland, New Zealand), as an anticoagulant, under fasting conditions at 8:00 a.m. One EDTA tube
(purple cap) was used to determine glucose, glycosylated hemoglobin (HbA1c), and plasma vit C
concentrations. The other EDTA tube was used to analyze gene expression. Finally, the sodium
citrate tube (purple cap) was centrifuged at 3000 rpm/10 min to obtain the plasma fraction, which was
aliquoted and stored at −80 ◦C until processing. This plasma was used to analyze malondialdehyde
(MDA), total antioxidant capacity (TAC), and total glutathione (GSH). All experiments were performed
in duplicate. The determinations of glucose and HbA1c were carried out in the Department of Clinical
Analysis of the University Hospital Dr. Peset (Valencia, Spain). To complete the analytical proceedings,
the remaining experiments were performed in the laboratories of the Ophthalmic Research Unit
“Santiago Grisolía” (Valencia, Spain).

-Determination of lipid peroxidation by-products. MDA/thiobarbituric acid reactive substances
(TBARS): MDA/TBARS. It was assayed at high temperature (90–100 ◦C) under acidic conditions and
extracted with butanol. Fluorescence was measured in duplicate at 544 nm excitation, 590 nm emission
in relation to standard samples fluorescence. The concentration was calculated by extrapolating all
data in the standard curve, as reported [19,29].

-Determination of TAC. This was measured by the antioxidant assay kit (Ref: 709001,
Cayman Chemical Company, Ann Arbor, MI, USA) based on the antioxidant capacity to inhibit
the 2,2′-azino-di-[3-ethylbenzthiazoline sulphonate] oxidation to 2,2′-azino-di-[3-ethylbenzthiazoline
sulphonate] radical solution by the metmyoglobin, as published [19,30].

-Determination of total GSH. A modification was done [19] of the method, firstly reported by Tietze [31].
The OxiSelectTM Total GSH (GSSG/GSH) kit was utilized (Cell Biolabs, INC, Ref: STA-312. Madrid,
Spain). Global thiol reagent, 5-5′-dithiobis [2-nitrobenzoic acid] (DTNB) reacts with GSH to form
both the 412 nm chromophore, 5-thionitrobenzoic acid (TNB), and the disulfide product (GS-TNB).
The GS-TNB was reduced through an enzymatic reaction catalyzed by the GSH reductase and
β-nicotinamide adenine dinucleotide phosphate (NADPH). Thus, a second TNB molecule was released
by recycling the GSH. Any oxidized GSH (GSSG) initially presented in the reaction mixture or
formed from the mixed disulfide reaction of GSH with GS-TNB is reduced to GSH, and measured,
as described [19,31].

-Determination of the glycemic profile [fasting glucose and HbA1c were performed by 2 different
automated chemistry analyzers in the Department of Clinical Analysis of the main study center,
as follows: (1) Abbott kits manufactured for use with the Architect c8000 (Abbott Laboratories;
Abbott Park, IL, USA) and (2) Arkray AU 4050 (Arkray Global Bunisess Inc., Kyoto, Japan), respectively.

-Determination of plasma vitamin C (vit C). Fresh frozen plasma aliquots were thawed and acidified
by adding perchloric acid and diethylenetriaminepentaacetic acid (DTPA; a strong trace metal chelator)
for avoiding the ascorbate to destabilize. After centrifugation, supernatants were treated with
Tris (2-carboxyethyl) phosphine (TCEP; a potent thiol-free reducing agent) to gather any rest of
the ascorbate that became oxidized during previous proceedings. The concentration of vit C was
determined by high-performance liquid chromatography (HPLC) with electrochemical detection,
as previously reported [32,33]. Briefly, a Shimadzu HPLC System (Shimadzu Scientific Instruments,
Columbia, MD, USA) that was equipped with a 5 µM YMCPack ODS-AQ column (Waters Corp.,
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Milford, MA, USA) and a Coulochem III electrochemical detector (ESA, Chelmsford, MA, USA),
under reversed-phase conditions was used. Sampling injection volume was 5 µL, and compounds were
eluted over an 18 min runtime at a flow rate of 0.6 mL/min, following the method described by Li [32]
with minor modifications [33]. Plasma vit C concentrations were expressed as mean (SD) in µmol/mL,
taking into consideration the Linus Pauling Institute recommendations (https://lpi.oregonstate.edu/

mic/vitamins/vitamin-C) of consuming sufficient vit C to obtain at least a circulating concentration
of 60 µmol/L, as well as international guidelines as follows: <11 µmol/L indicate severe deficiency;
23–50 µmol/L inadequate; 50–70 µmol/L adequate; and >70 µmol/L is deemed saturating.

-Gene expression assays. Whole blood samples were obtained from each participant and collected
into EDTA tubes. Total RNA was isolated from blood samples by the Trizol method. Then, 300 ng
of total RNA (integrity number—RIN > 7) were converted into cDNA by reverse transcription using
the High-Capacity RNA-to-cDNA™ Kit (Applied Biosystems, Foster City, CA, USA). The relative
SLC23A2 gene expression was analyzed by real-time PCR, using a 7900HT Sequence Detection System
(SDS; Applied Biosystems®, Madrid, Spain). TaqMan gene expression assays were used for both target
(SLC23A2) and internal control (18S rRNA) genes (Applied Biosystems®, Spain). Samples were assayed
in duplicate. The expression values were calculated by the double delta Ct formula, as previously
reported [34,35], and the results were expressed as fold changes in gene expression for each group and
subgroup, at baseline.

2.4. Statistical Analysis

The “Microsoft Excel” program and “IBM Statistical Package for the Social Sciences” SPSS
V.24.0 program (IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY, USA) were used.
For continuous variables, non-parametric (Mann–Whitney U) and parametric (t-test) statistics were
utilized, and the results were expressed as mean ± standard deviation (SD). Categorical variables
were expressed as percentages. A p-value of less than 0.05 was considered statistically significant,
which was adjusted by a Bonferroni correction when pairwise comparison in multiple groups was
conducted. The non-parametric Spearman’s Rho correlation test (or correlation coefficient) was used
to evaluate the power of association between 2 specific variables (the value r = 1 means a positive
correlation, and the value r = −1 means a negative correlation).

3. Results

Out of the suitable initial 480 participants, 365 (rate of response from baseline: 76%) completed
their 38-month study course (Figure 1). The overall dropout rate was 24%. Deterioration of health/lack
of motivation (7%), confusing ocular fundus or retinographies, and/or progression to PDR or DME
(10%), and blood samples failing to show any data (7%) constituted common causes of withdrawn.

Table 2 shows the main socio-demographic data, medical history, and laboratory parameters of
the study participants. 26% of the baseline population had DR. Lead time between the DM diagnosis
and the last study visit was 22 (5) years in the +DR and 15 (3) years in the −DR (p = 0.002).

Eating habits were addressed during the study course to check whether the participants had
nutrient adequacy and adherence to the MedDiet. Higher nutritional control was observed in the
T2DM −DR (41%) than in the T2DM + DR (30%) (p = 0.001). Moreover, a higher percentage of diabetics
+DR (32%) displayed a lower MedDiet questionnaire score as compared to the T2DM − DR patients
(19%) (p = 0.0001). Significantly higher BMI was seen in diabetics vs. The CG (p = 0.001).

No significant differences were observed between the T2DM patients and the CG, regarding age,
gender, and physical exercise routine, but statistically significant differences (p = 0.000001) in glucose
and HbA1c determinations were detected between the main study groups (Table 2).

