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Abstract: Recently, we reported that the Cimicifuga racemosa extract Ze 450 mediated protection
from oxidative cell damage through a metabolic shift from oxidative phosphorylation to glycolysis.
Here, we investigated the molecular mechanisms underlying the effects of Ze 450 against ferroptosis
in neuronal cells, with a particular focus on mitochondria. The effects of Ze 450 on respiratory
complex activity and hallmarks of ferroptosis were studied in isolated mitochondria and in cultured
neuronal cells, respectively. In addition, Caenorhabditis elegans served as a model organism to study
mitochondrial damage and longevity in vivo. We found that Ze 450 directly inhibited complex I
activity in mitochondria and enhanced the metabolic shift towards glycolysis via cMyc and HIF1α
regulation. The protective effects against ferroptosis were mediated independently of estrogen
receptor activation and were distinct from effects exerted by metformin. In vivo, Ze 450 protected C.
elegans from the mitochondrial toxin paraquat and promoted longevity in a dose-dependent manner.
In conclusion, Ze 450 mediated a metabolic shift to glycolysis via direct effects on mitochondria and
altered cell signaling, thereby promoting sustained cellular resilience to oxidative stress in vitro and
in vivo.

Keywords: black cohosh; Cimicifuga racemosa; mitochondria; metformin; oxidative stress; longevity

1. Introduction

Cimicifuga racemosa (L.) Nutt. (Ranunculaceae) (synonym of the accepted name
Actaea racemosa L.) extracts have obtained a “well-established use” status in the treat-
ment of menopausal complaints in the Committee of Herbal Medicinal Products conclu-
sions included in the Monograph “Black Cohosh” of the European Medicines Agency
(EMA/265439/2018). Although Cimicifuga racemosa (C. racemosa) extracts have been widely
used for decades [1–3], their mechanisms of action remain to be elucidated. Climacteric
symptoms include sweating, insomnia, mood changes, headache, vaginal dryness, and,
most frequently, hot flushes [4]. It is well-known that during menopausal transition, the
fluctuation of estrogen levels leads to alterations in central nervous system gene expres-
sion, neurotransmitter synthesis, and to an impairment of hypothalamic neuronal activity,
including mitochondrial dysfunction and imbalanced redox homeostasis [5]. These al-
terations promote inflammatory processes and oxidative stress [6]. The aforementioned
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changes may largely contribute to the development of hot flushes by narrowing the ther-
moregulatory set point [7]. In line with the general view of menopausal complaints being
caused by hormonal dysregulation, hormone replacement therapy (HRT) is commonly
used to treat menopausal complaints [6], but has limitations due to adverse side effects,
such as headache, uterine bleeding, and enhanced risks for venous thromboembolic disease,
breast cancer, stroke, and coronary artery disease [8,9].

Menopausal transition and the corresponding symptoms, such as hot flushes, are
related to an imbalance in redox homeostasis and are, therefore, often accompanied by
the increased formation of reactive oxygen species (ROS) [10]. We recently reported that
the C. racemosa extract Ze 450 mediates beneficial metabolic effects, protecting against
oxidative cell damage in various cell types, including neuronal and liver cells [11,12].
Enhanced oxidative stress has been closely linked as a common pathological feature to
many age-related disorders, metabolic diseases, and immunological impairments [13].
Additionally, Ze 450 demonstrated a strong influence on energy metabolism by reducing
mitochondrial respiration and promoting glycolysis [12], similar to the Warburg effect [14].
To fulfill the energy demand of cells through glycolysis, larger amounts of glucose are
required in comparison to the much more efficient oxidative phosphorylation (OXPHOS)
in mitochondria.

In line with this, Ze 450 demonstrated antidiabetic effects in an ob/ob mouse model,
as well as beneficial effects on metabolic parameters in ovariectomized rats, similar to
the antidiabetic metformin [15,16]. Metformin is the first-line treatment option for most
patients suffering from diabetes mellitus type II [17], and extremely interesting insights
could be gained by comparing the effects of Ze 450 and metformin on mitochondria.
Further, a recent retrospective observational study demonstrated that Ze 450 attenuated
weight gain during menopause [18], confirming that Ze 450 may mediate metabolic effects
in patients.

A great deal of research has been performed analyzing the Warburg effect, which
describes the metabolic reprogramming towards aerobic glycolysis in cancer cells [14]. In
these cells, such metabolic switches to glycolysis were associated with the activation of key
transcriptional regulators like hypoxia-inducible factor α (HIF1α) and cMyc. Cimicifuga
racemosa extract Ze 450 may exert similar regulation of energy metabolism through direct
and indirect effects on mitochondrial OXPHOS.

In addition, former studies attributed the mode of action of C. racemosa extracts
to an estrogen-like effect. Notably, this is a controversial discussion in the field, and the
majority of more recent reports suggest that C. racemosa extracts should not be considered as
phytoestrogens, and can neither activate estrogen receptors nor mediate estrogen hormone-
like effects. In this study, Ze 450 was compared to 17β-estradiol, estrogen receptor agonists
(4,4′,4′′-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and diarylpropionitrile (DPN)),
and an estrogen receptor modulator (tamoxifen (TM)) to evaluate the similarities and
differences of the extract to estrogen-mediated effects in model systems of oxidative stress
and on mitochondrial parameters. A well-established in vitro model system of oxidative
stress was used [19] to mimic the imbalance of redox homeostasis during the menopausal
transition and emphasize the importance of metabolic changes besides estrogen depletion.
Further, effects of Ze 450 and metformin were compared in vivo, in the model organism
Caenorhabditis elegans (C. elegans) to assess the effects on longevity under basal conditions,
and in conditions of oxidative stress exerted by the mitochondrial toxin paraquat.

2. Materials and Methods
2.1. Cimicifuga racemosa Extract Ze 450

The ethanolic (60% v/v) C. racemosa dry extract Ze 450 was manufactured from dried
roots and rhizomes and obtained from Max Zeller and Soehne AG (Romanshorn, Switzer-
land), and thus, the indicated doses applied in this study contain 75% native extract. The
content of triterpene glycosides was 6.4%. Ze 450 was dissolved in 60% ethanol (v/v) (Carl
Roth GmbH, Karlsruhe, Germany) for all experiments. Ze 450 conforms to the herbal
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preparation B, which was granted with a well-established use status by a European Union
herbal monograph on C. racemosa of the Herbal Medicinal Product Committee (HMPC)
in 2010. The high-performance liquid chromatography (HPLC) fingerprint of the Ze 450
batch used (batch number: 151033) for the current experiments was published [12].

2.2. Reference Substances

Metformin hydrochloride (Cayman Chemical, Ann Arbor, MI, USA) was dissolved
in H2O, 17β-estradiol (Merck KGaA, Darmstadt, Germany) in 60% ethanol and DPN,
PPT and 4-OH-Tamoxifen (Merck KGaA, Darmstadt, Germany) were dissolved in DMSO,
and all reagents were further diluted into culture medium to the indicated treatment
concentrations, unless otherwise stated.

2.3. Cell Culture

HT22 cells (kindly provided by David Schubert, Cellular Neurobiology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA) were grown in Dulbecco’s modified
Eagle medium (DMEM, Capricorn Scientific GmbH, Ebsdorfergrund, Germany) supple-
mented with 10% heat-inactivated fetal calf serum (Merck KGaA, Darmstadt, Germany),
100 U/mL penicillin, 100 mg/mL streptomycin (Capricorn Scientific GmbH, Ebsdorfer-
grund, Germany) and 2 mM L-glutamine (Merck KGaA, Darmstadt, Germany). To induce
cell death, erastin (Calbiochem®, Merck KGaA, Darmstadt, Germany) was added to the
medium for the indicated amount of time (8–16 h).

