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Abstract: Although heart failure due to a wide variety of pathological stimuli including myocardial
infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact
reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating
levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins
are elevated under pathological conditions, it has been suggested that these vasoactive hormones
may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages
of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting
through their respective receptor-mediated signal transduction systems and result in the development
of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-
dependent activation of the hypertrophic process but these are rapidly removed by increased content
of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive
process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular
homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones
due to pathological stimuli over a prolonged period results in cardiac dysfunction and development
of heart failure involving a complex set of mechanisms. It has been demonstrated that different
cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of
mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied
failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH
oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during
the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to
activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of
cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce
subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to
the development of apoptosis, necrosis, and fibrosis. These observations support the view that a
low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms,
which are associated with the development of cardiac hypertrophy. On the other hand, high levels of
oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects
as well as protease activation and thus play a critical role in the development of adverse cardiac
remodeling and cardiac dysfunction as well as progression of heart failure.

Keywords: vasoactive hormones; cardiac hypertrophy and failure; myocardial infarction; metabolic
derangements; myocardial inflammation; oxidative stress; Ca2+-handling abnormalities

1. Introduction

Heart failure due to several pathological conditions such as myocardial infarction,
hypertension, valvular defects, diabetes, atherosclerosis, and different types of cardiomy-
opathies, is invariably associated with cardiac hypertrophy [1–6]. Extensive research
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regarding hemodynamic, cellular, and biochemical mechanisms have revealed that heart
failure may be due to loss of cardiomyocytes, adverse cardiac remodeling, defects in sub-
cellular activities, Ca2+-handling abnormalities, alterations in myocardial metabolism and
elevation of different hormones in the circulation [7–12]. Some of these cardiovascular
alterations and mechanisms associated with the development of cardiac hypertrophy and
subsequent heart failure are shown in Figure 1. It is becoming clear that all these mech-
anisms for the induction of contractile defects are inter-related and cardiac dysfunction
is the hallmark for identifying the development of heart failure [13–15]. On the other
hand, cardiac function of hypertrophied heart is either normal or increased at early stages
whereas cardiac performance is impaired in heart failure [16–19]. Although excellent review
articles regarding the molecular and cellular mechanism for the development of cardiac
hypertrophy and heart failure are available in the literature [20–24], exact reasons for the
occurrence of cardiac dysfunction in hypertrophied heart are not fully understood [25,26].
It is therefore important to gain some information to understand the mechanisms involved
in the transition of cardiac hypertrophy to heart failure as well as pathophysiology of
cardiac dysfunction during the progression of heart failure.
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Although elevated levels of several vasoactive hormones in the circulation due to
activation of sympathetic nervous system, renin–angiotensin system, and other neuro-
endocrine systems have been shown to occur in different types of heart failure [27–30],
the mechanisms for their beneficial actions for the development of cardiac hypertrophy
and adverse effects for the occurrence heart failure are not well understood. It is generally
held that the acute effects of elevated vasoactive hormones increase cardiac muscle mass,
add contractile units, and produce cardiac hypertrophy upon stimulating their respective
receptor-mediated signal transduction pathways. Furthermore, these acute effects are asso-
ciated with the formation of low amounts of oxyradicals and activation of redox-sensitive
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signal transduction for the occurrence of cardiac hypertrophy [7,12,15,16]. Myocardial hy-
pertrophy in response to diverse stimuli is an adaptive process where cardiac performance
and subcellular organ function are either normal or augmented to maintain hemodynamic
homeostasis indicating the beneficial effects of vasoactive hormones [13,16,18,26]. On the
other hand, prolonged exposure of hypertrophied heart to elevated levels of vasoactive
hormones due to pathological stimuli for a prolonged period has been shown to induce
metabolic derangements, Ca2+-handling abnormalities, protease activation, subcellular
defects, and cardiac dysfunction leading to the development of heart failure [11–15,17,26].
Thus, it appears that cardiac hypertrophy and heart failure represent two different stages
of effects, namely adaptive cardiac remodeling and adverse (maladaptive) cardiac remod-
eling, initiated by diverse pathological stimuli. The present article is therefore intended to
describe some salient features for the development of both cardiac hypertrophy and heart
failure as a consequence of some pathological situations including myocardial infarction,
pressure overload and volume overload. It is also planned to discuss different mechanisms
involved in the generation of oxyradicals for the activation of redox-sensitive hypertrophic
process as well as the development of oxidative stress. The consequence of oxidative
stress for the transition of cardiac hypertrophy to heart failure and pathophysiology of
hypertrophied heart during progression of heart failure due to adverse effects of elevated
levels of some vasoactive hormones for a prolonged period will be highlighted. In addition,
efforts will be made to describe some of the subcellular and metabolic abnormalities under
some experimental conditions, which are known to promote the occurrence of oxidative
stress and induce cardiac dysfunction in non-hypertrophied hearts. The effectiveness of
different oxyradical scavengers and antioxidants on the experimentally induced cardiac
dysfunction as well as subcellular defects will be examined. Evidence will also be presented
to show both direct and indirect effects of oxidative stress on subcellular organelles and
Ca2+-handling abnormalities associated with heart dysfunction.