Ocular fundus was explored and photographed in the CG participants, showing a normal
appearance without any DR signs (Figure 3A), in contrast to the diabetics with mild-to-moderate
retinal complications, as reflected in the ocular fundus of Figure 3B.

https://lpi.oregonstate.edu/mic/vitamins/vitamin-C
https://lpi.oregonstate.edu/mic/vitamins/vitamin-C
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Furthermore, the series of ocular fundus examinations of the T2DM group revealed a mild
increment in NPDR development and progression with respect to baseline. Among the participants
who completed the study altogether, those with retinopathy showed impairment of retinal affectation
grading (54%: Mild DR; 35%: Moderate DR; 11%: Severe DR) from baseline (76% mild; 21% moderate;
3% severe).

Table 2. Demographics, lifestyle, and classical biochemical blood traits in the study participants.
Similar age and distribution by gender, but significant differences regarding the glycemic profile were
observed between the T2DM patient vs. The CG throughout the follow-up.

T2DM CG p-Value
VARIABLES

Baseline 38-Months Baseline 38-Months End of Study

Age Years 60 (10) 65 (8) 55 (12) 60 (8) 0.765

Gender % women 51 54 47 58 0.841

DM Fam. Hist. % 60 62 37 35 0.00001 **

DM duration Years 14 (3) 18 (5) - - -

BMI Kg/mm2 30 (3) 30 (4) 24 (3) 21 (3) 0.001 *

Physical Ex. % 38 35 42 43 0.916

Glycemia mg/dL 146 (62) 140 (8) 89 (12) 91 (3) 0.000001 **

HbA1c % 9 (1) 7 (1) 6 (0.3) 5 (0.3) 0.000001 **

T2DM: Type 2 diabetes mellitus; CG: Control group. DM: Diabetes Mellitus; BMI: Body mass index; HbA1c:
Glycosilated Haemoglobin; Fam. Hist.: Family History; Physical Ex: Physical Exercise. Values are mean (SD) or %.
p-value (* p < 0.05; ** p < 0.001) reflects statistical differences between the T2DM and CG of participants at the end of
the study. Age, Glycemia, and HbA1c was compared using student t-test for unpaired samples. BMI was compared
using the Mann–Whitney U test. Percentages of Gender, DM Fam. Hist., and Physical Ex. were compared using the
Fisher exact test.

Morphologic and morphometric evaluation of the OCT images was performed on the T2DM
patients and the CG individuals (Figure 3C,D). Representative OCT images, as shown in Figure 3C,D,
did not show noticeable differences in central retinal thickness from each eye when the diabetic
patients and the control individuals were compared (Figure 3E). We have to emphasize that this tool
improved our capacity to document diabetic retinal lesions in the posterior eye pole. Table 3 shows the
main parameters of the ophthalmologic examination in the study participants. These data revealed
noticeable differences in structural/functional values between groups, distributed into participants
assigned to the A/ω3 regimen versus the no supplemented ones.

A relevant point of this follow-up study was the evaluation of DR progression. In fact, the ETDRS
grading scale [28] (that is more popular among the researchers that other similar DR classification
systems) was used in the present work to define DR progression. The presence of hemorrhages,
hard exudates, and cotton-wool spots was equivalent to the ETDRS level 35 of a mild NPDR [28].
Moderate and severe NPDR forms have also been conveniently staged, as reflected in Figure 3.

From the 129 T2DM patients with DR (NPDR forms) at baseline, 22% showed a cumulative
incidence of DR impairment at the end of follow-up, the majority of them (13%) corresponding to mild
NPDR stages, 5% to moderate stage, and 4% corresponding to the severe NPDR form. Among the
diabetics that showed clinical signs and symptoms of retinopathy progression, 65% pertained to the
−A/ω3 subgroup. From the 158 initial T2DM patients without NPDR, (27%) developed DR at the end
of the study, 12% mild; 9% moderate; 5% severe. Among the diabetics that initially did not suffer DR,
58% pertained to the −A/ω3 subgroup as shown in the Table 4.



Antioxidants 2020, 9, 1101 9 of 19
Antioxidants 2020, 9, x FOR PEER REVIEW  9 of 20 

 

Figure  3. Ocular  Fundus  imaging.  (A)  Standard  color  fundus  retinography  showing  30°  of  the 

posterior eye pole (including the optic nerve head and the macula) of the RE from a participant of the 

CG (P: Optic nerve papilla; M: Macula; A: Retinal artery; V: Retinal vein). (B) Standard color fundus 

retinography showing 30° of the posterior eye pole of the RE displaying the clinical microvascular 

angiopathy manifestations of a T2DM patient with nonproliferative diabetic  retinopathy  (NPDR). 

Note  the  microaneurysms  and  abundant  microhemorrhages  (arrowthin),  as  well  as 

macrohemorrhages (arrowhead). Scarce hard exudates (●) and cotton‐wool spots (*) (being the latter 

grey‐white discolored plaques located in the retinal nerve fiber layer, corresponding to local ischemic 

areas) were detected. The same abbreviations reflected  in A  for  the main retinal structures can be 

detected in this pathologic image. No macular alterations were detected in this NPDR retinography. 

(C) Spectral Domain Optical Coherence tomography (SD‐OCT) of a CG participant. Normal macular 

structural details of the same healthy participant as referred to in A. Among other retinal structures, 

the retinal nerve fiber layer (RNFL), retinal ganglion cell (RGC), and the retinal pigment epithelium 

(RPE)/Bruch’s membrane complex can be identified. (D) The microaneurysms and the hemorrhages 

(identified as hypo‐reflective lesions) were present in the SD‐OCT scans of the above diabetic patient, 

as referred in B. No macular changes and no neovascularization were detected in the NPDR images. 

(E) Central Macular Thickness  in the right eye (RE) and  left eye (LE) of the T2DM participants, as 

compared to the CG. 

Figure 3. Ocular Fundus imaging. (A) Standard color fundus retinography showing 30◦ of the
posterior eye pole (including the optic nerve head and the macula) of the RE from a participant of
the CG (P: Optic nerve papilla; M: Macula; A: Retinal artery; V: Retinal vein). (B) Standard
color fundus retinography showing 30◦ of the posterior eye pole of the RE displaying the
clinical microvascular angiopathy manifestations of a T2DM patient with nonproliferative diabetic
retinopathy (NPDR). Note the microaneurysms and abundant microhemorrhages (arrowthin), as
well as macrohemorrhages (arrowhead). Scarce hard exudates (•) and cotton-wool spots (*) (being
the latter grey-white discolored plaques located in the retinal nerve fiber layer, corresponding to local
ischemic areas) were detected. The same abbreviations reflected in A for the main retinal structures
can be detected in this pathologic image. No macular alterations were detected in this NPDR
retinography. (C) Spectral Domain Optical Coherence tomography (SD-OCT) of a CG participant.
Normal macular structural details of the same healthy participant as referred to in A. Among other
retinal structures, the retinal nerve fiber layer (RNFL), retinal ganglion cell (RGC), and the retinal
pigment epithelium (RPE)/Bruch’s membrane complex can be identified. (D) The microaneurysms
and the hemorrhages (identified as hypo-reflective lesions) were present in the SD-OCT scans of
the above diabetic patient, as referred in B. No macular changes and no neovascularization were
detected in the NPDR images. (E) Central Macular Thickness in the right eye (RE) and left eye (LE)
of the T2DM participants, as compared to the CG.
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Table 3. Ophthalmologic data in the supplemented vs. The non-supplemented participants.