2.4. Mitochondrial Isolation

Rat cortical mitochondria were isolated from Sprague-Dawley rats directly after dis-
section of the prefrontal cortex. All following steps were carried out on ice according to
a well-established isolation method [20]. For cortical tissue, around 50 mg was minced
with a scalpel in 1 mL of isolation buffer (300 mM sucrose, 5 mM 2-[[1,3-dihydroxy-2-
(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES), 200 µM ethylene glycol-
bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 1 mM dithiothreitol (DTT)).
Cortical tissue was homogenized by trituration with a 20 G Neoject needle and strained
through a 100 µm cell strainer (Life Science, VWR, Radnor, PA, USA). Afterwards, a pump-
controlled cell homogenizer (Isobiotec, Heidelberg, Germany) with a constant pump flow
rate (700 µL/min) was used to isolate mitochondria from the tissue. The system was primed
with 1 mL mitochondrial isolation buffer before usage. Using the cell homogenizer, the
cortical suspension was pumped three times with a clearance of 10 µm. Next, the system
was rinsed with 1 mL mitochondrial isolation buffer to collect the total homogenate, fol-
lowed by centrifugation at 800× g for 10 min at 4 ◦C (Heraeus™ FRESCO17, Thermo Fisher
Scientific, Waltham, MA, USA). The supernatant was transferred to a new 1.5 mL tube and
centrifuged at 9000× g for 10 min at 4 ◦C. The resulting pellet represents the crude mito-
chondrial fraction. After resuspension in 1 mL of mitochondrial isolation buffer (MSHE;
70 mM sucrose, 210 mM mannitol, 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES), 1 mM EGTA, 0.5% BSA) a BCA assay for protein determination using the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) was per-
formed. Protein concentration was calculated via linear regression with a BSA standard
based on mitochondrial isolation buffer.

2.5. Cell Viability

Cell proliferation was analyzed in real-time by measuring electrical impedance [21].
Metabolic activity as an indicator of cell viability was quantified using the 3-(4,5-dime-
thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [19]. Viable and metaboli-
cally active cells converted MTT (Merck KGaA, Darmstadt, Germany), which was added at
a concentration of 2.5 mg/mL for 1 h at 37 ◦C to the culture medium, into purple formazan.
Absorbance was measured at 570 nm vs. 630 nm with FluoStar (BMG Labtech, Ortenberg,
Germany) after dissolving in DMSO (Carl Roth GmbH, Karlsruhe, Germany). Cell death
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of HT22 cells treated with Ze 450, erastin was detected using the Annexin-V-FITC/PI
Detection Kit (PromoCell, Heidelberg, Germany) followed by fluorescence-activated cell-
sorting (FACS, guava easyCyte, Merck KGaA, Darmstadt, Germany). Annexin-V-FITC
was excited at 488 nm, and emission was detected through a 525 ± 30 nm bandpass filter.
Propidium iodide (PI) was excited at 488 nm, and fluorescence emission was detected
using a 690 ± 50 nm bandpass filter. Data were collected from at least 5000 cells with at
least three replicates per condition.

2.6. Lipid Peroxidation

After the indicated treatments, HT22 cells were stained with BODIPY 581/591 C11
(Invitrogen, Carlsbad, CA, USA) for 1 h (37 ◦C, 4.5% CO2) and harvested for FACS analysis.
Lipid peroxidation was analyzed by recording green (emission: 525 nm/30) and red (emis-
sion: 585 nm/50) fluorescence with a 488 nm excitation wavelength of at least 5000 cells of
at least three replicates per condition. Levels of lipid peroxidation were calculated by the
analysis of the shift from green to red fluorescence.

2.7. Mitochondrial ROS Formation

MitoSOX red (Invitrogen, Carlsbad, CA, USA) is selectively targeted to the mitochon-
dria, where it is oxidized by superoxides exhibiting red fluorescence. For detection of
mitochondrial ROS formation, MitoSOX red was applied for 30 min at 37 ◦C and cells
were harvested for FACS analysis. Increasing red fluorescence correlating with the forma-
tion of mitochondrial ROS was detected by FACS analysis (excitation 488 nm, emission
690 nm/50). Data were collected from at least 5000 cells and three replicates per condition.

2.8. Mitochondrial Membrane Potential

After treatment with Ze 450 and erastin, cells were stained with tetramethylrhodamine,
ethyl ester (TMRE) (0.4 nM for 30 min at 37 ◦C, MitoPT ∆Ψm Kit, ImmunoChemistry Tech-
nologies, Bloomington, MN, USA) and harvested for TMRE fluorescence measurement
via FACS analysis. Upon loss of the mitochondrial membrane integrity and, thus, mem-
brane potential, a loss of TMRE fluorescence can be detected by FACS analysis (excitation
488 nm, emission 690 nm/50). Data were collected from at least 5000 cells and three wells
per condition.

2.9. ATP Measurements

ATP levels were detected using the ViaLight™plus Kit (Lonza, Basel, Switzerland).
After 24 h post-seeding in 96-well plates (6000 cells per well), cells were treated with Ze 450
and erastin. At the indicated time points after treatment, cells were transferred into a
white 96-well plate and ATP levels were analyzed by luminescence detection with FluoStar
OPTIMA (BMG Labtech, Ortenberg, Germany).

2.10. Seahorse Measurements on HT22 Cells

To determine the oxygen consumption rate (OCR) and extracellular acidification rate
(ECAR) as measures of mitochondrial respiration and glycolysis, respectively, a simulta-
neous real-time measurement was performed using the XF Extracellular Flux Analyzer
(Agilent Technologies, Santa Clara, CA, USA) as previously described [19]. Briefly, HT22
cells were plated in XF96-well microplates (6000 cells per well, Seahorse Bioscience, Agilent
Technologies, Santa Clara, CA, USA) and treated with Ze 450 and erastin. At indicated
treatment conditions, the growth medium was replaced by ~180 µL of assay medium
(with 4.5 g/L glucose as the sugar source, 2 mM glutamine, 1 mM pyruvate, pH 7.35)
and cells were incubated at 37 ◦C for 60 min. Three to six baseline measurements were
recorded before adding the compounds. Oligomycin (ATP synthase inhibitor) (Merck
KGaA, Darmstadt, Germany) was injected into port A (20 µL) at a final concentration
of 3 µM, Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (uncoupling
agent) (22.5 µL into port B) (Merck KGaA, Darmstadt, Germany) at a concentration of
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0.5 µM, rotenone/antimycin A (complex I/III inhibitors) (25 µL into port C) (Merck KGaA,
Darmstadt, Germany) at a concentration of 100 nM, and 1 µM 2-deoxyglucose (Carl Roth
GmbH, Karlsruhe, Germany) (glycolysis inhibitor) at a concentration of 50 mM (27.5 µL
into port D), respectively. Three measurements were performed after the addition of each
compound (4 min mixing followed by 3 min detection).

2.11. Seahorse Measurement on Isolated Primary Cortical Mitochondria
2.11.1. Electron Flow Assay

Electron flow assay was used to analyze the activity of mitochondrial complex I mea-
suring the OCR with a Seahorse XFe69 Analyzer (Agilent Technologies, Santa Clara, CA,
USA). After isolation of cortical mitochondria following established protocols [20], 10 µg
of mitochondrial protein per well were re-suspended in 25 µL/well of mitochondrial assay
solution (MAS; 70 mM sucrose, 220 mM mannitol, 10 mM KH2PO4, 5 mM MgCl2, 2 mM
HEPES, 1 mM EGTA, 0.2% (w/v) BSA) with the addition of pyruvate (10 mM) and malate
(2 mM). Subsequently, the plate was centrifuged at 2000× g for 20 min at 4 ◦C (Heraeus™
Megafuge 40R, Thermo Fisher Scientific, Hanau, Germany) to ensure adherence of the
mitochondria to the bottom. Afterwards, 155 µL/well MAS was added to the final volume
of 180 µL/well. Rotenone, succinate, and antimycin A were diluted in MAS without
sucrose and mannitol, while ascorbate and N,N,N’,N’-tetramethyl-p-phenylenediamine
(TMPD) were diluted in MAS and serially injected as follows: 2 µM rotenone (port A),
10 mM succinate (port B), 4 µM antimycin A (port C), 10 mM/100 µM ascorbate and TMPD
(port D). For investigating complex IV-driven respiration, 1.0 M ascorbate in H2O (pH 7.2)
and 10 mM TMPD in H2O (pH 7.2) were mixed with an equimolar concentration (10 mM)
ascorbate to ensure TMPD remained reduced. One to three baseline measurements were
recorded before adding the compounds, and one to three measurements were performed
after the addition of each compound (3 min mixing followed by 3 min detection). Data
analysis and visualization were performed using XFe Wave software 2.6.1 (Agilent Tech-
nologies, Santa Clara, CA, USA) and GraphPad Prism software 6.05 (Agilent Technologies,
Santa Clara, CA, USA) displayed as point-to-point oxygen consumption rates.