2. Development of Cardiac Hypertrophy and Heart Failure

Over the past 30 years various types of pathological stimuli have been shown to in-
volve different signal transduction pathways as well as cellular and molecular mechanisms
for the genesis of cardiac hypertrophy and heart failure [5–10,20–26]. Despite difference in
the patterns of signal transduction mechanisms, there are several similarities in cardiovas-
cular alterations, which occur during the initial and later stages of cardiac hypertrophy as
well as heart failure. Various vasoactive hormones and growth factors are elevated not only
for stimulating cardiovascular function and maintaining blood supply to all organs of the
body but also for the induction of cardiac hypertrophy [27–33]. Although cardiac hyper-
trophy as a consequence of increased muscle mass has been shown to be of hypertrophic
type or dilated type depending upon the pathological stimulus, both forms of cardiac
growth have been reported to be either physiological or pathological in nature depending
upon the type as well as duration and magnitude of the stimulus [13–17,25,26]. It appears
that physiological hypertrophy is concerned with improving cardiac performance due to
increased number of contractile units and augmented function of subcellular organelles
whereas pathological hypertrophy associated with cardiac dysfunction may represent a
pre-failure stage or reflect the transition of hypertrophied myocardium to heart failure. It
should also be mentioned that there occurs a progressive increase in the levels of some
vasodilatory natriuretic peptides (ANP and BNP) as well as endothelial nitric oxide (NO)
in the circulation to maintain hemodynamic homeostasis; in fact, both ANP and BNP are
commonly used as biomarkers for characterization of the heart failure stage [34–36]. On
the other hand, prolonged exposure of hypertrophied heart to elevated levels of vasoactive
hormones is considered to result in the progression of adverse cardiac remodeling and
heart failure. Thus, it appears that cardiac hypertrophy and heart failure due to diverse
pathological situations are associated with acute and chronic effects of the elevated levels
of vasoactive hormones, respectively.
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2.1. Development of Heart Failure Due to Myocardial Infarction

