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Abstract: The potential beneficial effects of the antioxidant properties of vitamin C have been
investigated in a number of pathological conditions. In this review, we assess both clinical and
preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including
coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and
controversies in investigations on vitamin C and cardiovascular disorders are also discussed.
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1. Physiology of Vitamin C

Vitamin C is a carbohydrate-like substance first isolated in 1928 by Albert Szent-Györgyi from
cabbage, paprika, and the adrenal glands of some animals [1,2]; it was later found to be identical with
the antiscorbutic factor that had been isolated from lemon juice by Sylvester Solomon Zilva in 1924 [3].
Originally called ‘hexuronic acid’ by Györgyi, the current denomination as vitamin C was proposed in
1933 by Walter Norman Haworth [4,5].

Among the vastly biological functions in which vitamin C is involved, as a potent antioxidant
and radical scavenger, it protects cell constituents against oxidative stress, mediated by reactive
oxygen species (ROS) and free radicals [6–8]. Moreover, vitamin C redox potential allows the
maintenance of reduced and regeneration of other antioxidants, including glutathione andα–tocopherol
(vitamin E) [9–11]. It is also required for the synthesis of several crucial biomolecules since it acts as
a cofactor of the monooxygenase and dioxygenase enzymes [12]. Vitamin C-dependent enzymatic
reactions are involved in the biosynthesis of collagen and cellular procollagen secretion, L-carnitine,
norepinephrine, epinephrine, and for the regulation of the biosynthesis of other molecules [13,14].
Furthermore, vitamin C intake from food or supplements can increase the bioavailability of iron by
improving the absorption of the non-heme iron [15–18].
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2. Genetics and Diet

The crucial biological functions of vitamin C and the severity of the pathological consequences of
its deficiency somehow explain the evolutive conservation of its biosynthesis within the great part of the
mammalian class, as well as in many vertebrate animals [19]. However, this ancestral function has been
lost during the evolution in humans, anthropoid primates, guinea pigs, and some species of monkeys
and bats [20,21]. Albert Lehninger between the 1950s and 1960s was the first scientist to indicate that
human cells are not able to perform the last reaction of vitamin C biosynthesis, i.e., the conversion of
L-gulono-γ-lactone into ascorbic acid, which is catalyzed by the enzyme L-gulono-γ-lactone (GULO)
oxidase [21–23]. It was only in 1991 that Nishikimi and colleagues demonstrated that the gene encoding
for GULO is still present in humans but is not active due to the accumulation of a number of mutations
that eventually turned it into a non-functional pseudogene [24,25]. Biochemists are continuing to
investigate the exact reasons that led to the propagation of this inborn genetic flaw, namely the loss of
a gene coding for an essential compound, during the evolution from a primate ancestor to humans.
Although several mechanisms were proposed, the primary argument supporting the paradox that
mammalian species with the loss-of-function mutations of the GULO gene were not under selective
pressure is that all these species have diets that provide a high amount of vitamin C; therefore, the loss of
their GULO gene did not cause any evolutive disadvantage [20,26–28]. This explanation is in agreement
with the fact that wild anthropoid primates consume a considerably larger quantity of vitamin C per
body weight compared to the human recommended daily amount for vitamin C (65 to 90 mg/day) [29]:
dietary intake of vitamin C reported for gorillas (Gorilla gorilla) is 20–30 mg/kg/day, for spider monkeys
(Ateles geoffroyi) is 106 mg/kg/day, and for howler monkeys (Alouatta palliata) is 88 mg/kg/day; similar
considerations are valid for bats, with Artibeus jamaicensis consuming 258 mg/kg/day [20,28].

Based on the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994),
the percentage of US males with vitamin C deficiency (less than 11.4 µmol/L in serum) was found
to be greater compared to females, reaching a peak of 17% among 25- to 64-year-old subjects [30].
The more recent 2003–2004 NHANES revealed the one vitamin C status improved in the US population,
and vitamin C deficiency was significantly lower than that observed during NHANES III; indeed,
the overall prevalence of age-adjusted vitamin C deficiency was 7.1 ± 0.9% [31]. Yet, various studies
have evidenced low vitamin C levels in both adults and children living in low-income countries [32–35].
In India, vitamin C deficiency has been relatively well characterized by large population-based studies
of >5600 adults aged over 60, in which a marked deficiency was observed in 74% of adults living in
north India and 46% of adults living in south India [32,36].