2.11.2. Coupling Assay

The coupling assay was used to measure the activity of mitochondrial complex II and
III recording the OCR with a Seahorse XFe69 Analyzer (Agilent, Santa Clara, CA, USA).
The coupling assay was performed as previously described with minor modifications [22].
Briefly, mitochondria were isolated as described before [23]. Briefly, 10 µg of cortical
and 12 µg of liver mitochondrial protein per well were re-suspended in MAS with the
addition of the complex II substrate succinate (10 mM) and the complex I inhibitor rotenone
(2 µM). Subsequently, the plate was centrifuged at 2000× g for 20 min at 4 ◦C (Heraeus™
Megafuge 40R, Thermo Fisher Scientific, Hanau, Germany) to ensure adherence of the
mitochondria to the bottom of the well. Afterwards, 155 µL/well MAS was added to
the final volume of 180 µL/well. Modulators of the respiratory chain were diluted in
MAS without sucrose and mannitol and serially injected as follows: 4 mM ADP (port A),
2.5 µg/mL oligomycin (port B), 4 µM FCCP (port C), 4 µM antimycin A (port D). One to
three baseline measurements were recorded before adding the compounds, and one to
three measurements were performed after the addition of each compound (3 min mixing
followed by 3 min detection). Data analysis and visualization were performed using XFe
Wave software 2.6.1 (Agilent Technologies, Santa Clara, CA, USA), and GraphPad Prism
software 6.05 (GraphPad Software Inc., La Jolla, CA, USA), and displayed as point-to-point
oxygen consumption rates.

2.12. Rhodamine Measurements

Rhodamine measurement was used to assess mitochondrial membrane potential
integrity. Therefore, fluorescence quenching of rhodamine 123 (Thermo Fisher Scientific,
Waltham, MA, USA) was measured over 40 min, as described previously [24]. Mitochondria
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were plated in a black 96-well plate with 75 µg mitochondrial protein per well and diluted in
a buffer containing 200 mM sucrose, 10 mM MOPS-Tris, 5 mM succinate, 1 mM Pi(H3PO4),
10 µM EGTA, and 2 µM rotenone (pH 7.3). Loss of mitochondrial membrane potential was
induced by FCCP (500 nM), which was injected at the end of the measurement. Fluorescence
(excitation: 485 nm/12, emission: 530 nm/10) was measured with a FLUOstar OPTIMA
reader (BMG Labtech, Ortenberg, Germany).

2.13. Glutathione Measurement

To determine glutathione (GSH) levels, HT-22 cells were seeded in 6-well plates
(180,000 cells/well). After treatment with erastin for the indicated amount of time, two
to three wells per condition were harvested by scratching, and washed on ice with PBS.
GSH measurements were performed using the Glutathione Assay Kit (Cayman Chemical
Company, Ann Arbor, MI, USA) following the manufacturer’s protocol. Briefly, cells were
re-suspended in MES-buffer (0.4 M 2-(N-morpholino)ethanesulphonic acid, 0.1 M phos-
phate, 2 mM EDTA, pH 6.0) and homogenized by sonification. Insoluble fragments were
removed by centrifugation at 10,000× g for 15 min. The supernatant was deproteinated
by the addition of an equal volume of metaphosphoric acid (1.25 M). After incubation for
5 min, the mixture was centrifuged at 17,000× g for 10 min. Subsequently, the supernatant
was mixed with a 4 M solution of triethanolamine to increase the pH. After transferral
into a 96-well plate, the assay cocktail containing MES-buffer, co-factor mixture, enzyme
mixture, and Ellman’s reagent was added. Absorbance was measured at 405 nm after
30 min of incubation. Total GSH amount was determined via standard curve calculation
and normalized to the protein content.

2.14. Protein Analysis

Cells were lysed after the indicated time of treatment in 0.25 M D-mannitol, 0.05 M
Tris base, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, and 1% TritonX-100 supplemented
with protease and phosphatase inhibitor cocktail tablets (Roche Diagnostics, Mannheim,
Germany). Liquid nitrogen was used to disrupt cell membranes. Afterwards, the lysate was
stored at −80 ◦C or thawed on ice and centrifuged for 15 min at 10,000× g at 4 ◦C. Protein
lysate was used from the resulting supernatant. The total protein amount was determined
using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA)
and 60 µg protein was loaded on a 7.5% polyacrylamide gel. After electrophoresis, the
proteins were transferred from the gel onto a PVDF membrane (Roche Diagnostics, Basel,
Switzerland). Then, the membranes were incubated with primary antibodies (overnight,
at 4 ◦C), followed by incubation with the corresponding secondary antibody at room
temperature. The membrane was incubated with luminol based HRP-Juice Plus (PJK
GmbH, Kleinblittersdorf, Germany) for 2 min for protein detection. Visualization was
realized with a ChemiDoc XRS system (Bio-Rad Laboratories Inc., Hercules, CA, USA). For
densitometric protein analysis, the Bio Rad Image Lab Software was used. For loading
control, a housekeeping protein (Actin, GAPDH, Vinculin) was detected in the same way.
The antibodies were used as listed in Table 1.

2.15. Nematode and Bacterial Strain

C. elegans wild-type strain N2 was obtained from the Caenorhabditis elegans Genetics
Center (University of Minnesota, Minneapolis, MN, USA). Nematodes were maintained on
nematode growth medium (NGM) agar plates seeded with E. coli OP50 at 20 ◦C according
to standard protocols [25]. For all experiments, synchronous populations were generated
through a standard bleaching protocol [26].
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Table 1. Antibodies used for Western Blot.

Antibody Company Host Dilution

Catalase Santa Cruz, Dallas, Texas, USA Mouse 1:1000 in 5% milk
cmyc Cell signaling, Danvers, MA, USA Rabbit 1:1000 in 5% milk

CuZnSOD Santa Cruz, Dallas, Texas, USA Mouse 1:1000 in 5% milk
HIF1α Cell signaling, Danvers, MA, USA Rabbit 1:1000 in 5% milk
HXKII Cell signaling, Danvers, MA, USA Rabbit 1:1000 in 5% milk

mitoProfile
OXPHOS Abcam, Cambridge, MA, USA Mouse 1:250 in 5% milk

MnSOD Sigma Aldrich, Burlington, MA, USA Rabbit 1:500 in 5% milk
PDK1 Enzo Life Science, Farmingdale, NY, USA Rabbit 1:1000 in 5% milk

pmTOR Cell signaling, Danvers, MA, USA Rabbit 1:1000 in 5% milk
β-Actin Novus Biologicals, Centennial, CO, USA Mouse 1:2000 in 5% milk
GAPDH Cell signaling, Danvers, MA, USA Rabbit 1:50,000 in 5% milk
Vinculin Sigma-Aldrich, Darmstadt, Germany Mouse 1:10,000 in 5% milk

2.16. Preparation of NGM Agar Plates

Three grams of NaCl, 2.5 g Bacto™ Peptone (Becton Dickinson, Heidelberg, Germany)
and 17 g Bacto™ Agar (Becton Dickinson, Franklin Lakes, NJ, USA) were dissolved in
975 mL distilled water. After autoclaving, 1 mL cholesterol in ethanol (5 mg/mL), 1 mL
1 M CaCl2, 1 mL 1 M MgSO4, and 25 mL 1 M potassium phosphate buffer (pH 6.0) (108.3 g
KH2PO4, 35.6 g K2HPO4, H2O to 1 L) were added in this order.