Myocardial infarction is known to produce loss of a portion of the ventricular tissue
due to ischemia and is known to be the major cause of heart failure. The development
of both cardiac hypertrophy and heart failure due to myocardial infarction are depen-
dent upon the duration and size of infarct in the heart. The hemodynamic alterations
such as decreased blood pressure and reduced cardiac output at initial stages activate
the sympathetic nervous system and the renin–angiotensin system mainly to increase the
circulating levels of catecholamines and angiotensin II, respectively. These vasoactive
hormones not only elevate blood pressure but also promote the function of subcellular
organelles, augment contractile activity, and induce cardiac hypertrophy [5–7,37]. Such
beneficial effects of these hormones are mediated through the activation of both α- and
β-adrenoceptors as well as angiotensin II receptors and involve the activation of various
kinases such as protein kinase A, Ca2+-calmodulin dependent kinase, protein kinase C and
mitogen-activated protein kinase to promote protein synthesis in the myocardium [38–41].
There also occurs an increase in ventricular diastolic pressure as well as ventricular wall
tension, which activate macrophages, fibroblasts, and non-myocyte cells in the myocardial
interstitium to release different cytokines and growth factors [42–48]. In addition, several
other neuro-endocrine systems including pituitary, endothelium and platelets are also
activated to release vasoactive hormones such as vasopressin, endothelin, and serotonin in
the circulation [49–52]. Thus, different vasoactive hormones at early stages of myocardial
infarction can be seen to induce adaptive (physiological) cardiac hypertrophy, stimulate car-
diac metabolism and improve cardiac function through their respective receptor mediated
signal transduction mechanisms.

Vasoactive hormones generate some amount of oxyradicals in hypertrophied my-
ocardium but the presence of high levels of endogenous antioxidants does not permit the
occurrence of oxidative stress [53,54]. However, when the activities of antioxidants become
saturated with excessive amounts of oxyradicals or the levels of antioxidants become
depressed, there occurs oxidative stress for the development of cardiac dysfunction [55–59].
It should be noted that the increased oxyradical formation may occur due to the activation
of NADPH oxidase by angiotensin II and endothelin as well as during the oxidation of
catecholamines and serotonin by monoamine oxidase. The combination of oxyradicals with
NO, produced by elevated levels of endothelial nitric oxidase in hypertrophied hearts [55],
has also been reported to produce nitrosative stress which is known to exert adverse effects
on the heart. In addition, defects in mitochondrial electron transport as a consequence
of metabolic derangements as well as functional hypoxia, upon prolonged exposure of
hypertrophied myocardium to vasoactive hormones, have been shown to contribute to
the development of oxidative stress [60–66]. Since oxidative stress and nitrosative stress
have been demonstrated to increase Ca2+-influx, activate different proteases and produce
alterations in subcellular proteins gene expression directly or indirectly, these pathological
entities are considered to induce subcellular remodeling, Ca2+-handling abnormalities
and cardiac dysfunction in hypertrophied hearts due to myocardial infarction [7,10,67–70].
Thus, the development of oxidative stress has been suggested to play a critical role in
the transition of cardiac hyper-trophy to heart failure due to myocardial infarction. Some
events depicting different mechanisms in this regard are shown in Figure 2.
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2.2. Development of Heart Failure Due to Pressure Overload and Volume Overload

Both pressure overload and volume overload are known to induce cardiac hypertrophy
and heart failure upon increasing ventricular pressure as well as ventricular wall tension as a
consequence of elevating afterload and preload on the heart, respectively [14,15,25,26,71–74].
It is now well known that pressure overload occurs in some pathological conditions such
as hypertension and aortic or mitral valve stenosis, where the heart develops concentric
hypertrophy [71–73]. On the other hand, volume overload is seen in some clinical situations
including mitral valve or aortic valve regurgitation as well as ventricular septal defect,
where the heart develops eccentric hypertrophy [71,72,75,76]. The increase in ventricu-
lar wall tension is considered to activate the sympathetic nerve endings, cardiac (local)
renin–angiotensin system, endothelium, and several other non-myocytes, present in the
myocardial interstitium, to release different vasoactive hormones such as norepinephrine,
angiotensin II, and endothelin as well as cytokines and growth factors [31,42–45,51,77].
Although both the sympathetic nervous system and the peripheral renin–angiotensin
system are also activated under situations simulating pressure overload or volume over-
load [77–83], exact mechanisms for the release of catecholamines and angiotensin II by these
interventions are not clear at present. Nonetheless, both catecholamines and angiotensin II
as well as endothelin have been reported to induce cardiac hypertrophy through their re-
spective receptor-mediated signal transduction mechanisms [84–87]. In this regard, cardiac
hypertrophy due to catecholamines is elicited by the activation of both β-adrenoceptor–
Gs protein–adenylyl cyclase and α-adrenoceptor–Gq protein–phospholipase C pathways
whereas that induced by angiotensin II involves Ang II receptor–Gq protein–phospholipase
C system. Furthermore, the involvement of Gq protein–phospholipase C pathway has also
been shown to occur due to the activation of endothelin receptors. It is noteworthy that
heart function has been reported to be unaltered due to volume overload but is augmented
because of pressure overload at early stages of cardiac hypertrophy, indicating differ-
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ences in the regulatory mechanism participating upon the induction of these pathological
stimuli [25].