3. Pharmacokinetics and Bioavailability of Vitamin C

Vitamin C is a lactone (C6H8O6) and can exist both in a reduced and in an oxidized form:
L-ascorbic acid (reduced form) and dehydro-L-ascorbic acid (oxidized form), as shown in Figure 1.
Its hydroxyl groups are located at positions 2 and 3 ionize with pK values of 4.17 and 11.57. Although
both forms are biologically active [37,38], in most body fluids, reduced vitamin C is mainly present as
an ascorbate anion [39–41]. Due to its size and charge, ascorbate does not readily permeate the lipid
bilayer [42–44]. The majority of intestinal uptake, tissue distribution, and renal reuptake is mediated
by the Na+-dependent vitamin C transporters (SVCT1 and SCVT2), which co-transports Na+ and
ascorbate across membranes: SVCT1 is widely distributed, while SVCT2 is the main isoform in the
adrenal gland and in the eye [45–55].

Ingested vitamin C is mostly absorbed across the intestinal epithelium by membrane transporters in
the apical brush border membrane, either as ascorbate via the SVCT transporters or as dehydroascorbic
acid through facilitated diffusion via GLUT1 or GLUT3 transporters [56–58]; once inside the cell,
dehydroascorbic acid is then converted to ascorbate or transported to the bloodstream by GLUT1 and
GLUT2 in the basolateral membrane. Specifically, SVCT1 is mainly located on the apical membrane
of enterocytes whereas SVCT2 is expressed at the basolateral surface [59–64]. SVCT1 is also present
in the epithelium of the proximal renal tubuli [50], where it orchestrates the active reabsorption of
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ascorbate in the kidneys. A murine model lacking SVCT1 exhibited a significantly increased (18-fold)
renal fractional excretion, though intestinal absorption was not reduced [65], indicating that the renal
SVCT1-mediated reabsorption of vitamin C is crucial in determining its systemic homeostasis.

Figure 1. Reduced (left) and oxidized (right) forms of vitamin C.

The non-linear pharmacokinetics and the unique compartmentalization of vitamin C at physiological
levels [50,66–69] can be mostly attributed to the differences between organs in expression, concentration
dependency, and substrate affinity of the SVCT and GLUT transporters [49,57,60–62,70–72]. In contrast
to oral administration, parenteral administration of vitamin C bypasses the saturable transport
mechanism that governs its intestinal absorption [73,74]. However, intravenous administration
of vitamin C is an impractical mode of administration and carries risks of discomfort, infection,
and phlebitis. Hence, alternative modes of effective vitamin C delivery have been proposed, with the
ultimate goal of improving its bioavailability. In this regard, oral consumption of vitamin C encapsulated
in liposomes may hold promise. Liposomes consist of single or multiple concentric membrane-like
phospholipid bilayers encapsulating an aqueous compartment [75–78]. The size of these lipid vesicles
can range from a few nanometers to several micrometers; liposomes specifically applied to medical use
range between 50 and 450 nm [78–81]. Liposomes seem to be an ideal drug-carrier system, since their
morphology is similar to that of cellular membranes and because of their ability to incorporate various
substances, including hydrophilic molecules [82–100]. Accordingly, several studies have indicated that
liposomes are very useful for delivering vitamin C [99,101–115]. For instance, Davis and coworkers
evaluated plasma levels of oral, intravenous, and liposomal vitamin C, demonstrating that liposomal
vitamin C has an enhanced bioavailability compared to non-liposomal vitamin C, while avoiding the
risks associated with intravenous administration [116]. Another recent study has demonstrated that
liposomal vitamin C increases the concentration of vitamin C in the blood by almost doubling the
concentration obtainable via the non-liposomal form [117]. These results imply that liposomes might
be an excellent carrier for vitamin C to achieve high blood levels.

4. Cardiovascular Effects of Vitamin C: Pre-Clinical Evidence

Severe vitamin C deficiency leads to a well-established disease, known as scurvy, a pathological
condition characterized by bleeding, poor wound healing, hair and tooth loss, joint pain, and bone
fragility [4]. Albeit scurvy is a fatal disease if not promptly treated, in several clinical studies,
low levels of vitamin C (assessed by dietary intake or plasma analysis) have been associated with
a number of conditions, including high blood pressure (BP), endothelial dysfunction, heart disease,
atherosclerosis, and stroke [118–121]. Several pre-clinical studies investigated the role of vitamin C in
cardiac and vascular protection and in the amelioration of pathological conditions. In 1999, Heller and
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collaborators demonstrated that ascorbic acid potentiates nitric oxide (NO) synthesis in cultured human
endothelial cells, a mechanism that can preserve vessels from altered myogenic tone (vasoconstriction),
atherosclerosis, and coagulation abnormalities [122]. Huang et al., in 2000, reported similar effects on
the endothelium-derived NO synthase (eNOS) bioactivity, through the increase of the intracellular
tetrahydrobiopterin content in porcine aortic endothelial cells [123]. These results were then confirmed
by Baker et al., who reported a significant enhancement of eNOS enzymatic activity in human umbilical
vein endothelial cells (HUVECs) treated with vitamin C, following the increase of the eNOS cofactor
tetrahydrobiopterin [124].