T2DM CG p-Value

Baseline
38-Months

Baseline
38-Months End of StudyVariables

+A/ω3 −A/ω3 +A/ω3 −A/ω3 +A/ω3 −A/ω3

BCVA RE decimal scale 0.8 (0.1) 0.7 (0.1) 0.6 (0.1) 0.9 (0.1) 0.9 (0.1) 0.9 (0.2) 0.002 ** 0.002 **

BCVA LE decimal scale 0.8 (0.2) 0.7 (0.1) 0.5 (0.1) 0.9 (0.1) 0.9 (0.2) 0.8 (0.1) 0.049 * 0.001 **

IOP RE mm Hg 15 (2) 15 (2) 15 (2) 15 (2) 14 (2) 15 (3) 0.415 0.432

IOP LE mm Hg 15 (2) 16 (2) 15 (2) 16 (2) 13 (2) 16 (2) 0.068 0.453

CMT RE µm 252 (32) 245 (29) 240 (28) 251 (33) 253 (35) 258 (40) 0.585 0.514

CMT LE µm 258 (55) 242 (37) 236 (46) 255 (36) 255 (43) 249 (35) 0.539 0.561

BCVA: Best-corrected visual acuity; RE: Right eye; LE: Left eye; IOP: Intraocular pressure; CMT: Central Macular
Thickness; T2DM: Type 2 diabetes mellitus; CG: Control group. +A/ω3: Daily supplementation with
antioxidants/omega 3 fatty acids; −A/ω3: No supplementation regimen. Values are mean (SD) for each eye.
p-value (* p < 0.05; ** p ≤ 0.002) reflects statistical differences between the T2DM and CG of participants at the end of
the study. Comparisons of BCVA and IOP were made using the Mann–Whitney U test. CMT was compared using
the student t-test for unpaired samples.

Table 4. Diabetic Retinopathy course through the 38-months of follow-up.

T2DM Patients + DR (n = 129) T2DM Patients − DR (n = 158)

DR Impairment: 22% DR Impairment: 27%

Mild Moderate Severe Mild Moderate Severe

13% 5% 4% 12% 9% 5%

+A/ω3 −A/ω3 +A/ω3 −A/ω3 +A/ω3 −A/ω3 +A/ω3 −A/ω3 +A/ω3 −A/ω3 +A/ω3 −A/ω3

3% 10% 2% 3% 1% 3% 3% 9% 2% 7% 2% 3%

T2DM: Type 2 diabetes mellitus; CG: Control group; +DR: With diabetic retinopathy; −DR: Without diabetic
retinopathy; +A/ω3: Participants randomly assigned to the daily supplementation with antioxidants and omega 3
fatty acids; −A/ω3: No assigned to the supplementation regimen. Values are the percentages of DR impairment
regarding the NDPR (non-diabetic retinopathy) clinical form. NDPR has been classified according to the ETDRS
(early treatment diabetic retinopathy study) system [28] as a mild, moderate, or severe stage.

The OS markers were assayed in plasma samples from the groups and subgroups of participants.
At baseline, comparison of the CG and the T2DM patients reflected significantly higher plasma levels
of MDA/TBARS [2.9 (0.1) µM vs. 2.1 (0.2) µM (p = 0.001)] and significantly lower plasma levels of
TAC [2.3 (0.1) mM vs. 3.1 (0.3) mM (p = 0.001)], GSH [2 (0.2) µM vs. 2.8 (0.2) µM (p = 0.002)] and
vit C [40 (19) µM/mL vs. 56 (20) µM/mL (p = 0.001)]. Therefore, diabetics displayed significantly
higher circulating pro-oxidant markers and lower antioxidant levels than the non-diabetic study
population. Furthermore, significantly higher plasma levels of MDA/TBARS, lower TAC, as well as
decreased vit C were observed in the T2DM + DR with respect to the T2DM − DR patients, both at
baseline and at the end of follow-up. Table 5 illustrates the effects of the A/ω3 administration in
mono-combination on biochemical blood traits, as the patients were categorized in relation to their
response to the nutraceutical regimen. Therefore, participants randomly assigned to the oral +A/ω3
improved their OS background with statistical differences between the T2DM + DR vs. T2DM − DR
patients throughout the 38-month follow-up (Table 5). A regular A/ω3 supplementation course reduced
the OS by conferring a potential neuroprotective effect to the diabetic retina, which is a priority and
challenging topic for our current research and the foreseeable future.

In our study population, we observed that aging, higher DM length, bad metabolic control
(as reflected by the elevated levels of glycemia and HbA1c) in the presence of significant oxidative load
were frequent findings that helped to identify diabetics at risk of DR and DR progression. We also
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found that overweight patients had poorer overall glycemic control also suffered a more advanced
stage of NPDR than the normal-weight diabetics throughout the 38-month follow-up.

Table 5. Oxidative stress markers in the study participants.

VARIABLES

T2DM 38-Months CG 38-Months p-Value

+DR −DR
+A/ω3 −A/ω3 End of study

+A/ω3 −A/ω3 +A/ω3 −A/ω3

MDA/TBARS (µM) 3 (0.2) 3.7 (0.2) 2.7 (0.2) 3.0 (0.2) 1.6 (0.1) 2.0 (0.1) 0.001 **

TAC (mM) 1.8 (0.1) 1.1 (0.1) 2.0 (0.1) 1.5 (0.1) 3.2 (0.2) 2.8 (0.2) 0.001 **

GSH (µM) 1.4 (0.6) 0.9 (0.7) 1.6 (0.1) 1.4 (0.1) 2.7 (0.2) 2.3 (0.2) 0.842

Vit C (µmol/mL) 45 (18) 33 (15) 43 (16) 40 (21) 59 (20) 56 (20) 0.001 **

MDA/TBARS: Malondyaldehyde/Thiobarbituric acid reactive substances; TAC: Total antioxidant capacity; GSH:
Total glutathione; Vit C: Vitamin C-Ascorbic acid; T2DM: Type 2 diabetes mellitus; CG: Control group. +A/ω3:
Assigned to the daily supplementation with antioxidants and omega 3 fatty acids; −A/ω3: Not assigned to the
supplementation regime. Values are mean (SD) for each eye. p-value (** p < 0.001) reflects statistical differences
between the T2DM and CG of participants at the end of the study (38-month follow-up). All comparisons were
made using the Mann–Whitney U test.

Regarding the gene expression assays, we detected a differential expression profile of the SLC23A2
gene (responsible for the regulation of the intracellular levels of vit C) between the main groups and
subgroups of the study participants at baseline (Figure 4).
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When corrected, these data for multiple testing, significantly lowered SLC23A2 gene expression
(fold change) in the T2DM vs. The CG (p < 0.05) and in the T2DM +DR vs. −DR (p < 0.05) was detected.
Furthermore, we found that the SLC23A2 gene was down-regulated in T2DM patients, and it was
associated with significantly lower vit C plasma levels (p = 0.001). The above association remained
statistically significant (p < 0.05) even after a multivariate adjustment for major potential confounders
(sex, age, eating habits, and BMI) was carried out in the data processing.