Despite differences in cardiac remodeling (concentric versus eccentric cardiac hy-
pertrophy) upon the induction of pressure overload or volume overload, both forms of
hemodynamic overload exhibit cardiac dysfunction and heart failure over a prolonged
period [71–74,88–91]. Several mechanisms including adverse cardiac remodeling, subcellu-
lar defects, metabolic derangements, Ca2+-handling defects, inflammation, and oxidative
stress have been proposed to explain the transition of adaptive (compensated or physi-
ological) hypertrophy to maladaptive (decompensated or pathological) hypertrophy as
well as the progression of cardiac hypertrophy to heart failure due to pressure overload
or volume overload [15,26,32,48,76]. Furthermore, contractile dysfunction in the failing
hearts has been shown to be associated with defects in subcellular organelles for Ca2+-
handling in cardiomyocytes [7,10,75,82,85,92]. The transition of cardiac hypertrophy to
heart failure was also observed due to abnormalities in extracellular matrix proteins as
a consequence of the activation of metallomatrix proteases [7,93,94]. Development of
apoptosis in cardiomyocytes due to elevated levels of pro-inflammatory cytokines such
as TNF-α has been reported to serve as a mechanism of heart failure due to pressure or
volume overload [60,95–97]. Defects in the β-adrenoceptor signal transduction have also
been demonstrated to be associated with the development of heart failure due to these
pathological situations [25,98–101]. In addition, the occurrence of oxidative stress due
to elevated levels of vasoactive hormones has been shown to play a major role for the
induction of contractile dysfunction in hypertrophied heart [55–59,102–105]. Thus, it is
evident that complex events may be participating in the genesis of cardiac hypertrophy
and heart failure due to pressure overload or volume overload. However, a simplified
scheme representing these events is shown in Figure 3.
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3. Generation of Oxyradicals, Redox Signaling and Consequences of Oxidative Stress
in Failing Hearts

An in-depth analysis of the above observations indicates that various changes in sub-
cellular and metabolic mechanisms during the development of cardiac function and heart
failure due to myocardial infarction or hemodynamic overload are associated with the gen-
eration of oxyradicals. Several other investigators have suggested that different molecular
and cellular alterations occur in cardiac hypertrophy and heart failure as a consequence of
oxidative stress [106–113]. Since cardiac hypertrophy is an adaptive process; it appears that
the formation of a small amount of oxyradicals may not be sufficient for the development
of oxidative stress at early stages of pathological stimulus. However, it may generate
redox-sensitive signaling to activate the hypertrophic process in the myocardium. On the
other hand, high levels of oxyradicals generated due to a prolonged period of pathological
stimulus can be seen to result in oxidative stress, adverse cardiac remodeling, cardiac
dysfunction, and heart failure. Such a dual role of oxyradical generation is consistent
with other pathogenic mechanisms underlying other cardiovascular diseases including
cerebral cavernous malformation disease [114]. The small amount of oxyradicals and
oxidants, which are formed due to the activation of NADPH oxidase as well as metabolic
stimulation and subsequent mitochondrial electron-transport uncoupling as a consequence
of the elevated plasma levels of angiotensin II at early stages of pathological stimulus,
are removed by different oxyradical scavengers, superoxide dismutase, and catalase, as
well as antioxidants [108,110,112]. This condition initiates the redox-sensitive signaling for
the activation of hypertrophic process as well as modulation of subcellular activities in
cardiomyocytes. A small amount of superoxide anion is also removed by its interaction
with NO, which is produced by endothelial nitric oxide synthase at early stages, but this
reaction then results in the formation of peroxynitrite at later stages and exert adverse
effects [115]. Likewise, low levels of oxyradicals activate nuclear factor erythroid 2-related
factor 2 (Nrf2) antioxidant pathway for producing adaptive responses at early period but
this master Nrf2 defense pathway has been shown to sensitize cells to oxidative challenges
at later stages [114]. Thus, it appears that the adaptive responses of redox-sensitive signal-
ing during the development of cardiac hypertrophy are dependent upon the type, duration,
and magnitude of pathological stimulus.