Similar protective effects of vitamin C on vascular endothelial functions were reported in 2002
by d’Uscio et al., who observed that supplementation with ascorbate increases tetrahydrobiopterin
and eNOS activity in the aortas of apoE-deficient and control mice [125]. Further evidence of the
endothelial protection derived by vitamin C and tetrahydrobiopterin was provided later by Yan et al.,
who reported in a rat model that oral co-supplementation of vitamin C with tetrahydrobiopterin and
L-arginine significantly increases vascular perfusion after hindlimb ischemia by augmenting eNOS
activity and reducing oxidative stress and tissue necrosis [126].

In 2003, Ülker and collaborators reported that incubation of aortas from spontaneously
hypertensive rats with different concentrations of vitamin C (10 to 100 µmol/L) improved endothelial
function, reduced NAD(P)H oxidase activity, as well as superoxide production, and increased eNOS
activity and NO generation to the levels observed in control rat aortas [127].

These observations were corroborated by Ladurner et al., who discovered that ascorbate rapidly
activates eNOS in HUVEC and immortalized human endothelial cells, through a dose-dependent
increased phosphorylation of eNOS-Ser1177 and concomitant decreased phosphorylation at
eNOS-Thr495 [128], a phosphorylation pattern highly indicative of increased eNOS activity [129].
Glutathione in its reduced form (GSH) plays crucial roles in protecting cells from oxidative damage,
as well as in maintaining cellular redox homeostasis [130,131]. GSH is essential for the physiological
function of vitamin C because it is required in vivo for the reduction of dehydroascorbate in guinea
pigs, unable to synthesize ascorbate [132]; moreover, GSH deficiency in adult mice stimulates ascorbate
synthesis in the liver [132]. These findings strongly suggest the presence of a metabolic redundancy
and overlap in the functions of these two important antioxidants [133].

While optimal levels of plasma vitamin C may be critical for maintaining glutathione in its reduced
form, sparing it from depletion [134,135], the increment of the oxidized glutathione (GSSG) in the
heart, with the consequent reduction of the GSH/GSSG ratio, could lead to ventricular arrhythmias via
mechanisms that include mitochondrial depolarization in cardiomyocytes [136].

Overall, these observations indicate that vitamin C does not exert its antioxidative function only
by direct interaction with ROS but also via maintenance of the redox regulation by increasing levels of
other cellular radical scavengers.

5. Vitamin C and Cardiac Disease

Various clinical studies have investigated the association between supplementation of vitamin
C and the risk of cardiovascular disease (CVD), heart failure (HF), coronary heart disease (CHD),
and other major adverse cardiac events (Tables 1 and 2), often yielding opposite results.

In 1993, Rimm et al. published a cohort study conducted on 39,910 US health professionals free of
diagnosed CHD or other metabolic conditions at enrollment, and assessed by dietary questionnaires
the intake of vitamin C, vitamin E, and carotene, showing that vitamin C (1162 mg/day) was not
associated with a lower risk of CHD during a 4–year follow-up [137]. However, in 2003, a study
conducted on 85,118 female nurses, based on a food-frequency questionnaire and using multivariate
models to adjust for age, smoking, and other cardiovascular risk factors, indicated that the intake
of vitamin C supplements was associated with a significantly lower risk of CHD during 16 years of
follow-up [138].
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Table 1. Major studies investigating the association between vitamin C and cardiovascular disease (CVD).

Clinical Study Study Population Vitamin C
Concentration Range

Fasting Blood Sample
(Assay Used) Adjustments Outcome Ref.

EPIC-Norfolk
19,496 healthy men and

women from
Norfolk (US)

25.9–79.2 µmol/L Non-fasting venous blood
(fluorometric assay)

Age, systolic BP, cholesterol,
smoking, diabetes,

and supplement use

A mean follow-up of 4 years
showed that 20 µmol/L rising in
plasma Vitamin C concentration

was associated with ~20%
reduced risk of

all-cause mortality

[121,139]

EPIC-Norfolk
20,299 healthy men and

women from
Norfolk (US)

41–66 µmol/L Non-fasting venous blood
(fluorometric assay)

Age, sex, smoking, BMI, physical
activity, systolic BP, diabetes,
cholesterol, MI, social class,

alcohol, and supplement used

A mean follow-up of 12.8 years
showed that every 20 µmol/L
increase in plasma Vitamin C

was associated with a 9% relative
reduction in the risk of HF.