2.17. Cultivation and Treatment

Synchronous larvae were washed twice in M9 buffer (6 g Na2HPO4, 3 g KH2PO4,
5 g NaCl and 0.25 g MgSO4 × 7 H2O per L), counted and adjusted to 10 larvae per 10 µL.
Nematodes were raised in cell culture flasks (Sarstedt, Nümbrecht, Germany) or OP50
spread NGM plates. OP50-NGM was added as a standardized food source with a volume
4.4-fold of the larvae containing M9 solution used. L1 larvae were maintained under
shaking at 20 ◦C, reaching adulthood within 3 days. After reaching young adulthood,
48 h prior to the experiment, nematodes were treated with Ze 450 (100, 500, 1000 µg/mL)
dissolved in EtOH 1% and metformin (25, 50, and 100 mM), or paraquat (5 mM; Merck
KGaA, Darmstadt, Germany) dissolved in M9. Standard OP50, M9, and EtOH 1% served
as controls.

2.18. Lifespan Assay

To determine the nematodes lifespan at 20 ◦C, a modified protocol from Amrit
et al. [27] was applied and synchronized larvae, obtained from egg preparation as stated
above, were raised on NGM agar plates spread with standard OP50 E. coli culture. After
completing the L4 larval stage, 40 healthy animals per group were transferred to fresh
NGM E. coli containing plates with a sterilized platinum wire. Effectors were incorporated
into the OP50 culture with the concentration as needed. Nematodes were transferred to
new plates every two days to distinguish between offspring until egg-laying stopped. In
line with the separation from eggs and larvae, nematodes were checked for vital signs
using a hot platinum wire held next to the animal’s heads. Worms showing no reaction to
the heat stimulus were considered dead. The lifespan curves were statistically compared
using the log-rank test.

2.19. Heat-Shock Survival Assay

Approximately 10 nematodes were raised per well in a 96-well microplate as men-
tioned above. After 48 h of incubation with effectors, time till death was determined using
a microplate thermo-tolerance assay [28]. In brief, nematodes were washed off the wells
with M9-buffer into 15 mL tubes followed by three additional washing steps. Each well of
a black 384-well low-volume microtiter plate (Greiner Bio-One, Frickenhausen, Germany)
was prefilled with 6.5 µL M9-buffer/Tween 20 (1% v/v). Subsequently, one nematode was
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immersed in 1 µL M9 buffer under a stereomicroscope (Breukhoven Microscope Systems,
Capelle aan den Ijssel, The Netherlands). A volume of 7.5 µL SYTOX green (final concen-
tration 1 µM; Life Technologies, Darmstadt, Germany), which penetrates only into cells
with a compromised plasma membrane and gets fluorescent after binding to DNA, was
added for fluorescent detection. To prevent water evaporation, the plates were sealed with
a Rotilab sealing film (Greiner Bio-One, Frickenhausen, Germany). Heat shock (37 ◦C) was
applied and fluorescence measured with a ClarioStar platereader (BMG Labtech, Ortenberg,
Germany) every 30 min over the course of 17 h. The excitation wavelength was set at
485 nm, and the emission detected at 538 nm.

2.20. Chemotaxis Assay

Chemotaxis was assessed using a previously published method [29]. Briefly, agar
plates were divided into four quadrants. Sodium azide (0.5 M) was mixed in the same parts
with ethanol (95%) as control, or diacetyl (0.5%) as an attractant. Two microliters of either
control or attractant solution were added to the center of two opposite quadrants with the
same distance to the middle of the plate. Nematodes were washed and separated from
larvae as stated above, and approximately 150 animals were placed in the center of the
plate. After 1 h, each quadrant was counted, and a chemotaxis index calculated ((number
of attractant–number of control)/number total).

2.21. Statistical Analysis

For statistical analysis of the survival curves, the log-rank test (Mantel-Cox test)
was employed compared to the corresponding control. A p-value lower than 0.05 was
considered to be a significant difference between two survival curves. All data are given
as mean + or ±standard deviation (SD). Statistical comparison between treatment groups
was performed by analysis of variance (two-way ANOVA) followed by Scheffé’s post hoc
test, and a p-value < 0.05 was considered to be statistically significant. Calculations were
executed with Winstat standard statistical software 2012.1.0.96 (R. Fitch Software, Bad
Krozingen, Germany) and visualized using GraphPad Prism software 6.05 (GraphPad
Software, San Diego, CA, USA).

3. Results
3.1. Antioxidant Properties of Ze 450 Do Not Predominantly Contribute to Its Protective Effects

As detected here in neuronal HT22 cells, Ze 450 neither affected glutathione levels
nor rescued erastin-mediated glutathione depletion (Figure 1a). Ze 450 extract contains
phenolic compounds, which may exert antioxidant properties. Therefore, it was a major
aim of this study to investigate the potential radical scavenging activity of Ze 450 and to
evaluate the corresponding impact on the observed protective effects. As detected in the
DPPH assay, Ze 450 did indeed mediate moderate antioxidant activities, which were less
pronounced in comparison to the radical scavenging activity of Trolox (Figure 1b).

Further, protein levels of enzymes involved in the antioxidant defense system were
studied. Notably, catalase, copper/zinc superoxide dismutase (SOD), and manganese SOD
protein levels remained unaltered in response to Ze 450 treatment (Figure S1). The question
remained, however, whether the antioxidant properties of Ze 450 contributed to the ob-
served protective effects in neurons [12]. Therefore, HT22 neuronal cells were challenged
with erastin in the presence of the glycolysis inhibitor 2-deoxyglucose; 2-NDBG, (2-(N-(7-
Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-DG). The results clearly show
that Ze 450 is protective against erastin-mediated oxidative insult, but in the presence of
2-DG, this effect was abolished, while Trolox still mediated protection that was apparently
independent of energy supply through glycolysis (Figure 1c). Based on these results, Ze
450 protects against oxidative cell death by reducing mitochondrial ROS formation and
not by sustaining GSH levels (Figure 1a). Overall, these data demonstrate that the major
mechanism underlying the protective effects of Ze 450 were not attributed to the moderate
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radical scavenger activity of Ze 450 nor any other antioxidant effect, but were dependent
on the metabolic effects of the extract.
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Figure 1. Protective effects of Ze 450 are independent of its antioxidant properties. (a) Effects of
Ze 450 on cellular glutathione levels (n = 5–7/treatment condition). Data are shown as mean + SD
(*** p < 0.001 compared to untreated control; ANOVA, Scheffé’s test). (b) DPPH radical scavenging
activity was determined at 517 nm. (*** p < 0.001, ** p < 0.01 compared to control; ANOVA Scheffé’s
test; n.s. not statistically significant). (c) Cell death was assessed by flow cytometry using Annexin V
and PI after 16 h of treatment in HT22 cells. The bar graph shows one representative experiment with
three replicates per sample (mean + SD; 5,000 cells per replicate; *** p < 0.001 compared to erastin
treated control; ANOVA Scheffé’s test).

3.2. Ze 450 Directly Targets the Respiratory Chain Function in Isolated Mitochondria

In order to ascertain whether the effects of Ze 450 on mitochondria were mediated
indirectly through cellular signaling pathways or were rather attributed to direct effects on
mitochondrial respiration, we assessed the effects of Ze 450 in isolated cortical mitochondria
from rats. The coupling assay was used to determine the activity of mitochondrial complex
II and III in the presence of rotenone as an inhibitor for complex I and succinate as a
substrate for complex II driven respiration. Ze 450 was exposed to isolated mitochondria
for 30–60 min. As shown in Figure 2, Ze 450 mediated a time- and concentration-dependent
reduction of mitochondrial OCR (Figure 2a,b). After 60 min, the respiration profile of
mitochondria treated with 100 µg/mL Ze 450 was significantly reduced as revealed after
injection of ADP and, moreover, complex II functionality was impaired, which was detected
upon stimulation of full respiration by adding the ionophor FCCP (Figure 2b).
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Figure 2. Ze 450 reduces mitochondrial respiration. (a,b) Oxygen consumption rate (OCR) was
analyzed after 30 and 60 min of incubation with Ze 450 (50 and 100 µg/mL). ADP (port A), oligomycin
(port B), FCCP (port C) and antimycin A (port D) were injected, successively. (c) OCR was analyzed
after 30 and 60 min of incubation with Ze 450 (50 and 100 µg/mL). Rotenone (port A), FCCP (port B),
antimycin A (port C) and ascorbate/TMPD (port D) were injected, successively. (d) depicts an
immunoblot. Relative protein levels of the five electron transport chain complexes (CI-CV) were
assessed in HT22 cells treated with 100 µg/mL Ze 450 for 16 h compared to untreated control
(− control, + Ze 450). Rat cortical mitochondria served as a positive control (+ ctrl); ANOVA,
Scheffé’s test.