Both experimental and clinical observations have suggested that oxidative stress in
hypertrophied myocardium is increased in heart failure [56–58,102–106]. Although the
level of antioxidants is also increased in hypertrophied hearts [53,74], it appears that ele-
vated levels of antioxidants at late stages of hypertrophy may not be sufficient to prevent
the occurrence of oxidative stress and development of cardiac dysfunction. A large amount
of oxyradicals is considered to be formed by a wide variety of mechanisms at late stages
of cardiac hypertrophy. In this regard, it is noteworthy that elevated levels of both an-
giotensin II and endothelins have been shown to activate NADPH oxidase [63,64] whereas
catecholamines are oxidized by monoamine oxidase [61,62] to produce oxyradicals in the
myocardium. The expression of both NADPH oxidase and monoamine oxidase has been
shown to be increased in failing hearts [55]. The vasoactive hormones are also known to
impair blood flow to the heart and induce functional hypoxia due to constriction of the
coronary arteries as well as reduction in capillary density in hypertrophied hearts [42–45].
The hypoperfusion thus produced can be seen to increase the production of oxyradicals
upon inducing defects in the mitochondrial electron transport due to hypoxic insult and
contribute to the development of oxidative stress [37–55]. Furthermore, elevated levels of
vasoactive hormones have also been reported to activate fibroblasts in the cardiac inter-
stitium to release different growth factors and metallomatrix proteases [31,43,44]. While
the growth factors promote the accumulation of collagenous proteins in the extracellular
matrix for providing support to hypertrophied hearts [37,42,46], the activation of metallo-
matrix proteases by oxidative stress results in degradation of the glycocalyx proteins and
subsequent cardiac dysfunction [37,44,60]. Accordingly, oxidative stress upon activating
metallomatrix proteases has been suggested to play a critical role in the transition of stable