In addition, we analyzed the correlation between the main OS markers and the SLC23A2 gene
expression in blood samples of the study participants at baseline. Spearman Rho correlation between
the plasma MDA/TBARS values and SLC23A2 blood gene expression was statistically significant
[0.290 (p = 0.026) for the T2DM and 0.188 (p = 0.048) for the CG, and 0.651 (p = 0.030) for the T2DM + DR
vs. 0.711 (p = 0.0002) for the T2DM-DR]. Spearman Rho correlation between the plasma TAC and
SLC23A2 blood gene expression was statistically significant for the comparison of diabetics and
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controls [0.294 (p = 0.027) in the T2DM vs. 0.038 (p = 0.012) in the CG], as well as for the T2DM + DR
patients [0.0427 (p = 0.001)], but no significant correlation was detected for the T2DM-DR patients
[0.084 (p = 0.144)].

The final rate of compliance with the A/ω3 regimen was 89% for the T2DM and 80% for the
CG. The highest response was for the T2DM + DR group than those from the T2DM − DR patients.
There were no observed/reported side effects of the oral supplementation, except a few cases of mild
gastrointestinal complaints.

4. Discussion

The main results from this population study from baseline to the 38-month follow-up were:
(1) DR progression was more likely with higher DM duration, BMI, and Hb1Ac in the context of
outstanding OS, and (2) Noticeable amelioration over six consecutive screening intervals, was detected
in major hematological parameters and OS markers in the T2DM + DR patients randomly assigned to
the oral A/ω3 regimen, as compared to the non-supplemented participants.

Several authors reported that metabolic and risk factors control ameliorated DR prognosis [1–6,19,28].
In the current study, we planned to analyze classic risk factors (T2DM duration, sedentary lifestyle,
eating habits, and BMI), as well as blood parameters (glucose/HbA1c) and findings from the circulating
candidate DR predictors (MDA/TBARS, TAC, GSH, vit C, and the SLC23A2 gene). Recent reports
established that DR prevalence in Spain in the T2DM patients depends on the study population,
ranging from 15% [27] to 26% [28,36]. From our initial 480 participants, 26% had DR. In addition,
the mean T2DM lastingness at 38-months follow-up was 15 (3) years in −DR patients vs. 22 (5) years
for the +DR patients. Nevertheless, additional factors also play critical roles in managing DR at any
stage [1–6,19,26–28], with a special interest in diabetics without clinically detectable retinopathy and
those suffering from the early DR stage [37,38].

Nutrition is a pivotal component for diabetic patients care. Regarding DR, researchers have
described the role of micronutrients (including A/ω3), macronutrients, several food groups, and dietary
aspects and lifestyle, such as the MedDiet, in the initiation and progression of DR [4–6,18–24].
Despite this, findings remain inconclusive, and current evidence does not inform about the specific
dietary components that are likely to reduce (or increase) the risk of DR. Moreover, new pharmacologic
therapies for DR are urgently needed [4,19,26–28].

A growing paradigm in managing DR is the relevance of endogenous pathogenic mechanisms,
such as OS and its downstream effectors [4,12–15,19]. A variety of plasmatic OS biomarkers
(MDA/TBARS, TAC, vit C, vit E, and ω3) have been reported in diabetics [7,12–14,19,26,27,39,40].
Furthermore, Pan et al. interestingly reported a combinatorial molecular signature that may potentially
be used as a marker of PDR [41]. Regarding the latter report, we similarly have described a differential
profile of circulating OS markers in the T2DM patient’s with respect to the non-diabetic individuals,
but our diabetic population was only constituted by NPDR patients.

There is growing interest in identifying genes that could trigger OS in diabetics. Our experiments
allowed us to demonstrate a statistically significant differential expression profile of the SLC23A2 gene
between the T2DM patients and the non-diabetic participants, as well as between the T2DM + DR
vs. −DR patients. Being this gene the regulator of vit C intracellular levels (for protecting the cells
from OS) and the promoter of type I collagen maturation [24,25], we also found that the SLC23A2
gene was down-regulated in T2DM patients and highly associated with significantly lower vit C
plasma levels. Multivariate adjustment for major potential confounders (sex, age, eating habits,
and BMI) was carried out in the data processing, and the association of lower SLC23A2 expression
levels with lower vit C plasma concentration remained statistically significant in our study population
(p < 0.05). Shaghaghi et al. [42] emphasized the necessity to consider the genetic variation of vitamin
C transporters in clinical and epidemiologic studies regarding complex diseases. Encouraged by
our results, we strongly suggest the connecting role of the SLC23A2 gene down-regulation and the
inappropriate vit C bioavailability, with redox imbalance in the context of chronic hyperglycemia and
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DR. In this concern, Murgia and Adanski [43] also reported that genetic variation alters nutritional
requirements, and that nutritional genomics provides an outstanding challenge for biomedical research,
as in DR.

In addition, a significant plasmatic decrease in MDA/TBARS, as well as an increase in TAC,
was found in the T2DM +A/ω3 and the CG +A/ω3 during the study period. Inclusion of multiple
components in the tested formula [vit (E, C, B1, B2, B3, B6, B9, and B12), lutein, zeaxanthin,
GSH, hydroxytyrosol, trace elements (Se, Mn, Zn, and Cu) and DHA] theoretically targeting
multiple and overlapping pathogenic mechanisms implicated in DR, strongly support a wider
counter-response [7,12–14,19,44–46]. In fact, the European Union ROS consortium (EU-ROS)
stated in 2017 that many diseases had been found to be associated with OS, and subsequently,
the theory that OS-related pathologies can be corrected by antioxidant therapy was launched [47].
However, while experimental studies support this theory, clinical studies still generate controversial
results [48,49]. In our opinion, the possibility remains that biotherapies based on the redox changes
occurring in diabetics may help to protect the retina. In the latter concern, an interesting spectrum
of presumptive factors for DR protection has been ultimately proposed, including outstanding
antioxidants [50–53].

From a clinical viewpoint, retinal microvascular changes found in the NPDR eyes are related to
basement membranes thickening, pericyte loss, capillary occlusion, and microaneurysms, that can
progress towards ischemia, macular edema, and neovascularization [4,5,19,36–38]. In this context,
image analysis of retinal lesions can provide qualitative and quantitative data to accurately diagnosing
and grading DR. Our data suggest relatively lower rates of progression of DR in our cohort during
the 38-month follow-up. Regarding the participants that completed the study, only 11% of the T2DM
patients +DR progressed to severe NPDR forms. Among the participants assigned to the A/ω3
supplementation, the impairment was noticeably less than in the non-supplemented participants.
From the 129 T2DM patients with DR (NPDR forms) at baseline, 22% showed a cumulative incidence of
DR impairment at the end of follow-up, the majority (18%) corresponded to the mild-to-moderate NPDR
stages. Among the diabetics that showed clinical signs and symptoms of retinopathy progression,
65% pertained to the −A/ω3 subgroup. Moreover, from the 158 initial T2DM patients without NPDR,
27% developed DR at the end of the study. In addition, the majority of these pertain to mild-to-moderate
stages of the disease (21%), but 5% progressed to the severe NDPR. Among the T2DM that initially did
not suffer DR, 58% were concerned with the −A/ω3 subgroup.

Data also showed that a reduction of hyperglycemia, HbA1c, and BMI may have a beneficial effect
on the progression to more severe DR forms. We also confirmed that a regular A/ω3 supplementation
course reduces the oxidative load, confers beneficial effects as opposed to detrimental ones, and may
potentially act as a dietary prophylaxis/adjunctive intervention for high-risk diabetics. The OCT
imaging technique provides retinal cross-section images within the micrometer resolution, allowing the
evaluation of structural characteristics of the healthy and pathologic retina [54]. It is widely known
that the OCT examination qualitatively and quantitatively improves the preclinical diagnosis of retinal
changes occurring in diabetics [13,19,55–60]. It was reported in T2DM -DR patients that the foveal and
temporal retinal thickness appeared significantly reduced and that a higher HbA1c level was associated
with a thinner retina in the temporal perifoveal area in these patients [58]. Data comparison at the
end of follow-up in our study cohort showed a significant trend to stabilization of the ophthalmologic
parameters, mainly regarding the BCVA and OCT-derived measurements in the T2DM + DR + A/ω3
vs. The T2DM + DR − A/ω3 groups. This is an interesting point to consider because interventions
directed to counteract several of the pathogenic mechanisms involved in the deleterious effects of
chronic hyperglycemia on the retinal microvasculature are needed.