[140]

HPFS—Health
Professionals

Follow-up Study

39,910 healthy US male,
health professionals 95–116 mg/dL Not reported

Age, season, smoking, energy
intake, alcohol, hypertension,

history of MI, profession, BMI,
and physical activity

After a mean follow-up of 8
years, Vitamin C intake was not
associated with a lower risk of

CHD and stroke

[141]

NHS I—Nurses’
Health Study 1

85,118 healthy US
female nurses 70–704 mg/dL Not reported

Age, energy intake, supplements
use, alcohol, smoking status,

and diabetes

Data from 16 years of follow-up
indicate that Vitamin C

supplement is associated with a
significantly lower risk of CHD

[138]

ASAP—Antioxidant
Supplementation in

Atherosclerosis Prevention

520 men and
post-menopausal women,

with
hyper-cholesterolemia

Not specified Not specified
(HPLC assay) Sex, baseline HDL cholesterol

A 6–year follow-up indicated
that Vitamin C supplementation
reduced the slope of the mean

carotid artery intima-media
thickness progression

[142]

Women’s Antioxidant
Cardiovascular Study

8171 female health
professionals with CVD,

or 3 or more CVD
risk factors

Not specified Not reported Compliance-adjusted analyses

After a follow-up of 9.4 years, no
overall effects of Vitamin C (500

mg/day) on all major
cardiovascular events and stroke

[143]

NHANES II 8417 US men and women 17–79.5 µmol/L Non-fasting venous blood
(colorimetric assay)

Age, sex, race, education, physical
activity, dietary energy and fat

intake, cholesterol, BMI, alcohol,
smoking, diabetes, hypertension,

CHD, stroke, cancer, use of
aspirin, Vitamin E intake

Decreased risk of
all-cause mortality [144]

NHANES III 6624 US men and women 17–85.2 µmol/L Non-fasting venous blood
(colorimetric assay)

Age, sex, race, education, physical
activity, smoking, alcohol,
cholesterol, BMI, diabetes,

hypertension, use of aspirin,
Vitamin E intake

Top Vitamin C group had a 27%
lower CVD risk compared to

bottom group
[145]



Antioxidants 2020, 9, 1227 6 of 23

Table 1. Cont.

Clinical Study Study Population Vitamin C
Concentration Range

Fasting Blood Sample
(Assay Used) Adjustments Outcome Ref.

SU.VI.MAX study 13,017 French adults Not specified
Fasting venous blood

(continuous flow segmented
by air bubbles)

Bonferroni adjustment for
multiple mean comparisons

After a follow-up of 7.5 years, no
effect of Vitamin C

supplementation (120 mg/d) on
CVD; lower all-cause mortality

in men

[146]

PHS II—Physicians Health
Study II

14,641 healthy US
male physicians Not specified Not reported

Age, PHS cohort, randomized
β–carotene, Vitamin E or Vitamin
C, and multivitamin assignments

A mean follow-up of ~8 years
showed that Vitamin C

supplementation (500 mg/day)
had no significant effect on the

incidence of CVD, stroke, or
mortality for

cardiovascular events

[147]

Heart Protection Study

20,536 British men and
women with CHD,

occlusive arterial disease,
or diabetes

Not specified Non-fasting venous blood Not specified

After a follow-up of 5 years,
Vitamin C supplementation (250
mg/d) had no significant effects

on CVD

[148]

CARDIA 2884 healthy US men
and women 24–70 µmol/L Fasting venous blood

(HPLC assay)

Age, sex, race, center, education,
smoking, alcohol, physical

activity, a priori diet quality score
and food consumption, BMI,

waist circumference, history of
diabetes, systolic BP

Higher plasma Vitamin C, due to
better diet quality, is inversely

related to high BP.
[149]

Iowa Women’s
Health Study

1923 post-menopausal
diabetic women from U.S.

(55 to 69 years)
82–≥679 mg/day Not reported

Age, total energy intake, history
of hypertension, BMI, waist-hip

ratio, smoking status and amount
smoked, alcohol consumption,

physical activity score, hormone
replacement therapy, main type

and duration of diabetes,
medications

After a follow-up of 11 years, an
association between increased
mortality for CVD or CHD and
Vitamin C ≥ 300 mg/day was

reported. Vitamin C intake was
unrelated to CVD and stroke

mortality in nondiabetic women.

[150]

Italian section of the
EPIC Study

41,620 Italians previously
diagnosed with stroke or

myocardial infarction
(44 to 61 years)

83–201 mg/day Not reported

Age, sex, hypertension, smoking,
alcohol, education, energy intake,

waist circumference, obesity,
and physical activity

After 7.9 years of follow-up,
Vitamin C was associated with a

lower risk of ischemic stroke
[151]
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These findings were confirmed in 2004 in a pooled analysis of nine prospective cohort studies,
showing that supplementation of vitamin C (≥700 mg/day) was inversely associated with CHD risk
during a mean 10–year follow-up [152].