Antioxidants 2021, 10, 931 8 of 19

cardiac hypertrophy to heart failure [32,60,93]. Some of the events involved in this process
are depicted in Figure 4.
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The participation of oxidative stress in the genesis of cardiac dysfunction is attributed
to the development of several cardiac abnormalities in hypertrophied heart. Although
adverse cardiac remodeling is generally considered to explain the occurrence of heart
failure [5], it has been argued that a wide variety of changes in subcellular organelles
including sarcolemma, sarcoplasmic reticulum, mitochondria, and myofibrils may be more
intimately related to the development of contractile dysfunction during the progression
of heart failure [7,10,116,117]. Such subcellular defects during the development of heart
failure have been shown to occur because of alterations in cation homeostasis, increased
concentration of intracellular Ca2+, activation of proteases, and changes in cardiac gene
expressions [7,70,118]. Particularly, defects in sarcolemma and sarcoplasmic reticulum
may results in Ca2+-handling abnormalities in myocytes whereas those in myofibrils and
mitochondria are associated with changes in contractile properties and energy production
in the failing hearts, respectively. It should be mentioned that increased concentration of
Ca2+ in the failing heart is known to result in mitochondrial Ca2+-overload and impair the
generation of ATP. In fact, oxidative stress has also been associated with marked alterations
in myocardial metabolism and mitochondrial electron transport system for depression in
energy stores in the failing heart [37,55,60,65,66]. In addition, oxidative stress has been
demonstrated to induce loss of cardiomyocytes in the heart by inducing apoptosis, necrosis,
and fibrosis as a consequence of myocardial inflammation due to activation of macrophages
in the cardiac interstitium and release of different cytokines [31,37,48,55,97,119–122]. Ac-
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cordingly, oxidative stress generated in hypertrophied heart can be seen to induce cardiac
dysfunction through a complex set of mechanisms and may result in the progression of
heart failure. A schematic representation of these events is shown in Figure 5. In view
of the critical role of oxidative stress in the pathophysiology of cardiac dysfunction in
heart failure, different antioxidants have been suggested to exert beneficial effects for the
treatment of this devastating disease [54–58]. Although some clinical studies have been
supportive of this concept, other clinical trials with antioxidants have failed to show any
conclusive benefit of these interventions for the treatment of heart failure [123,124]. Several
investigators have discussed in detail the inability of different non-specific antioxidants
to exert beneficial effects in heart failure [107–109,115]. Thus, better-targeted and more
effective antioxidants need to be developed for improved therapy of this disease. Since,
oxidative stress in heart failure is also accompanied by nitrosative stress [115] and in-
flammation [120,121], it is likely that a combination therapy with antioxidants may prove
more appropriate.
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metabolism, cation homeostasis as well as activation of macrophages for the occurrence of cardiac
dysfunction and progression of heart failure due to the development of oxidative stress hormones in
hypertrophied heart for a prolonged period.

4. Evidence for the Implications of Oxidative Stress in Cardiac Dysfunction and
Subcellular Remodeling

In view of the association of cardiac dysfunction and oxidative stress during the
development of heart failure, various investigators have emphasized the role of oxidative
stress in the genesis of subcellular and metabolic defects for the occurrence of contractile
abnormalities in hypertrophied hearts [6,10,37,55,104,106]. However, it is not clear whether
the occurrence of cardiac dysfunction is a consequence of events associated with cardiac
hypertrophy or is due to some direct action of oxidative stress on cardiomyocytes per se.
Further discussion in this report is thus focused to provide evidence that the generation
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of oxidative stress in non-hypertrophied heart leads to the development of subcellular
alterations and cardiac dysfunction [125–129]. Different oxygen reactive species, which
result in the development of oxidative stress, have been reported to be involved not only
in inducing changes in cardiac contractile activity but are also considered to be mediators
of the myocardial cell injury [130–134]. This article will examine the effects on oxidative
stress generation on changes in subcellular activities and cardiac function in ischemic
reperfused hearts in the absence and presence of different oxyradical scavengers and
antioxidant interventions. The existing literature for changes in cardiac function and
subcellular activities will also be analyzed upon perfusing the hearts with some oxidative
stress generating systems. Furthermore, different oxyradicals will be shown to exert direct
actions on the activities of cardiac subcellular organelles. Such a detailed examination
of the effects of oxidative generating systems on cardiac contractile activities, subcellular
remodeling and Ca2+-handling in cardiomyocytes will further support the role of oxidative
stress in the development and progression of heart failure.