Moscos et al. [61] reported an increase in the foveal thickness of T2DM patients at two years
of oral supplementation with carotenoids, suggesting that the above type of intervention may
benefit the visual function in diabetics. It has also been said that early oral supplementation with
nutraceuticals provides a significant health benefit to prevent DR progression because of its antioxidant



Antioxidants 2020, 9, 1101 14 of 19

and anti-inflammatory properties, reducing both the neural and vascular damage caused in the retina
by the hyperglycemia [7,12,19,62,63]. The combined A/ω3 formula used herein strongly supported the
descriptions of the above authors and our previous works [19,35,39,40,49] on the processes of retinal
neuroprotection and vasculoprotection. Moreover, Amato et al. [64] emphasized the possible side effects
of systemic neuroprotectants as well as doubts about the appropriate retinal bioavailability of these
substances in contrast with the intravitreal injections. We hereby confirm that with the formulation
used herein, no adverse effects were reported but scarcely mild gastrointestinal discomfort, while the
intravitreal injections may potentially produce endophthalmitis, hemorrhages, rhegmatogenous retinal
detachment, lens damage, and/or other complications [65]. These authors interestingly described
the feasibility of delivering magnetic nanoparticles functionalized with a neuroprotectant substance
by means of intravitreal injections in mice, suggesting an interesting role of these new approaches
to protect the retina in diabetic patients. In this concern, Dolz-Marco et al. [66] also reported that
intravitreal DHA administration (at the specific assayed doses) in rabbits is safe and potentially useful
for treating retinal diseases.

No data from the interim time points were presented in this work because the main results
from the 18-months follow-up were previously published [19]. Regarding the above data, the BCVA
(each eye separately) was significantly higher in the CG as compared to the T2DM group [(CG at
baseline: RE: 0.95 ± 0.10 and LE: 0.96 ± 0.08; p < 0.001/CG; at 18 months: RE: 0.95 ± 0.11 and LE:
0.95 ± 0.10; p < 0.001) (T2DMG at baseline: RE: 0.81 ± 0.30 and LE: 0.83 ± 0.22; p < 0.001/T2DMG;
at 18 months: RE: 0.78 ± 0.22 and LE: 0.76 ± 0.22; p < 0.001)]. Regarding the redox status of the study
population at 18 months, on the one hand, plasmatic pro-oxidants (MDA/TBARS levels) significantly
decreased in the T2DM + A/ω3 subgroup with respect to the T2DM − A/ω3 patients, and on the other
hand, the TAC significantly increased in the T2DM + A/ω3 subgroup, while the non-supplemented
participants did not show any change. These data are similar to those obtained from the 38-month
follow-up during the present work.

The authors are confident that the results obtained during this follow-up study can be useful
in designing an integrative document with the clinical (ocular fundus multimodal imaging) and
molecular-genetic biomarkers (MDA/TBARS, TAC, vit C, and SLC23A2 gene) in the form of practical
guidelines that can be helpful for primary care physicians as well as to ophthalmologists and ophthalmic
researchers. In this concern, classical unmodifiable risk factors, such as the older age and/or longer
DM duration have been widely involved in the development and progression of DR, altogether with
the modifiable biochemical parameters of higher glycemia and HbA1c as well as the increased BMI
and the lack of physical exercise [1–6,19]. All these, and the oxidative stress parameters reported
herein (MDA/TBARS, TAC, vit C), can help outline the importance of integrating patient characteristics,
as well as clinical and biochemical biomarkers better to identify diabetics at risk of retinopathy and
visual disability. This follow-up study strongly emphasizes the benefits of the effects of the A/ω3
administration in mono-combination on both the DR and biochemical blood traits in T2DM patients.
Up to today, our group continues to pursue research, consistently looking for new solutions to avoid
diabetic blindness.

A study limitation is the relatively small final sample of participants distributed in each group and
subgroup reaching the 38-month follow-up. Patients who developed PDR or DME were excluded from
data processing to avoid the bias of statistical procedures, mainly because these patients needed to be
immediately treated with specific medical, laser, or surgical interventions. Statistical processing of the
GSH data showed surprising results. No significant differences were found at the end of the study
regarding the A/ω3 supplementation (containing GSH). We may hypothesize that sample handling
may induce artificial oxidation of GSH, producing GSSG that interfered with our results. It is needed
to proceed with a rapid –SH alkylation with N-ethylmaleimide to improve these results for further
research. The study has provided a large amount of data for easy analyses. Because of this, we have
focused on the main objectives of our work, and some of the data have been omitted for the present
study. In fact, the expression of the SLC23A2 gene was only assayed at baseline in the main groups and
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subgroups of participants. No comparison was made of the SLC23A2 gene expression between the
baseline and the end of follow-up and nor in the participants assigned or not to the oral supplement
regimen due to unsolvable problems at the end of follow-up. Nevertheless, the differential expression
profile of the SLC23A2 gene in diabetics, as compared to the controls, as well as in diabetics with
and without NPDR, provided interesting data at the beginning of the study (as reflected in Figure 4),
showing outstanding correlation with the plasma vit C levels. In fact, Hierro et al. [67] demonstrated a
SLC23A2 down-regulation in the kidney and brain from a model of streptozotocin Zucker rats.

5. Conclusions

In summary, the results of the present study reveal the importance of multicenter collaborative
works in DR research to better managing the diabetic retina. As retinal microangiopathy is a
sight-threatening complication of DM, early diagnosis, proper supervision, and appropriate treatment
of DR are pivotal for optimizing eye and vision care in the affected patients. We confirm that OS plays
relevant roles in DR initiation and progression, also suggesting that OS can be detected with easily
accessible and inexpensive blood analyses of T2DM patients. We have identified the MDA/TBARS,
TAC, vit C, and SLC23A2 gene as presumptive prognostic biomarkers to improve knowledge on DR
and ophthalmological outcomes. Large scale studies are needed to better estimate its efficiency and
further usability in clinical practice. Finally, this 38-month follow-up study supports that a regular
A/ω3 supplementation reduces the oxidative load and may serve as a dietary prophylaxis/adjunctive
intervention for patients at risk of diabetic blindness
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Abbreviations

+/− A/ω3 plus/without a pill of nutraceutical supplement per day
+/− DR with/without diabetic retinopathy
A Antioxidants
BCVA best corrected visual acuity
BMI body mass index
CG healthy control group
DHA docosahexaenoic acid
DM diabetes mellitus
DME diabetic macular edema



Antioxidants 2020, 9, 1101 16 of 19

EDTA ethylene diamine tetra acetic acid
GSH glutathione
GSSG oxidized GSH
HbA1c glycosylated haemoglobin
HPLC high performance liquid chromatography
IOP intraocular pressure
MedDiet Mediterranean diet
MDA malondialdehyde
NPDR non proliferative diabetic retinopathy
OCT optical coherence tomography
OS oxidative stress
PDR proliferative diabetic retinopathy
ROS reactive oxygen species
SD-OCT spectral domain optical coherence tomography
SLC23A2 solute carrier family 23 member 2
T1DM type 1 diabetes mellitus
T2DM type 2 diabetes mellitus
TAC total antioxidant capacity
TBARS thiobarbituric acid reactive substances
TNB 5-thionitrobenzoic acid
Vit Vitamin
ω3 omega 3 fatty acids