Conversely, in the same year, a prospective (15–year follow-up) cohort study (the Iowa
Women’s Health Study Cohort) found a positive association between mortality for CHD and
vitamin C supplementation (≥300 mg/day), assessed via food-frequency questionnaires in diabetic
postmenopausal women [153].

In 2008, a meta-analysis based on 14 studies, for a total of 374,488 individuals with a median
follow-up of ~10 years, concluded that dietary vitamin C has an inverse association with CHD risk,
whereas supplement intake of vitamin C has no significant association with CHD risk [154]. Another
large prospective cohort study conducted for a median follow-up of 16.5 years found an inverse
association between dietary vitamin C intake determined by a food frequency questionnaire and CHD
mortality in Japanese women without a history of CVD or cancer [155]. In 2013, a meta-analysis
evaluating 15 trials for a total of 188,209 subjects found that vitamin C (in a range from 120 to 1000
mg) in association with vitamin E and beta-carotene had no significant effect on CHD and major
cardiovascular events [156].

Taken together, these analyses indicate that the association between vitamin C intake and CHD risk
remains controversial, with variable association depending on the source of vitamin C. It is important
to emphasize at this point that the relationship between vitamin C intake and the actual vitamin C
levels in the blood is not linear, hence it is not appropriate to extrapolate vitamin C levels from food
intake questionnaires, and values ascertained via blood analyses are necessary [32,72].

The better accuracy of the quantification of vitamin C levels from blood samples compared to
food frequency questionnaires is further confirmed when analyzing the outcomes of the European
Investigation into Cancer and Nutrition (EPIC)–Norfolk study, a prospective study investigating the
relationship between vitamin C and incident HF in 20,299 healthy adults. After a median follow-up of
~12.8 years, ascorbate was inversely associated with incident cases of HF; specifically, every 20 µmol/L
increase in plasma vitamin C concentration was associated with a 9% reduced risk of HF [121,139].
Interestingly, in this study, dietary intake was the primary source of vitamin C as assessed by the food
frequency questionnaire; however, the investigators did not find a significant association between the
reported consumption of fruit and vegetables and lower risk of HF. Therefore, food questionnaires are
inadequate to establish the exact vitamin C levels of an individual, hence it is reasonable to consider
blood samples as a more reliable source [32,72].

In 2007, the clinical trial Women Antioxidant Cardiovascular Study tested the effects of vitamin C,
alongside beta carotene and vitamin E, on the combined outcome of myocardial infarction, coronary
revascularization, or cardiovascular death among 8171 female health professionals aged 40 years or
older, with a history of CVD or at least three CVD risk factors, followed up for ~9.4 years; the study
found no significant effects of ascorbic acid (500 mg/day) on cardiovascular events [143]. Similarly,
the Physicians Health Study II (PHS II), a large trial conducted on 14,641 male subjects, including
754 men (5.1%) with prevalent CVD at randomization, revealed that vitamin C (500 mg/day) for ~8 years
of follow-up had no significant effect on cardiovascular mortality [147]. In 2017, a meta-analysis of
eight randomized controlled trials with a total of 15,445 participants, found inconsistent or low-quality
(downgraded) evidence for a correlation between vitamin C supplementation and major cardiovascular
events or cardiovascular mortality [157].

In light of the contradictory outcomes herein discussed, it appears that better quality studies
are necessary to examine the effects of vitamin C on cardiovascular endpoints, particularly in
participants with different risks of CVD. Furthermore, study participants should be tested to exclude
the contribution from singular or multiple micronutrient deficiencies, since vitamin C deficiency is
commonly accompanied by other micronutrient deficiencies and associated with other confounding
aspects, including poor-quality diet [32,158].
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Table 2. Main meta-analyses investigating the correlation between vitamin C intake or its plasma levels and cardiovascular disease (CVD).

Meta-Analysis Topic Number of Studies Total Participants (n) Trial Duration Vitamin C
Supplement Dosage Outcome Ref.

Coronary Heart Disease 14 cohorts 374,488 mean duration: 10 y. Not reported

Dietary Vitamin C had an
inverse association with CHD
risk, but supplement intake of
Vitamin C had no significant
association with CHD risk.

[154]

Hypertension 29 trials 1407 mean duration: 8 wks. 60 to 4000 mg/day
(median 500 mg/day)

Daily supplementation of
Vitamin C in hypertensive

participants reduced systolic BP
by 3.84 mm Hg and DBP by

1.48 mm Hg.

[159]

Coronary Heart Disease 15 trials 188,209 from 1.4 y. to 12 y. 120 to 1000 mg/day

Vitamin C in association with
Vitamin E and beta-carotene

had no effect on CHD or other
major cardiovascular events.

Vitamin C in association with
Vitamin E and beta-carotene
had no effect on stroke risk

compared to placebo.