4.1. Alterations in Cardiac Function and Subcellular Activities in Ischemic Reperfused Hearts

Since ischemia-reperfusion is well known to generate oxyradicals [126,135], some
studies have examined the relationship between changes in cardiac function and subcel-
lular alterations upon subjecting the heart to ischemia-reperfusion in the absence and
presence of different oxyradical scavengers or antioxidants. Various parameters such as
left ventricular systolic pressure, rate of contraction, and rate of relaxation were markedly
depressed whereas left ventricular end diastolic pressure was increased in the ischemic
reperfused hearts [136–139]. These alterations in cardiac function were associated with
marked depressions in the sarcolemmal Na+-K+ ATPase activity [136,140], Ca2+-pump
activity, and Na+-Ca2+ exchange activity [141], as well as β-adrenoceptor–adenylyl cyclase
mediated pathway [142]. Dramatic reduction in the sarcoplasmic reticulum Ca2+-uptake,
Ca2+-pump ATPase, and Ca2+-release [137] as well as Ca2+/calmodulin protein kinase
activities [143] were observed in the ischemic reperfused hearts. Furthermore, depressed
cardiac function was seen to be associated with marked alterations in mitochondrial ox-
idative phosphorylation [138] as well as myofibrillar ATPase activities [139]. All these
changes in cardiac function as well as sarcolemma, sarcoplasmic reticulum, mitochon-
dria, and myofibrils due to ischemia-reperfusion were attenuated by the presence of an
oxyradicals scavenging mixture (superoxide dismutase plus catalase) in the perfusion
medium [136–143]. Furthermore, treatments of the hearts with antioxidants such as N-
acetylcysteine (NAC) and N-mercaptopropionylglycine (MPG) were also found to partially
or fully prevent the ischemia-reperfusion induced alterations in cardiac function as well as
different subcellular organelles [138,139,144].

Hearts subjected to ischemia-reperfusion were observed to exhibit varying degrees
of depressions in mRNA levels for sarcoplasmic reticular Ca2+-pump ATPase and Ca2+-
release channels [137], sarcolemmal Na+-K+ ATPase α2, α3, and β1 isoforms [140], and
myofibrillar myosin heavy chain α- and β-isoforms as well as myosin light chain 1 [139].
All theses changes in gene expression for subcellular proteins due to ischemia-reperfusion
were attenuated by superoxide dismutase plus catalase indicating the involvement of ox-
idative stress for subcellular remodeling [137,139,140]. The ischemia-reperfusion induced
alterations in cardiac function, subcellular activities, and subcellular gene expressions
are also attenuated by ischemic preconditioning [145–148], which is known to depress
the development of oxidative stress in the myocardium [149,150]. Furthermore, the ob-
served depressions in sarcolemmal and sarcoplasmic reticular enzyme activities in the is-
chemic reperfused hearts have been reported to be due to the activation of Ca2+-dependent
protease, calpain [151–154]. Since oxidative stress due to ischemia-reperfusion has been
demonstrated to produce intracellular Ca2+-overload and activate different proteolytic
enzymes [55,155], it is likely that changes in subcellular activities are a consequence of an
indirect effect of oxidative stress.
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4.2. Alterations in Cardiac Function and Subcellular Activities Due to Oxyradical Generating
System or H2O2

The effects of oxidative stress on cardiac function and subcellular activities have
been examined by perfusing the heart with either xanthine plus xanthine oxidase (a
well known oxyradical generating system) or H2O2, an oxidant [136–141,144,156–159].
The depression in cardiac function upon perfusion with xanthine plus xanthine oxi-
dase or H2O2 was associated with decreased activities of sarcolemmal Na+-K+ ATPase,
Na+-Ca2+ exchange, and Ca2+-pump ATPase as well as β-adrenoceptor–adenylyl cyclase
system [136,140,141,156–159]. Likewise, sarcoplasmic reticular Ca2+-uptake and release
activities, myofibrillar ATPase and mitochondrial oxidative phosphorylation activities
were also reduced upon perfusing the hearts with H2O2 or xanthine plus xanthine oxi-
dase [137–139]. These alterations in sarcolemma, sarcoplasmic reticulum, myofibrils, and
mitochondria due to oxyradicals and oxidants were attenuated by the presence of superox-
ide dismutase plus catalase in the perfusion medium [136–138,141,156–159]. Furthermore,
treatments of hearts with antioxidants, NAC and MPG, were observed to attenuate xan-
thine plus xanthine oxidase induce depressions in cardiac function as well as sarcoplasmic
reticular Ca2+-uptake and Ca2+-release activities [144]. These observations provide ev-
idence that oxidative stress is intimately involved in inducing cardiac dysfunction and
subcellular defects.