As described previously [20], Rhodamine 123 measurement was performed to assess
mitochondrial membrane integrity as a quality control for isolated mitochondria. In
this context, fluorescence quenching of all tested mitochondrial conditions was similar,
indicating a good quality of mitochondria (Figure S2a).

The electron flow through different complexes was analyzed with the initial presence
of pyruvate and malate to assess mitochondrial complex I activity (Figure 2c). In line with
previous findings [12], Ze 450 affected pyruvate and malate driven respiration in a time-
dependent manner, but did not completely inhibit complex I activity, since the injection of
rotenone (port A, Figure 2c) further reduced mitochondrial respiration. Injection of FCCP
(port B, Figure 2c) led to an increase in OCR, proving that the electron flow was working
properly. Further, it was excluded that the inhibitory effect of Ze 450 was attributed to
decreased protein expression (Figure 2d), Figure S2b–f). There were no differences detected
between controls and Ze 450-treated cells regarding the expression levels of the proteins
representing the mitochondrial respiratory complexes.

Taken together, Ze 450 exerted direct effects on mitochondria, as demonstrated by the
inhibition of mitochondrial complex I-III activity in the isolated organelles in vitro.

3.3. Ze 450 Promotes a Glycolytic Phenotype

The major interest of this study was to gain new insights into the molecular mech-
anisms underlying the metabolic effects of Ze 450; therefore, we analyzed HIF1α and
cMyc regulation, which were previously linked to metabolic switches to aerobic glycolysis.
In the HT22 cells, Ze 450 regulated HIF1α protein levels in a time-dependent manner
(Figure 3a,b). HIF1α protein levels were increased after 2 h of treatment with 100 µg/mL
Ze 450 (Figure 3a,b) and returned to control level 16 h of Ze 450 treatment (Figure 3a,b).
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In addition to HIF1α, cMyc is known to be involved in metabolic reprogramming by
promoting the rate of glycolysis, and besides its role as an oncogene, cMyc promotes impor-
tant physiological functions, including energy metabolism [30]. cMyc protein levels were
investigated in a time-dependent manner upon Ze 450 treatment (Figure 3c,d). Initially,
there was no change detected (Figure 3c), but after 16 h of Ze 450 treatment, cMyc protein
levels were significantly upregulated (Figure 3d).

These results demonstrate that Ze 450 alters HIF1α and cMyc protein levels in a con-
secutive time-dependent manner, with an early but transient HIF1α up-regulation followed
by persistent cMyc regulation at later time points. HIF1α and cMyc are known to regulate
key enzymes involved in glucose energy metabolism such as pyruvate dehydrogenase 1
(PDK1) and hexokinase II (HXKII) [30,31]. Ze 450 led to an increase in PDK1 and HXKII
protein levels after 16 h of treatment with Ze 450 (Figure 3e–g). Additionally, glucose
uptake was monitored by measuring 2-NBDG fluorescence. The results show that Ze 450
promoted 2-NBDG uptake compared to control conditions (Figure S3a and Figure 4a–d).

Overall, these results suggest a link between Ze 450 and key regulators of energy
metabolism such as HIFα and cMyc, thereby, enhancing glucose uptake and metabolic re-
programming through accelerating key enzymes of glycolysis with concomitantly reduced
OXPHOS in mitochondria.
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Figure 3. Effects of Ze 450 on protein levels of metabolic key regulators. (a) Effects of 100 µg/mL
Ze 450 on HIF1α protein levels were investigated via Western Blot after 2–16 h treatment in HT22
cells. (b) Quantification of Western Blot after 2–16 h of treatment with 100 µg/mL Ze 450 depicted
as optical density compared to β-Actin as loading control (n = 5/treatment condition; *** p < 0.001;
** p < 0.01; unpaired t-test). (c) Representative Western Blot showed the effect of 100 µg/mL Ze
450 treatment on cMyc protein level after 2–16 h treatment in HT22 cells. (d) Quantification of
Western Blot as optical density compared to β-Actin as loading control (n = 3/treatment condition;
** p < 0.01; unpaired t-test). (e) Representative Western Blot of PDK1, and HXKII protein levels after
16 h of Ze 450 treatment (100 µg/mL) in HT22 cells. (f,g) Quantification of Western Blot as optical
density compared to vinculin as loading control (n = 8/treatment condition, *** p < 0.001; ** p < 0.01,
unpaired t-test).

3.4. Effects of Estrogen, Estrogen Agonists and 4-OH-Tamoxifen on Neuroprotection

Previously, the therapeutic effects of C. racemosa extracts were attributed to phytoe-
strogens, although classic phytoestrogens were not identified as major components of
the extract and according to effects on estrogen receptors were not confirmed. Here, we
compared the effects of 17β-estradiol, estrogen receptor agonists and 4-OH-tamoxifen to Ze
450-mediated effects in HT22 neuronal cells. Under basal culture conditions, only very high
concentrations of 100 µM 17β-estradiol reduced metabolic activity as detected in the MTT
assay (Figure 4a), while the erastin-mediated cytotoxic reduction of the metabolic activity
was prevented at 50 µM of 17β-estradiol (Figure 4a). These results were confirmed in the
annexinV/PI cell death assay showing that 17β-estradiol preserved cell viability at 50 µM
(Figure 4b,c), while lower concentrations of the estrogen derivate did not provide a protec-
tive effect (Figure 4b,c). In addition, the BODIPY FACS analysis revealed a concentration-
dependent protection by 17β-estradiol at the level of lipid peroxidation (Figure 4d). In
conclusion, these results suggested that estradiol-mediated protection against oxidative
damage was independent of estrogen-receptor-mediated effects, since only high micro
molar concentrations of 17β-estradiol mediated protection, whereas concentrations of the
estrogen relevant for receptor stimulation showed no effect.

In addition, mitochondrial respiration of cells treated with 17β-estradiol was com-
pared to the effects of Ze 450 (Figure S5a,b). In contrast to Ze 450, 1 µM 17β-estradiol led
to an increase in mitochondrial respiration (Figure S5a,c). To analyze effects independent
of basal OCR differences, the spare respiratory capacity was analyzed (Figure S5d). The
results showed that Ze 450 and 50 µM 17β-estradiol reduced spare respiratory capacities
compared to control conditions (Figure S5a,d). In contrast to Ze 450, erastin-mediated
reduction of OCR was partly prevented by 50 µM 17β-estradiol (Figure S5b). Analyzing
the rate of glycolysis, the reduction of the ECAR mediated by erastin was partly prevented
by 50 µM 17β-estradiol and Ze 450 (Figure S5e,f).



Antioxidants 2021, 10, 1432 13 of 22

Antioxidants 2021, 10, x FOR PEER REVIEW 13 of 23 
 

These results demonstrate that Ze 450 alters HIF1α and cMyc protein levels in a con-

secutive time-dependent manner, with an early but transient HIF1α up-regulation fol-

lowed by persistent cMyc regulation at later time points. HIF1α and cMyc are known to 

regulate key enzymes involved in glucose energy metabolism such as pyruvate dehydro-

genase 1 (PDK1) and hexokinase II (HXKII) [30,31]. Ze 450 led to an increase in PDK1 and 

HXKII protein levels after 16 h of treatment with Ze 450 (Figure 3e–g). Additionally, glu-

cose uptake was monitored by measuring 2-NBDG fluorescence. The results show that Ze 

450 promoted 2-NBDG uptake compared to control conditions (Figures S3a and 4a–d). 