[156]

Stroke 16 cohorts

217,454 participants for
studies on Vitamin C intake

29,648 participants for
studies on circulating

Vitamin C

from 6.1 y. to 30 y. 45 to 1167 mg/day

19% lower risk of stroke (pooled
analysis of 2 studies) comparing
the highest to the lowest dietary

Vitamin C intakes.
38% lower risk of stroke (pooled
analysis of 6 studies) with the

highest versus lowest
circulating Vitamin
C concentrations.

[160]

Endothelial function 44 trials 1324 from 1 d. to 8 wks. 500 to 2000 mg/day

A significant positive effect of
Vitamin C supplementation on
endothelial function measured

by flow-mediated dilation
(19 trials), evaluating

pulse-wave (5 trials) and
forearm blood flow (20 trials).

[161]
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Table 2. Cont.

Meta-Analysis Topic Number of Studies Total Participants (n) Trial Duration Vitamin C
Supplement Dosage Outcome Ref.

Arterial stiffness 22 trials 1909 from 1 d. to 7 y.
(mean duration: 56 d.)

120 to 4000 mg/day
(mean 2000 mg/day)

Association of Vitamin C with
Vitamin E and β–carotene
improved arterial stiffness

irrespective of the age group

[161]

Cardiovascular events 8 trials 15,445 mean duration:
8 y. –

Inconsistent or low-quality
(downgraded) evidence for the
correlation between Vitamin C

supplementation and major
cardiovascular events or
cardiovascular mortality

[157]

Hypertension
11 cross-sectional

studies and 7
case-control studies

22,200 – –

Serum Vitamin C level was
significantly lower in

hypertensive compared to
normotensive subjects.

Inverse correlation between
serum Vitamin C concentration

and SBP or DBP.

[162]

Hypertension 8 trials 614 from 4 wks. to 24 wks. 300 to 1000 mg/day

Significantly reduced SBP and
DBP in the subgroups of age
≥35 and ≥60 years with Vitamin

C supplementation ≥500
mg/day for 6 weeks or more.

[163]

Cardiovascular mortality 15 trials 320,548 from 4 to 22y. 50 to 450 mg/day
Higher Vitamin C intake is

associated with a lower risk of
cardiovascular mortality

[164]
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6. Vitamin C and Vascular Disease

We and others have shown that the endothelium plays a crucial role in the pathophysiology of
vascular disorders [165–177]. Over the years, a significant number of clinical studies have investigated
the effect of vitamin C on vascular disease, evidencing a promising association linking vitamin C intake,
circulating levels of ascorbic acid, and lower risk of hypertension. Forman and coworkers reported
data from three large prospective cohorts, namely the Nurses Health Study 1 (n = 88,540 women,
median age 49 years), the Nurses Health Study 2 (n = 97,315 women, median age 36 years), and the
Health Professionals Follow-up Study (n = 37,375 men, median age 52 years).

The risk of developing hypertension did not substantially change for individuals who had reported
an intake upper or equal to 1500 mg/day of vitamin C compared to those with an intake lower than
250 mg/day [178].

However, when the vitamin C plasma concentration was directly measured, three independent
cross-sectional studies indicated a significant inverse correlation between the concentrations of ascorbic
acid and BP values [119,120,179]. Moran et al. reported that vitamin C plasma concentrations in a group
of 168 healthy US citizen were inversely related to systolic BP (SBP) [119]. Myint et al. published their
observations based on the EPIC-Norfolk cross-sectional study, showing a strong relationship between
plasma vitamin C concentrations and lower clinic BP; after adjusting for confounders, the likelihood of
having high BP was 22% lower for subjects in the top quartiles of plasma vitamin C levels compared to
the bottom quartiles [120].

Block et al. examined in a cross-sectional analysis the association of plasma ascorbic acid with BP
in a group of 242 women (aged 18–21 years), finding that plasma vitamin C was inversely associated
with both SBP and diastolic BP (DBP), highlighting how persons in the highest quartile of the plasma
ascorbic acid distribution had 4.66 mmHg lower systolic BP than those in the lowest quartile of the
distribution [179].

These results are consistent with a meta-analysis of 29 trials for a total of 1407 participants
including normotensive and hypertensive subjects, showing that daily supplementation with a range
from 60 to 4000 mg of vitamin C (median dose: 500 mg) in hypertensive participants reduced systolic
BP by 3.84 mm Hg and DBP by 1.48 mm Hg [159].

In 2015, the Coronary Artery Risk Development in Young Adults (CARDIA), a prospective cohort
study collecting data from 2884 young adults initially hypertension free, revealed that higher plasma
ascorbic acid can favorably influence BP [149]. A very recent meta-analysis, published in 2020 by
Ran et al., selected 11 cross-sectional studies and 7 case-control studies conducted from 1990 to 2017;
the authors reported that serum vitamin C levels in the study participants were significantly lower in
hypertensive subjects than in normotensive ones; moreover, the authors found a significant reverse
relationship between serum vitamin C concentration and both SBP and DBP [162].