4.3. Effects of Oxyradical Generating System and H2O2 on Subcellular Activities

To examine whether oxidative stress induces subcellular alterations directly, various
isolated organelles were incubated with systems known to generate different species of
reactive oxygen. Both H2O2 and oxyradical generating systems were found to depress
sarcolemmal Na+-K+ ATPase, Na+-Ca2+ exchange, and Ca2+-pump activities by promoting
lipid peroxidation and modifying the sulfhydryl groups [160–163]. Likewise, Ca2+-uptake
and Ca2+-pump ATPase activities in the sarcoplasmic reticulum were decreased by superox-
ide and hydroxyl radicals as well as H2O2 [164–167]. It is noteworthy that different reactive
oxygen species were observed to depress the sarcolemmal Ca2+-channel binding activity;
the effect by superoxide radical was prevented by superoxide dismutase whereas that by
H2O2 and hydroxyl radicals was prevented by catalase and mannitol, respectively [168].
The effects of oxyradicals and H2O2 on sarcolemmal Ca2+-ecto ATPase, ATP-independent
Ca2+-binding, β-adrenergic density, and adenylyl cyclase were of biphasic nature and
oxyradical species specific [169–171]. Various oxyradical generating systems were ob-
served to impair mitochondrial oxidative phosphorylation and reduce myofibrillar ATPase
activity [138,172]. These observations are consistent with the view that various oxyradicals
and oxidants modify the activities of different subcellular organelles directly in the heart. In
addition, as described above, oxidative stress may also alter subcellular activities indirectly
by affecting cardiac gene expression as well as activating different proteolytic enzymes as a
consequence of increased concentration of intracellular Ca2+ in cardiomyocytes.

5. Conclusions

It is evident that heart failure due to myocardial infarction, pressure overload, or
volume overload is mainly associated with elevated levels of plasma catecholamines, oan-
giotensin II and endothelin. These vasoactive hormones stimulate their receptor-mediated
signal transduction pathways and induce cardiac hypertrophy, which is a beneficial mecha-
nism for maintaining or augmenting heart function at initial stages. A small amount of
oxyradicals is also generated during early periods of hypertrophic process; these radicals
are readily removed by the endogenous scavengers for maintaining redox homeosta-
sis. However, prolonged exposure of hypertrophied heart to pathological stimuli and
subsequent high levels of circulating hormones has been demonstrated to promote the de-
velopment of oxidative stress as a consequence of functional hypoxia due to constriction of
the coronary arteries, reduction in the capillary density, myocyte inflammation, metabolic
derangements, and mitochondrial dysfunction. Furthermore, activation of NADPH oxidase
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by hormones such as angiotensin II and endothelins, and oxidation of catecholamines by
monoamine oxidase also participate in the generation of oxidative stress. Oxidative stress
has been suggested to cause Ca2+-handling abnormalities in association with subcellular
remodeling, defect in energy production, inflammation, apoptosis, fibrosis, and loss of car-
diomyocytes; these abnormalities are considered to result in cardiac dysfunction and heart
failure. Such events showing adverse cardiovascular effects of diverse pathological stimuli
for the generation of oxidative stress and subsequent myocardial abnormalities are shown
in Figure 6. Evidence has also shown that depression in cardiac function and associated
subcellular defects upon exposure of the heart to some oxidative stress generating systems
were attenuated by oxyradical scavengers and antioxidants. These observations support
the view that the development of oxidative stress in hypertrophied heart is an important
mechanism for transition of cardiac hypertrophy to heart failure. Furthermore, the details
regarding the molecular and cellular effects as well as Ca2+-handling abnormalities due
to oxidative stress provide compelling evidence for the potential use of antioxidants for
the treatment of heart failure. Thus, various antioxidants or interventions for increasing
the antioxidant reserve in hypertrophied myocardium may produce beneficial effects in
preventing the occurrence of cardiac dysfunction and delaying the progression of heart fail-
ure. However, the results from some clinical trials of antioxidants in heart failure patients
have been disappointing, perhaps due to non-specific nature of these agents. Thus, there
is real challenge for the cardiovascular community to develop target-orientated specific
antioxidants for improved therapy of heart failure.
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