Overall, these results suggest a link between Ze 450 and key regulators of energy 

metabolism such as HIFα and cMyc, thereby, enhancing glucose uptake and metabolic 

reprogramming through accelerating key enzymes of glycolysis with concomitantly re-

duced OXPHOS in mitochondria. 

3.4. Effects of Estrogen, Estrogen Agonists and 4-OH-Tamoxifen on Neuroprotection 

Previously, the therapeutic effects of C. racemosa extracts were attributed to phytoes-

trogens, although classic phytoestrogens were not identified as major components of the 

extract and according to effects on estrogen receptors were not confirmed. Here, we com-

pared the effects of 17β-estradiol, estrogen receptor agonists and 4-OH-tamoxifen to Ze 

450-mediated effects in HT22 neuronal cells. Under basal culture conditions, only very 

high concentrations of 100 μM 17β-estradiol reduced metabolic activity as detected in the 

MTT assay (Figure 4a), while the erastin-mediated cytotoxic reduction of the metabolic 

activity was prevented at 50 μM of 17β-estradiol (Figure 4a). These results were confirmed 

in the annexinV/PI cell death assay showing that 17β-estradiol preserved cell viability at 

50 µM (Figure 4b,c), while lower concentrations of the estrogen derivate did not provide 

a protective effect (Figure 4b,c). In addition, the BODIPY FACS analysis revealed a con-

centration-dependent protection by 17β-estradiol at the level of lipid peroxidation (Figure 

4d). In conclusion, these results suggested that estradiol-mediated protection against oxi-

dative damage was independent of estrogen-receptor-mediated effects, since only high 

micro molar concentrations of 17β-estradiol mediated protection, whereas concentrations 

of the estrogen relevant for receptor stimulation showed no effect. 

A
V

/P
I 
p
o
s
it
iv

e
 c

e
lls

(%
 o

f 
 g

a
te

d
 c

e
lls

)

C
trl

10
0 

µg
/m

L 1 50 0

10
0 

µg
/m

L 1 50

0

20

40

60

80

100

Ze 450

Ctrl

0.5 µM erastin

***

***

17-estradiol [µM]

A
V

/P
I 
p
o
s
it
iv

e
 c

e
lls

(%
 o

f 
 g

a
te

d
 c

e
lls

)

C
tr
l

0.
1 1 10 50 0

0.
1 1 10 50

0

50

100

150
Ctrl

0.5 µM erastin

***

17-estradiol [µM]

M
e
ta

b
o
lic

 a
c
ti
v
it
y

(%
 o

f 
 c

o
n

tr
o

l)
C
tr
l 1 10 50 10

0
15

0 0 1 10 50 10
0

15
0

0

50

100

150
0.5 µM erastin

Ctrl

17-estradiol [µM]

### ###

***
***

***

B
O

D
IP

Y
 p

o
s
it
iv

e
 c

e
lls

(%
 o

f 
 g

a
te

d
 c

e
lls

)

C
trl

10
0 

µg
/m

L 1 50 0

10
0 

µg
/m

L 1 50

0

20

40

60

80

100

Ze 450

Ctrl

17-estradiol [µM]

0.5 µM erastin

***
***

(a) (b)

(c) (d)
 

Figure 4. Effects of 17β-estradiol on HT22 cells. (a) Metabolic activity was evaluated in erastin-challenged HT22 cells by 

measuring MTT formazan absorbance (0.5 μM, 16 h). Eight replicate wells per condition are displayed as mean + SD. The 

absorbance under control conditions is set as 100%. (b,c) Cell death was assessed by flow cytometry using Annexin V and 
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per sample (mean + SD; 5000 cells per replicate). (d) Lipid-peroxidation was assessed by flow cytometry using BODIPY™ 

Figure 4. Effects of 17β-estradiol on HT22 cells. (a) Metabolic activity was evaluated in erastin-
challenged HT22 cells by measuring MTT formazan absorbance (0.5 µM, 16 h). Eight replicate
wells per condition are displayed as mean + SD. The absorbance under control conditions is set as
100%. (b,c) Cell death was assessed by flow cytometry using Annexin V and PI staining after 16 h of
treatment in HT22 cells. The bar graph shows one representative experiment with three replicates per
sample (mean + SD; 5000 cells per replicate). (d) Lipid-peroxidation was assessed by flow cytometry
using BODIPY™ after 8 h. The bar graph shows one representative experiment with three replicates
per sample (*** p < 0.001, compared to erastin-treated control; ### p < 0.001 compared to untreated
control; ANOVA, Scheffé’s test).

To further elucidate the potential role of estrogen receptor stimulation, estrogen
receptor agonists (DPN and PPT) were applied in the model system of erastin-induced
oxidative death. DPN and PPT differ in their binding affinity towards estrogen receptors
(ER), with DPN preferentially binding to ERα and PPT binding to ERβ. Metabolic activity
was not affected by any of the ER agonists, and they did not prevent erastin-mediated
oxidative damage, assessed by MTT assay (Figure S6a,b). Furthermore, the combined
treatment of either PPT or DPN with 100 µg/mL of Ze 450 did not exceed Ze 450-mediated
effects (Figure S6c).

Moreover, 4-OH-tamoxifen, a selective estrogen receptor modulator was tested. Ta-
moxifen is a known ER antagonist clinically used to treat estrogen-dependent breast
cancer [32]. Here, the effects of 4-OH-tamoxifen were compared to Ze 450 in neuronal
cells. At 50 µM, 4-OH-tamoxifen exerted strong reduction of metabolic activity, likely
reflecting toxic effects and cell death at this high concentration (Figure S6d), while 10 µM
4-OH-tamoxifen was protective against erastin-mediated oxidative damage (Figure S6d).
To further study synergistic or additive effects of Ze 450 with 4-OH-tamoxifen, low, non-
protective concentrations of 4-OH-tamoxifen (0.5 and 1 µM) were used (Figure S6e). The
results show that no additional effects were detected in comparison to Ze 450 (Figure S6e).
Supporting the previous findings, Ze 450 protected against erastin-mediated cell death,
while there was no additive or synergistic effect observed either for ER agonists (DPN,
PPT) or for 4-OH-Tamoxifen (Figure S6f).

In summary, these findings demonstrated that estrogen and 4-OH tamoxifen-mediated
effects were independent of estrogen receptor signaling, and, most importantly, Ze 450-
mediated effects were not attributed to estrogen-like effects.
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3.5. Metformin Mediates Protective Effects on the Level of Mitochondria

In the present study, the effects of metformin were compared to Ze 450 in a model sys-
tem of oxidative stress to elucidate similarities or differences in their mechanism of action.

Metformin did not affect metabolic activity in the tested concentration range as as-
sessed by the MTT assay under basal culture conditions (Figure 5a). In the model of
erastin-meditated oxidative death, 50 mM metformin preserved cell viability assessed
by the MTT assay comparable to 100 µg/mL of Ze 450 (Figure 5a). Annexin V/PI FACS
measurements confirmed a concentration-dependent protection against erastin-induced
cytotoxicity by metformin (Figure 5b).
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Figure 5. Metformin protects HT22 cells against oxidative damage. (a) Metabolic activity was evaluated in erastin-challenged
HT22 cells by measuring MTT formazan absorbance (0.3 µM, 16 h). Eight replicate wells per condition are displayed as
mean + SD. The absorbance under control conditions is set as 100%. (b) Cell death was assessed by flow cytometry using
Annexin V and PI after 16 h of treatment in HT22 cells. The bar graph shows one representative experiment with three
replicates per sample (mean + SD; 5000 cells per replicate). (a,b) *** p < 0.001, ** p < 0.01 compared to erastin treated control
(ANOVA, Scheffé’s test).