In the same year, an independent meta-analysis published by Guan et al. supported the results of
Ran’s study: The authors selected 8 randomized controlled trials in which vitamin C, varying from 300
to 1000 mg/day, was supplemented for 4–24 weeks to 614 hypertensive patients; the authors observed
a marked reduction in DBP in the subgroup of patients with an age ≥35 years having a vitamin C
supplementation ≥500 mg/day for 6 weeks, while a significant reduction of both SBP and DBP was
observed in the subgroup of age ≥60 years [163].

Overall, these findings highlight how vitamin C is inversely associated with both SBP and
DBP, indicating that people with hypertension could exhibit low serum vitamin C compared to
normotensive subjects.

Bruno and colleagues demonstrated that acute vitamin C infusion (3 g i.v. in 5 min)
significantly lowers BP in hypertensive patients but not in normotensive subjects; additionally,
muscle sympathetic nerve activity was significantly reduced after vitamin C infusion in hypertensive
patients but not in healthy subjects [180]. Corroborating these results, Heitzer et al. demonstrated
that intra-arterial infusion of vitamin C (18 mg/min) had no significant effect on the forearm blood
flow in response to acetylcholine (endothelium-dependent vasodilator) and sodium nitroprusside
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(endothelium-independent vasodilator) in 10 control subjects; however, in 10 chronic smokers,
acetylcholine with the concomitant infusion of vitamin C markedly improved the impaired forearm
blood flow responses [181]. Similarly, vitamin C supplementation (1000 mg for 4 weeks) significantly
reduced LDL oxidative susceptibility in a group of smokers [182].

However, a subsequent clinical trial conducted on 34 male smokers did not support these
observations; in fact, compared to placebo, supplementation of vitamin C (250 mg twice daily for
4 weeks) significantly increased plasma ascorbate concentrations but did not significantly change the
levels of circulating oxidized LDL, nor of markers of endothelial activation like sICAM–1, sVCAM–1,
and vWF-antigen [183].

In 2003, Salonen et al. published the results of the 6–year ASAP trial, in which slow-release vitamin
C (250 mg) in addition to vitamin E (136 IU) were supplemented twice daily in hypercholesterolemic
subjects [142]. Ultrasound assays proved that the vitamin C supplementation reduced the slope of the
mean carotid artery intima-media thickness progression by 26%, with a significance that was reached
in men (33% of reduction) but not in women (14% of reduction) [142]. These findings confirmed the
observations previously obtained in the same ASAP trial at a shorter 3–year follow-up [184].

In 2014, two meta-analyses authored by Ashor and collaborators provided interesting findings
concerning the link between vitamin C plasma levels and endothelial function, supporting the
above-mentioned observations previously made by Heitzer [181] and Salonen [142]. The first
meta-analysis, examining 44 randomized clinical trials comprising 1324 participants (964 males
and 360 females) with a median age of ~51 years, revealed a significant positive effect of vitamin
C supplementation (>500 mg/day) on endothelial function measured by flow-mediated dilation
(19 studies) [161]. The action of vitamin C on endothelial function appeared to be dependent on
health status, with stronger effects in atherosclerotic and diabetic patients. The second meta-analysis,
performed on 22 randomized controlled trials, which included 1909 subjects (1088 males and 821 females)
with an age that ranged from 22 to 63.5 (median of 29) years, reported that supplementation of vitamins
C (120 to 4000 mg/day), E, A, and β–carotene improved arterial stiffness irrespective of the age group
and duration of intervention [161]; notably, antioxidant vitamins were more effective in participants
with low baseline plasma concentrations of vitamin C [161].

Recent trials have shown that Vitamin C ameliorates the oxidative imbalance and vascular
remodeling induced by different stressors, including reperfusion injury following myocardial
infarction [185], hyperoxya [186,187], shear stress [188], prolonged immobilization [189], glucose
load [190], and mental stress [191,192]. Vitamin C also increases skeletal muscle blood flow and oxygen
consumption via local vasodilation during exercise [193]. Vitamin C has also been shown to significantly
attenuate endothelial barrier permeability [194–196], an aspect that has major implications in infectious
disorders [197–200], which are also known to cause a systemic surge in oxidative stress [201–203].

Therefore, the antioxidant roles of Vitamin C and its protective effects on endothelial permeability
could come into effect especially during infective processes [204–207]. Vitamin C has also been shown
to improve the effects of other agents in a synergistic manner: for instance, when added to metformin,
Vitamin C reduces cardiovascular diabetic complications [208], when added to glucagon-like peptide 1
(GLP–1), it further ameliorates endothelial function and reduces oxidative stress in Type 1 diabetic
patients [209].