References

1. Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the
treatment and prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [CrossRef] [PubMed]

2. Chawla, R.; Madhu, S.V.; Makkar, B.M.; Ghosh, S.; Saboo, B.; Kalra, S. On behalf of RSSDI-ESI Consensus
Group RSSDI-ESI clinical practice recommendations for the management of Type 2 diabetes mellitus 2020.
Int. J. Diabetes Dev. Ctries 2020, 40 (Suppl. S1–S122), 1–122. [CrossRef]

3. Lu, J.; Ma, X.; Zhou, J.; Zhang, L.; Mo, Y.; Ying, L.; Lu, W.; Zhu, W.; Bao, Y.; Vigersky, R.A.; et al. Association of
Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2
Diabetes. Diabetes Care 2018, 41, 2370–2376. [CrossRef]

4. Simó, R.; Hernández, C. Novel approaches for treating diabetic retinopathy based on recent pathogenic
evidence. Prog. Retin. Eye Res. 2015, 48, 160–180. [CrossRef] [PubMed]

5. Hammes, H.P.; Welp, R.; Kempe, H.P.; Wagner, C.; Siegel, E.; Holl, R.W. DPV initiative—German BMBF
competence network diabetes mellitus. Risk factors for retinopathy and diabetic macular edema in Type 2
diabetes-results from the German/Austrian DPV Database. PLoS ONE 2015, 10, e0132492. [CrossRef]

6. Yin, L.; Zhang, D.; Ren, Q.; Su, X.; Sun, Z. Prevalence and risk factors of diabetic retinopathy in diabetic
patients: A community based cross-sectional study. Medicine 2020, 99, e19236. [CrossRef] [PubMed]

7. Gerschman, R.; Gilbert, D.; Nye, S.W.; Dwyer, P.; Fenn, W.O. Oxygen poisoning and x-irradiation:
A mechanism in common. Science 1954, 19, 89–95. [CrossRef]

8. Imlay, J.A. Redox pioneer: Professor Irwin Fridovich. Antioxid. Redox Signal. 2011, 14, 335–340. [CrossRef]
9. Ignarro, L.J. Endothelium-derived nitric oxide: Pharmacology and relationship to the actions of organic

esters. Pharm. Res. 1989, 6, 651–659. [CrossRef]
10. Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology and pharmacology.

Pharmacol. Rev. 1991, 43, 109–142.
11. Hempel, N.; Melendez, J.A. Intracellular redox status controls membrane localization of pro- and

anti-migratory signaling molecules. Redox Biol. 2014, 2, 245–250. [CrossRef] [PubMed]
12. Doly, M.; Droy-Lefaix, M.T.; Braquet, P. Oxidative stress in diabetic retina. EXS 1992, 62, 299–307.
13. Verdejo, C.; Marco, P.; Renau-Piqueras, J.; Pinazo-Duran, M.D. Lipid peroxidation in proliferative

vitreoretinopathies. Eye 1999, 13, 183–188. [CrossRef]
14. Madsen-Bouterse, S.A.; Kowluru, R.A. Oxidative stress and diabetic retinopathy: Pathophysiological

mechanisms and treatment perspectives. Rev. Endocr. Metab. Disord. 2008, 9, 315–327. [CrossRef]

http://dx.doi.org/10.7150/ijms.10001
http://www.ncbi.nlm.nih.gov/pubmed/25249787
http://dx.doi.org/10.1007/s13410-020-00819-2
http://dx.doi.org/10.2337/dc18-1131
http://dx.doi.org/10.1016/j.preteyeres.2015.04.003
http://www.ncbi.nlm.nih.gov/pubmed/25936649
http://dx.doi.org/10.1371/journal.pone.0132492
http://dx.doi.org/10.1097/MD.0000000000019236
http://www.ncbi.nlm.nih.gov/pubmed/32118727
http://dx.doi.org/10.1126/science.119.3097.623
http://dx.doi.org/10.1089/ars.2010.3264
http://dx.doi.org/10.1023/A:1015926119947
http://dx.doi.org/10.1016/j.redox.2014.01.005
http://www.ncbi.nlm.nih.gov/pubmed/24494199
http://dx.doi.org/10.1038/eye.1999.48
http://dx.doi.org/10.1007/s11154-008-9090-4


Antioxidants 2020, 9, 1101 17 of 19

15. Li, X.; Deng, A.; Liu, J.; Hou, W. The role of Keap1-Nrf2-ARE signal pathway in diabetic retinopathy oxidative
stress and related mechanisms. Int. J. Clin. Exp. Pathol. 2018, 11, 3084–3090.

16. Wong, J.B.; Coates, P.M.; Russell, R.M.; Dwyer, J.T.; Schuttinga, J.A.; Bowman, B.A. Economic analysis of
nutrition interventions for chronic disease prevention: Methods. Res. Pol. Nutr. Rev. 2011, 69, 533–549.
[CrossRef]

17. Webb, D.; Leahy, M.M.; Milner, J.A.; Allison, D.B.; Dodd, K.W.; Gaine, P.C. Strategies to optimize the impact
of nutritional surveys and epidemiological studies. Adv. Nutr. 2013, 4, 545–547. [CrossRef]

18. Kowluru, R.A.; Zhong, Q.; Santos, J.M.; Thandampallayam, M.; Putt, D.; Gierhart, D.L. Beneficial effects of
the nutritional supplements on the development of diabetic retinopathy. Nutr. Metab. 2014, 11, 8. [CrossRef]

19. Roig-Revert, M.J.; Lleó-Pérez, A.; Zanón-Moreno, V.; Vivar-Llopis, B.; Marín-Montiel, J.; Dolz-Marco, R.;
Alonso-Muñoz, L.; Albert-Fort, M.; López-Gálvez, M.I.; Galarreta-Mira, D.; et al. Enhanced oxidative stress
and other potential biomarkers for retinopathy in Type 2 diabetics: Beneficial effects of the nutraceutic
supplements. Biomed. Res. Int. 2015, 408180. [CrossRef]

20. Kam, J.; Puranik, S.; Yadav, R.; Manwaring, H.R.; Pierre, S.; Srivastava, R.K.; Yadav, R.S. Dietary interventions
for Type 2 diabetes: How millet comes to help. Front. Plant Sci. 2016, 7, 1454. [CrossRef]

21. Sala-Vila, A.; Díaz-López, A.; Valls-Pedret, C.; Cofán, M.; García-Layana, A.; Lamuela-Raventós, R.M.;
Castañer, O.; Zanon-Moreno, V.; Martinez-Gonzalez, M.A.; Toledo, E.; et al. Dietary marineω-3 fatty acids
and incident sight-threatening retinopathy in middle-aged and older individuals with Type 2 diabetes:
ProspectiveInvestigation from the PREDIMED trial. JAMA Ophthalmol. 2016, 134, 1142–1149. [CrossRef]

22. Neelam, K.; Goenadi, C.J.; Lun, K.; Yip, C.C.; Eong, K.G.A. Putative protective role of lutein and zeaxanthin
in diabetic retinopathy. Br. J. Ophthalmol. 2017, 101, 551–558. [CrossRef]