Ze 450 has been demonstrated to exert strong protective effects on lipid-peroxidation
in model systems of oxidative stress [11,12]. Hence, metformin-mediated effects on cellular
ROS formation were investigated. The results showed that metformin was capable of
mediating protection against erastin-mediated increase in lipid-peroxidation, but this
effect was less pronounced compared to 100 µg/mL Ze 450 (Figure S7a). Furthermore,
mitochondrial ROS formation was analyzed using MitoSOX staining and subsequent FACS
analysis. Erastin-induced increase in the production of mitochondrial superoxides was
reduced upon concentrations greater than 2 mM metformin (Figure S7b). In line with this,
metformin protected against erastin-mediated loss of mitochondrial membrane potential in
a concentration-dependent manner (Figure S7c). In contrast to Ze 450, metformin decreased
the ATP levels in the cells (Figure S7d). Moreover, erastin-induced ATP depletion was
completely prevented by 100 µg/mL Ze 450, whereas metformin merely affected the
erastin-induced decline of ATP levels (Figure S7d).

Further, we evaluated the influence of metformin on energy metabolism (Figure 6a–d).
Ze 450 showed a concentration-dependent reduction of OCR, which represents mitochon-
drial respiration, and this effect was also detectable for metformin (Figure 6a). Metformin
(5 and 10 mM) decreased basal and FCCP stimulated OCR in a comparable manner as
Ze 450 (p < 0.001 compared to control cells), whereas the effect with 2 mM Metformin
was less pronounced for FCCP-stimulated OCR (p < 0.05) (Figure 6a). Erastin-mediated
reduction of ECAR was prevented by Ze 450, whereas metformin did not rescue glycolytic
energy supply to the same extent (Figure 6d).

Interestingly, metformin and Ze 450 provided comparable protective effects in the
model system of oxidative cell death, but regarding effects on the energy metabolism, the
effects of metformin were less pronounced compared to Ze 450.
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Figure 6. Metformin mediated effects on OCR and ECAR. Data of a representative experiment is
depicted, showing OCR and ECAR under basal and oxidative stress conditions. (a,b) After 16 h of
Ze 450 and metformin treatment (a) and challenged with 0.5 µM erastin (b), the oxygen consumption
rate (OCR) of HT22 was analyzed with a Seahorse XFe96 Analyzer. Data of 5–8 replicate wells per
condition are given as mean ± SD. C, D: After 16 h of treatment with Ze 450 and metformin (c) and
challenged with 0.5 µM erastin (d) the extracellular acidification rate (ECAR) was determined with a
Seahorse XFe96 Analyzer. Data of 5–8 replicate wells per condition are given as mean ± SD (port A:
oligomycin; port B: FCCP; port C: rotenone and antimycin A; port D: 2-deoxyglucose; *** p < 0.001,
compared to erastin-treated control; ### p < 0.001; ## p < 0.01; # p < 0.05 compared to untreated
control; ANOVA, Scheffé’s test; n.s. not statistically significant).

3.6. Metformin and Ze 450 Extend Lifespan in C. elegans

C. elegans is a well-established model system to study longevity and mitochondrial
stress resilience upon paraquat (PQ) exposure in vivo. The aim of this study was to
investigate the potential protective effects of Ze 450 against paraquat-induced death and,
further, evaluating the impact of Ze 450 on longevity in comparison to metformin. First, the
heat shock assay was used as a pre-test system to define a concentration range for Ze 450
and metformin that should then be applied in long-term lifespan assay (Figure 7a,b). Based
on the heat shock assay, 100 µg/mL Ze 450 was chosen as an appropriate concentration
for the PQ stress test. In the PQ assay, Ze 450 enhanced overall survival and improved
median survival (median survival: Ze 450 9.5 h) compared to survival in C. elegans exposed
to paraquat (median survival: PQ 8 h) (Figure 7c).

It has been demonstrated that metformin prolongs the lifespan in mice [33] and in C.
elegans [34,35]. Since similar mechanisms may cause the effects of Ze 450 and metformin,
metformin was used as a reference condition. In the heat shock assay, 50 and 100 mM
metformin decreased survival, while 25 mM led to an increase in survival compared to
the vehicle controls (Figure 7b). Additionally, 25 mM metformin improved the survival in
PQ-challenged nematodes compared to PQ-exposed controls (Figure 7d).
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Figure 7. Effects of Ze 450 and metformin on C. elegans. (a) Effects of different concentrations of Ze 450 in a heat stress model
system in C. elegans. The 50–250 µg/mL Ze 450 did not affect the lifespan, while worms treated with 750 or 1500 µg/mL
showed a decrease in lifespan (* p < 0.05, n = 85–115). (b) Effects of metformin (25–100 mM) in a heat stress model system
in C. elegans. 25 mM metformin improved lifespan (* p < 0.05 compared to M9 vehicle control), while treatment with ≥50
mM metformin did not affect lifespan (n = 75–97). (c) Effects of 100 µg/mL Ze 450 in a model system of paraquat (PQ)
induced oxidative stress in C. elegans (n = 65–113, *** p < 0.001 PQ compared to vehicle, * p < 0.05 Ze 450 + PQ compared to
PQ). (d) Effects of 25 mM metformin in a model system of paraquat (PQ)-induced oxidative stress in C. elegans (n = 76–97,
*** p < 0.001 PQ compared to M9 vehicle, * p < 0.05 25 mM metformin +PQ compared to PQ). (e) Effects of 100 µg/mL
Ze 450 on C. elegans in the real-time lifespan assay (*** p < 0.001 compared to vehicle; 1% ethanol). (f) Effects of 25 mM
metformin on C. elegans in the real-time lifespan assay (** p < 0.001 compared to vehicle; M9).

Following these promising findings, Ze 450 and metformin were further investigated
for their effects on the lifespan of C. elegans in a real-time assay at concentrations matching
concentrations previously used in the cultured neuronal cells (Figure 7e,f). The results
showed that Ze 450 prolonged the median survival (24 days) and the overall survival
(Figure 7e) compared to vehicle control (20 days). Moreover, 25 mM metformin demon-
strated similar results regarding the overall survival rate compared to vehicle control
(Figure 7d), but metformin did not improve median survival (22 days M9 and 25 mM
metformin). In this real-time setting, we demonstrated robust effects of Ze 450 on the
lifespan, which were more pronounced compared to metformin.

Besides the studies on longevity, C. elegans is used to investigate neuronal function,
based on the nematodes’ well-developed sensory and olfactory system. Chemotactic
behavior was studied to assess whether Ze 450 affects neuronal function (Figure S8a,b).
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Metformin and Ze 450 increased the chemotactic index compared to the corresponding
control (Figure S8a,b).

Taken together, the findings in C. elegans suggest that Ze 450 can mediate beneficial
effects regarding neuronal function and longevity in a whole organism in vivo.

4. Discussion

Although C. racemosa extracts are widely used to treat menopausal complaints, the
exact mechanism of action has not been clarified. The physiological process of menopausal
transition is accompanied not only by estrogen depletion but also by age-related metabolic
alterations, including for example an increase in body weight. Consequently, meno-pausal
women are exposed to enhanced risk factors for metabolic diseases, such as diabetes
mellitus type II or osteoporosis [10,36]. Ze 450 was recently investigated for its impact on
metabolic parameters of menopausal women [18]. The authors demonstrated that Ze 450
attenuated weight gain in menopausal women. Additionally, it was shown that Ze 450
mediated beneficial effects, including reduction in body weight and improved glucose
metabolism in a mouse model of diabetes [16]. In the present study, we revealed that the
C. racemosa extract Ze 450 mediated advantageous effects on cellular energy metabolism
and according to protective effects against oxidative cell damage that were independent of
estrogen signaling. In this context, it has been shown that C. racemosa extract did not affect
hormone levels in peri- and postmenopausal women [37].

Menopausal complaints are frequently treated with HRT, although this has some
limitations due to adverse side effects, such as coronary heart disease, stroke, or increased
risk of developing breast cancer. In this study, it was demonstrated that the mechanism of
action of Ze 450 is distinct from the effects of 17β-estradiol, estrogen receptor agonists DPN
and PPT, and of the SERM tamoxifen (Figure 4, supporting Figures S5 and S6). We found
that 17β-estradiol protected against erastin-mediated damage, but this effect was attributed
rather to its antioxidant properties [38–40]. Additionally, mitochondrial respiration was
slightly increased by 1 µM of 17β-estradiol compared to control conditions (Figure S5).
This is in sharp contrast to the effects of Ze 450, which decreased OCR as a mechanistic
basis of the observed protective effects.