Thus, it is possible that the association of Vitamin C with other nutrients and micronutrients playing
akin beneficial actions could be harnessed [210]. For instance, the supplementation of L-Arginine
has been shown to play a favorable role in the regulation of immune responses [211,212]. Similarly,
both Vitamin C and L-Arginine are known to improve endothelial function and reduce vascular
permeability during infectious disorders [213–216]. Consequently, it is possible to speculate that their
association could be synergistic in tackling infectious diseases; for instance, as COVID–19 is causing
endotheliopathy [169], the association of oral L-arginine and liposomal vitamin C (e.g., Bioarginina®

C, 2 vials/day) could be efficacious for COVID–19 and other infectious disorders.
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Several studies have assessed the association between Vitamin C and the potential protection
from cerebrovascular disease, and the results have been subject of much controversy, similarly to
what observed in the investigations assessing CHD. A prospective cohort study that followed for
20 years the residents of a rural Japanese community, having an age of 40 years or older and initially
free of stroke diagnosis, has shown that higher serum Vitamin C concentration was associated with a
reduced risk of incidence of both hemorrhagic and ischemic stroke [217]. Only a small part of these
associations could be explained by lowering BP and adjusting for the physical activity level [217].
Similarly, in 20,649 adults followed for 10 years in the prospective cohort study EPIC-Norfolk, plasma
ascorbate concentrations in the top quartile were linked to a 42% lower risk of stroke compared to the
values in the lowest quartile [140].

Of note, in both the EPIC-Norfolk [140] and Japanese [217] populations, blood Vitamin C
concentrations were positively correlated with vegetable and fruit intake. In 2011 Del Rio and
colleagues investigated the relationship between dietary total antioxidant capacity and the risk of
hemorrhagic and ischemic stroke in 41,620 subjects not previously diagnosed with myocardial infarction
or stroke, recruited from the Italian segment of the European Prospective Investigation into Cancer and
Nutrition (EPIC) study; the results from specific sub-analyses on the different stroke types indicate that
Vitamin C is associated with a decreased risk of ischemic stroke [151]. These studies were consistent
with a meta-analysis published in 2013, in which 16 prospective studies reported a 19% lower risk of
stroke (pooled analysis of 2 studies) when comparing the highest vs. the lowest dietary Vitamin C
intake, and a 38% lower risk of stroke (pooled analysis of 6 studies) when comparing the highest vs.
the lowest circulating Vitamin C concentration [160].

On the other hand, Sesso and collaborators reported the results of a randomized double-blind
placebo-controlled trial conducted in 14,641 healthy US male physicians, enrolled in the PHS II study
at ≥50 years of age, showing that Vitamin C supplementation (500 mg/day) had no significant effect on
the mortality from, or the incidence of, any type of stroke after a mean follow-up of ~8 years [156].
In agreement with these observations, Ye and collaborators published a meta-analysis study of 15 trials
for a total of 188,209 participants, reporting that the supplementation of Vitamin C (in a range from 120
to 1000 mg) in association with Vitamin E and beta-carotene, had no significant effects on the risk of
stroke compared to placebo [156].

7. Conclusions

Both preclinical and clinical data available in the literature show that Vitamin C plays a pivotal
role in a number of processes involved in the pathogenesis of CVD. Nevertheless, major limitations
have to be taken in consideration when interpreting the results of the studies investigating the effects of
Vitamin C on human health; for instance, dietary assessment methods such as questionnaires or food
diaries lack precision and accuracy and do not embrace other conditions that can affect Vitamin C levels
and homeostasis [35,218–222]; therefore, these approaches are inadequate to ascertain the accurate
Vitamin C status of an individual. Henceforth, it is reasonable to consider blood samples as more
reliable indicators. Equally important, plasma Vitamin C level may considerably fluctuate following
food or supplement ingestion. Consequently, the most reliable and practically available information
on Vitamin C status can only be obtained from blood samples withdrawn in fasted conditions [32,72].
Ascorbate is rapidly oxidized ex vivo and the resulting oxidation products are quickly metabolized or
degraded [38], hence, in order to obtain valid and consistent Vitamin C concentrations, a scrupulous
sample handling is essential. Furthermore, the use of liposomal Vitamin C should be preferred to other
forms since liposomes might be an excellent carrier for Vitamin C to achieve high blood levels.

Therefore, further studies are needed to clarify whether Vitamin C supplementation is actually
effective in the prevention or cure of CVD. Specifically, prospective randomized clinical trials in large
populations are needed to better define the best dose, the ideal administration route, the optimal
targets, as well as the contribution of dietary supplementation of other antioxidant elements; in order
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to have standardized and reproducible data, it will be important to evaluate the Vitamin C status using
blood samples obtained from fasted individuals.
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