23. Njike, V.Y.; Annam, R.; Costales, V.C.; Yarandi, N.; Katz, D.L. Which foods are displaced in the diets of adults
with type 2 diabetes with the inclusion of eggs in their diets? A randomized, controlled, crossover trial.
BMJ Open Diabetes Res. Care 2017, 5, e000411. [CrossRef] [PubMed]

24. Boadi-Kusi, S.B.; Asiamah, E.; Ocansey, S.; Abu, S.L. Nutrition knowledge and dietary patterns in ophthalmic
patients. Clin. Exp. Optom. 2020. [CrossRef]

25. Röhr, D.; Halfter, H.; Schulz, J.B.; Young, P.; Gess, B. Sodium-dependent Vitamin C transporter 2 deficiency
impairs myelination and remyelination after injury: Roles of collagen and demethylation. Glia 2017,
65, 1186–1200. [CrossRef]

26. Khan, A.A.; Rahmani, A.H.; Aldebasi, Y.H. Diabetic retinopathy: Recent updates on different biomarkers
and some therapeutic agents. Curr. Diabetes Rev. 2018, 14, 523–533. [CrossRef]

27. Wu, T.; Qiao, S.; Shi, C.; Wang, S.; Ji, G. Metabolomics window into diabetic complications. J. Diabetes Investig.
2018, 9, 244–255. [CrossRef]

28. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereosopic
color fundus photographs—An extension of the modified Airlie House classification. ETDRS report number
10. Ophthalmology 1991, 98 (Suppl. 5), 786–806. [CrossRef]

29. Uchiyama, M.; Mihara, M. Determination of malondialdehyde precursor in tissues by thiobarbituric acid
test. Anal. Biochem. 1978, 86, 271–278. [CrossRef]

30. Kambayashi, Y.; Binh, N.T.; Asakura, H.W.; Hibino, Y.; Hitomi, Y.; Nakamura, H. Efficient assay for total
antioxidant capacity in human plasma using a 96-well microplate. J. Clin. Biochem. Nutr. 2009, 44, 46–51.
[CrossRef]

31. Teitze, F. Enzymatic method for the quantitative determination of nanogram amounts of total and oxidized
glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 1969, 27, 502–522.
[CrossRef]

32. Li, X.; Franke, A.A. Fast HPLC–ECD analysis of ascorbic acid, dehydroascorbic acid and uric acid.
J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2009, 877, 853–856. [CrossRef]

33. Zanon-Moreno, V.; Ciancotti-Olivares, L.; Asencio, J.; Sanz, P.; Ortega-Azorin, C.; Pinazo-Duran, M.D.;
Corella, D. Association between a SLC23A2 gene variation, plasma vitamin C levels, and risk of glaucoma in
a Mediterranean population. Mol. Vis. 2011, 17, 2997–3004.

34. Pinazo-Durán, M.D.; Zanón-Moreno, V.; Lleó-Perez, A.; García-Medina, J.J.; Galbis-Estrada, C.;
Roig-Revert, M.J.; Marco-Ramírez, C.; López-Gálvez, M.; Dolz-Marco, R.; Duarte, L.; et al. Genetic systems
for a new approach to risk of progression of diabetic retinopathy. Arch. Soc. Esp. Oftalmol. 2016, 91, 209–216.
[CrossRef]

http://dx.doi.org/10.1111/j.1753-4887.2011.00412.x
http://dx.doi.org/10.3945/an.113.004259
http://dx.doi.org/10.1186/1743-7075-11-8
http://dx.doi.org/10.1155/2015/408180
http://dx.doi.org/10.3389/fpls.2016.01454
http://dx.doi.org/10.1001/jamaophthalmol.2016.2906
http://dx.doi.org/10.1136/bjophthalmol-2016-309814
http://dx.doi.org/10.1136/bmjdrc-2017-000411
http://www.ncbi.nlm.nih.gov/pubmed/28761662
http://dx.doi.org/10.1111/cxo.13083
http://dx.doi.org/10.1002/glia.23152
http://dx.doi.org/10.2174/1573399813666170915133253
http://dx.doi.org/10.1111/jdi.12723
http://dx.doi.org/10.1016/S0161-6420(13)38012-9
http://dx.doi.org/10.1016/0003-2697(78)90342-1
http://dx.doi.org/10.3164/jcbn.08-162
http://dx.doi.org/10.1016/0003-2697(69)90064-5
http://dx.doi.org/10.1016/j.jchromb.2009.02.008
http://dx.doi.org/10.1016/j.oftal.2016.01.016


Antioxidants 2020, 9, 1101 18 of 19

35. Pinazo-Durán, M.D.; Shoaie-Nia, K.; Sanz-González, S.M.; Raga-Cervera, J.; García-Medina, J.J.;
López-Gálvez, M.I.; Galarreta-Mira, D.; Duarte, L.; Campos-Borges, C.; Zanon-Moreno, V.; et al.
Identification of new candidate genes for retinopathy in type 2 diabetics. Valencia Study on Diabetic
Retinopathy (VSDR). Report number 3. Arch. Soc. Esp. Oftalmol. 2018, 93, 211–219. [CrossRef] [PubMed]

36. Romero-Aroca, P.; de la Riva-Fernandez, S.; Valls-Mateu, A.; Sagarra-Alamo, R.; Moreno-Ribas, A.; Soler, N.
Changes observed in diabetic retinopathy: Eight-year follow-up of a Spanish population. Br. J. Ophthalmol.
2016, 100, 1366–1371. [CrossRef] [PubMed]

37. Zeng, Y.; Cao, D.; Yu, H.; Yang, D.; Zhuang, X.; Hu, Y. Early retinal neurovascular impairment in patients
with diabetes without clinically detectable retinopathy. Br. J. Ophthalmol. 2019, 103, 1747–1752. [CrossRef]

38. Tan, F.; Chen, Q.; Ahuang, X.; Wu, C.; Qian, Y.; Wang, Y. Associated risk factors in the early stage of diabetic
retinopathy. Eye Vis. 2019, 6, 23. [CrossRef]

39. Mancino, R.; di Pierro, D.; Varesi, C.; Cerulli, A.; Feraco, A.; Cedrone, C.; Pinazo-Duran, M.D. Lipid
peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients
with diabetic retinopathy. Mol. Vis. 2011, 17, 1298–1304.

40. Pinazo-Durán, M.D.; Gallego-Pinazo, R.; García-Medina, J.J.; Zanón-Moreno, V.; Nucci, C.; Dolz-Marco, R.;
Martínez-Castillo, S.; Galbis-Estrada, C.; Marco-Ramírez, C.; López-Gálvez, M.I.; et al. Oxidative stress and
its downstream signaling in aging eyes. Clin. Interv. Aging. 2014, 9, 637–652. [CrossRef]

41. Pan, J.; Liu, S.; Farkas, M.; Consugar, M.; Zack, D.J.; Kozak, I. Serum molecular signature for proliferative
diabetic retinopathy in Saudi patients with type 2 diabetes. Mol. Vis. 2016, 22, 636–645.