Moreover, anti-proliferative effects have been demonstrated in vitro [12], and C. race-
mosa extract has been proposed to mediate protective effects in cancer patients [41–43].
Taken together, the findings obtained in the current study indicate a mechanism of action
of Ze 450, which is distinct from estrogen-mediated signaling, underlining the importance
of C. racemosa extracts as hormone-free alternatives to treat menopausal complaints, and
further suggesting a beneficial influence on metabolic disorders [15,16].

Our previous studies [12] and the current results demonstrated that Ze 450 reduced
mitochondrial respiration in neuronal cells and promoted an inhibitory effect on mito-
chondrial complexes in a concentration- and time-dependent manner. Such inhibition of
mitochondrial respiration due to reduced mitochondrial complex functionality leads to
reduced superoxide production; thus, supporting the hypothesis that Ze 450 mediates
protective effects by reducing mitochondrial ROS formation. Consequently, the major pro-
duction sites of superoxides in mitochondria are inhibited by Ze 450, which subsequently
reduces overall oxidative damage to the cells. Our current results point at partial inhibition
of CI by Ze 450, but also direct or indirect inhibition of other respiratory complex activities
may be involved. So far, we could not detect inhibition of CII or CIII by Ze 450, and,
therefore, focused on other mechanisms that may cause the observed metabolic shift from
OXPHOS to glycolysis.

A similar glycolytic switch detected here in neuronal cells exposed to Ze 450 was
first described as a fundamental mechanism in cancer cells, and was termed as the War-
burg effect. The underlying molecular mechanisms of the Warburg effect are not fully
understood, but HIF1α and cMyc have been recognized as master regulators of important
glycolytic enzymes like HXKII and PDK1, promoting metabolic reprogramming. In the
present model system in neuronal cells, Ze 450 regulated HIF1α and cMyc protein levels
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in a shifted time dependency, which finally led to an enhanced glycolytic metabolism, by
increasing HXKII and PDK1 protein levels.

HIF has been described to be involved in TCA regulation by enhancing PDK1 activity
and thereby limiting the entry of pyruvate into the TCA. Consequently, mitochondrial
respiration is decreased [44,45]. In order to examine the impact on HIF-mediated regulation
of energy metabolism, PDK1 protein levels were measured. Concomitant with HIF up-
regulation, Ze 450 increased PDK1 protein levels, and mitochondrial respiration measured
through OCR was decreased [12]. Moreover, our results in isolated mitochondria suggested
that this effect on OCR was accelerated by a direct inhibition of mitochondrial respiratory
chain complexes by Ze 450.

Further, it was demonstrated that HIF is involved in the alteration of COX4 subunits
in response to hypoxia in mammalian cells by restoring the electron transfer to O2 [46].
This consequently leads to reduced superoxide formation by CI and CIII. In this regard, the
regulation of superoxide formation seems to be a crucial metabolic adaption regulated by
HIF [46,47], and this effect may also contribute to the observed protective effects by Ze 450.

Furthermore, imbalanced redox homeostasis has been linked to many pathological
conditions. For example, hot flushes and increased ROS formation have been linked to
the metabolic impairments in diabetic patients [48]. We showed previously that Ze 450
reduced oxidative stress-mediated mitochondrial impairment and cell death in hypothala-
mic cells [12] thereby, proposing a potential link to the reported metabolic effects of the
C. racemosa extract; however, the mechanism of action of Ze 450 in experimental settings
in vivo and in patients is still unknown. Besides the effective treatment of menopausal
complaints, it was suggested that Ze 450 has further therapeutic potential in metabolic
diseases. For example, Ze 450 mediated antidiabetic effects in an ob/ob mouse model,
which were comparable to metformin [16], highlighting the potential for Ze 450 as a possi-
ble early treatment option for metabolic diseases, such as type II diabetes. This was further
supported by clinical data demonstrating reduced weight gain in postmenopausal women
taking Ze 450 [18].

Obesity is one of the most important risk factors for type II diabetes, and the first
line of treatment of the disease with the non-insulinotropic antidiabetic drug metformin is
known for attenuating body weight gain. Therefore, in the present study, it was of major
interest to compare the mode of action of Ze 450 with metformin. Metformin regulates
blood glucose levels and fasting insulin levels by reducing gastrointestinal and increasing
peripheral glucose uptake [17,49,50]. So far, however, the molecular mechanism of action
of metformin requires clarification. It has been suggested that metformin acts at the cel-
lular level as a mitochondrial ETC inhibitor and an activator of AMP-activated protein
kinase (AMPK) [50], thereby interfering with several important regulation pathways of
energy metabolism [51]. Moreover, AMPK activation has been related to neuroprotective ef-
fects [52]. Both metformin and Ze 450 protected against mitochondrial ROS formation, loss
of mitochondrial membrane potential and oxidative cell death. Additionally, metformin
has been described as a mitochondrial CI inhibitor leading to reduced mitochondrial ROS
production [50,51]. This was also found in the present study, since metformin reduced
OCR in a concentration-dependent manner. Here, we found that Ze 450 demonstrated
stronger protective effects on the rescue of erastin-mediated ATP depletion compared to
metformin. This might be linked to a more pronounced shift towards glycolysis under
oxidative stress conditions mediated by Ze 450. These results demonstrate that Ze 450 can
interfere with cellular energy metabolism and thereby mediate beneficial effects, which
could expand its therapeutic options.

Therefore, it was of major interest to compare the effects of metformin and Ze 450 on
a whole organism. For that purpose C. elegans was used as a suitable in vivo system to
evaluate effects on mitochondrial related oxidative stress and longevity [53]. In the present
study, 100 µg/mL of Ze 450 protected C. elegans against PQ-mediated toxicity. Differences
between metformin and Ze 450 were identified, since 25 mM metformin enhanced survival
in the heat-stress resistance test, while 100 µg/mL of Ze 450 did not. In previous studies,
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the lifespan extension in C. elegans by metformin was attributed to a multitude of effects,
for example, the modulation of the microbial folate and methionine metabolism [35],
and by activation of AMPK and lysosomal pathways [34]. Further, metformin-mediated
effects on aging are investigated in ongoing clinical trials [54]. This study may deepen the
knowledge about other therapeutic indications beyond its impact on diabetes mellitus type
II [55]. Similarly, the underlying mechanisms promoting longevity and protection against
oxidative challenge by C. racemosa extract in vivo warrant further investigation, also in
clinical settings.

The results obtained with C. elegans in vivo emphasizes that Ze 450 has beneficial
effects on the whole organism and might contribute to healthy aging. Further, Ze 450
demonstrated protective effects against the oxidative challenge by PQ, confirming the
previous findings in vitro, which showed that Ze 450 preserved mitochondrial function
and integrity in paradigms of ferroptosis.

5. Conclusions

In summary, Ze 450 directly affects mitochondria and, thereby, enhanced sustained
cellular resilience to oxidative stress. Overall, these findings support the conclusion that
Ze 450 has a strong impact at the level of mitochondria, which was demonstrated in isolated
mitochondria, in neuronal cells in vitro, and in C. elegans in vivo. Our results provide
evidence that Ze 450 has additional beneficial effects on age-related and metabolic diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox10091432/s1, Figure S1: Effects of Ze 450 on Catalase, MnSOD and CuZnSOD protein
level, Figure S2: Effects of Ze 450 on isolated mitochondria, Figure S3: Glucose uptake measured with
2-NBDG via flow cytometry analysis, Figure S4: Glucose uptake via confocal microscopy, Figure S5:
Effects of 17β-estradiol on energy metabolism, Figure S6: Effects of ER agonists and TM on HT22 cells
in comparison to Ze 450, Figure S7: Effects of metformin on lipid-peroxidation and mitochondrial
parameters, Figure S8: C. elegans.
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