42. Shaghaghi, M.A.; Kloss, O.; Eck, P. Genetic variation in human vitamin C transporter genes in common
complex diseases. Adv. Nutr. 2016, 7, 287–298. [CrossRef]

43. Murgia, C.; Adamski, M.M. Translation of nutritional genomics into nutrition practice: The next step.
Nutrients 2017, 9, 366. [CrossRef] [PubMed]

44. Sasaki, M.; Kawasaki, R.; Rogers, S.; Man, R.E.; Itakura, K.; Xie, J. The associations of dietary intake of
polyunsaturated fatty acids with diabetic retinopathy in well-controlled diabetes. Invest. Ophthalmol. Vis. Sci.
2015, 56, 7439–7473. [CrossRef]

45. Díaz-López, A.; Babio, N.; Martínez-González, M.A.; Corella, D.; Amor, A.J.; Fitó, M. Mediterranean diet,
retinopathy, nephropathy, and microvascular diabetes complications: A post hoc analysis of a randomized
trial. Diabetes Care. 2015, 38, 2134–2141, Erratum in Diabetes Care. 2018, 41, 2260–2261. [CrossRef]

46. Wong, M.Y.Z.; Man, R.E.K.; Fenwick, E.K.; Gupta, P.; Li, L.J.; van Dam, R.M.; Chong, M.F.; Lamoureux, E.L.
Dietary intake and diabetic retinopathy: A systematic review. PLoS ONE 2018, 13, e0186582. [CrossRef]

47. Egea, J.; Fabregat, I.; Frapart, Y.M.; Ghezzi, P.; Görlach, A.; Kietzmann, T. A European contribution to the
study of ROS: A summary of the findings and prospects for the future from the COST action BM1203
(EU-ROS). Redox Biol. 2017, 13, 94–162, Erratum in Redox Biol. 2018, 14, 694–696. [CrossRef]

48. Domanico, D.; Fragiotta, S.; Cutini, A.; Carnevale, C.; Zompatori, L.; Vingolo, E.M. Circulating levels of
reactive oxygen species in patients with nonproliferative diabetic retinopathy and the influence of antioxidant
supplementation: 6-month follow-up. Indian J. Ophthalmol. 2015, 63, 9–14. [CrossRef]

49. Garcia-Medina, J.J.; Rubio-Velazquez, E.; Foulquie-Moreno, E.; Casaroli-Marano, R.P.; Pinazo-Durán, M.D.;
Zanón-Moreno, V.; Del-Rio-Vellosillo, M. Update on the effects of antioxidants on diabetic retinopathy:
In vitro experiments, animal studies and clinical trials. Antioxidants 2020, 9, 561. [CrossRef]

50. Andrea, F.; Sartini, S.; Piano, I.; Franceschi, M.; Quattrini, L.; Guazzelli, L.; Ciccone, L.; Orlandini, E.;
Gargini, C.; la Motta, C.; et al. 1 Oxy-imino saccharidic derivatives as a new structural class of aldose
reductase inhibitors endowed with anti-oxidant activity. J. Enzyme Inhib. Med. Chem. 2020, 35, 1194–1205.
[CrossRef]

51. Fernández-Albarral, J.A.; de Hoz, R.; Ramírez, A.I.; López-Cuenca, I.; Salobrar-García, E.; Pinazo-Durán, M.D.;
Ramírez, J.M.; Salazar, J.J. Beneficial effects of saffron (Crocus sativus L.) in ocular pathologies, particularly
neurodegenerative retinal diseases. Neural Regen. Res. 2020, 15, 1408–1416. [CrossRef]

52. Hsu, Y.J.; Lin, C.W.; Cho, S.L.; Yang, W.S.; Yang, C.M.; Yang, C.H. Protective effect of fenofibrate on oxidative
stress-induced apoptosis in retinal-choroidal vascular endothelial cells: Implication for diabetic retinopathy
treatment. Antioxidants 2020, 9, 712. [CrossRef] [PubMed]

53. Nebbioso, M.; Lambiase, A.; Armentano, M.; Tucciarone, G.; Bonfiglio, V.; Plateroti, R.; Alisi, L. The complex
relationship between diabetic retinopathy and high-mobility group box: A review of molecular pathways
and therapeutic strategies. Antioxidants 2020, 9, 666. [CrossRef]

http://dx.doi.org/10.1016/j.oftal.2017.12.016
http://www.ncbi.nlm.nih.gov/pubmed/29398232
http://dx.doi.org/10.1136/bjophthalmol-2015-307689
http://www.ncbi.nlm.nih.gov/pubmed/26769672
http://dx.doi.org/10.1136/bjophthalmol-2018-313582
http://dx.doi.org/10.1186/s40662-019-0148-z
http://dx.doi.org/10.2147/CIA.S52662
http://dx.doi.org/10.3945/an.115.009225
http://dx.doi.org/10.3390/nu9040366
http://www.ncbi.nlm.nih.gov/pubmed/28383492
http://dx.doi.org/10.1167/iovs.15-17485
http://dx.doi.org/10.2337/dc15-1117
http://dx.doi.org/10.1371/journal.pone.0186582
http://dx.doi.org/10.1016/j.redox.2017.10.007
http://dx.doi.org/10.4103/0301-4738.151455
http://dx.doi.org/10.3390/antiox9060561
http://dx.doi.org/10.1080/14756366.2020.1763331
http://dx.doi.org/10.4103/1673-5374.274325
http://dx.doi.org/10.3390/antiox9080712
http://www.ncbi.nlm.nih.gov/pubmed/32764528
http://dx.doi.org/10.3390/antiox9080666


Antioxidants 2020, 9, 1101 19 of 19

54. Hee, M.R.; Izatt, J.A.; Swanson, E.A.; Huang, D.; Schuman, J.S.; Lin, C.P.; Puliafito, C.A.; Fujimoto, J.G.
Optical coherence tomography of the human retina. Arch. Ophthalmol. 1995, 113, 325–332. [CrossRef]
[PubMed]

55. Lang, G.E. Optical coherence tomography findings in diabetic retinopathy. Dev. Ophthalmol 2007, 39, 31–47.
[CrossRef] [PubMed]

56. Arévalo, J.F. Diabetic macular edema: Changing treatment paradigms. Curr. Opin. Ophthalmol. 2014,
25, 502–507. [CrossRef]

57. Virgili, G.; Menchini, F.; Casazza, G.; Hogg, R.; Das, R.R.; Wang, X.; Michelessi, M. Optical coherence
tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database
Syst. Rev. 2015, 1, CD008081. [CrossRef]

58. Jiang, J.; Liu, Y.; Chen, Y.; Ma, B.; Qian, Y.; Zhang, Z.; Zhu, D.; Wang, Z.; Xu, X. Analysis of changes in retinal
thickness in Type 2 diabetes without diabetic retinopathy. J. Diabetes Res. 2018, 2018, 3082893. [CrossRef]

59. Vujosevic, S.; Muraca, A.; Alkabes, M.; Villani, E.; Cavarzeran, F.; Rossetti, L.; de Cilla, S. Early microvascular
and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic
retinopathy. Retina 2019, 39, 435–445. [CrossRef]

60. Rodrigues, T.M.; Marques, J.P.; Soares, M.; Simão, S.; Melo, P.; Martins, A.; Figueira, J.; Murta, J.N.; Silva, R.
Macular OCT-angiography parameters to predict the clinical stage of nonproliferative diabetic retinopathy:
An exploratory analysis. Eye 2019, 33, 1240–1247. [CrossRef]

61. Moschos, M.M.; Dettoraki, M.; Tsatsos, M.; Kitsos, G.; Kalogeropoulos, C. Effect of carotenoids dietary
supplementation on macular function in diabetic patients. Eye Vis. 2017, 4, 23. [CrossRef]

62. Rossino, M.G.; Casini, G. Nutraceuticals for the treatment of diabetic retinopathy. Nutrients 2019, 11, 771.
[CrossRef]
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