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Abstract: Aging is inevitable, but the inherently and genetically programmed aging process is
markedly influenced by environmental factors. All organisms are constantly exposed to various
stresses, either exogenous or endogenous, throughout their lives, and the quality and quantity of
the stresses generate diverse impacts on the organismal aging process. In the current oxygenic
atmosphere on earth, oxidative stress caused by reactive oxygen species is one of the most common
and critical environmental factors for life. The Kelch-like ECH-associated protein 1-NFE2-related
factor 2 (KEAP1-NRF2) system is a critical defense mechanism of cells and organisms in response
to redox perturbations. In the presence of oxidative and electrophilic insults, the thiol moieties of
cysteine in KEAP1 are modified, and consequently NRF2 activates its target genes for detoxification
and cytoprotection. A number of studies have clarified the contributions of the KEAP1-NRF2 system
to the prevention and attenuation of physiological aging and aging-related diseases. Accumulating
knowledge to control stress-induced damage may provide a clue for extending healthspan and
treating aging-related diseases. In this review, we focus on the relationships between oxidative stress
and aging-related alterations in the sensory, glandular, muscular, and central nervous systems and
the roles of the KEAP1-NRF2 system in aging processes.

Keywords: KEAP1-NRF2 system; oxidative stress; aging; longevity; cell senescence; tissue aging;
age-related hearing loss; Alzheimer’s disease; sarcopenia

1. Introduction

Living organisms on this planet are exposed to oxygen, sunlight, and various chem-
icals in the atmosphere, soil, and water. In addition to these exogenous environmental
factors, endogenously produced chemicals and metabolites often perturb cellular and
organismal functions. To cope with such perturbations, we are all equipped with defense
mechanisms, each of which specializes in an individual stress and continuously responds
to the stress for adaptation and maintenance of homeostasis. In response to continuous
stresses throughout life, maladapted cell populations and their unrepaired damage gradu-
ally accumulate, resulting in the functional decline of tissues and organs in aged organisms.
One of the most common stresses that impact the aging process is oxidative stress. It is
commonly accepted that molecular and cellular damage resulting from reactive oxygen
species (ROS) or oxidative stress accelerates the aging process [1]. This oxidative stress
theory of aging is the most popular explanation for the molecular mechanisms of aging
among a number of theories that have been proposed [2]. It explains many aging pheno-
types at the molecular level, including failure of mitochondrial integrity, proteostasis, and
barrier structure as well as the decline of DNA repair, immune function, and regenerative
capacity [3]. Although the oxidative stress theory of aging is widely accepted, it has been
challenged by several caveats. Some long-living species exhibit high levels of oxidative
damage even at young ages [4], and increased levels of antioxidants have failed to prolong
longevity in several cases (reviewed in [5]). Moreover, non-toxic levels of ROS function as
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signaling molecules that induce protective defense in responses to age-dependent dam-
age [6]. Therefore, controlling and adjusting redox balance in appropriate ways according
to the various cellular contexts is likely to be necessary for the enhancement of our health.

Nuclear factor erythroid-derived 2-like 2 (NRF2; encoded by the Nfe2l2 gene) is a mem-
ber of the cap‘n’collar (CNC) protein family and coordinately regulates a battery of cytopro-
tective genes. Under unstressed conditions, NRF2 is bound by Kelch-like-ECH-associated
protein 1 (KEAP1) in the cytoplasm and is constantly ubiquitinated for degradation by
proteasomes (Figure 1) [7–9]. When cells are exposed to ROS and electrophiles, the thiols of
cysteine residues in KEAP1 are directly modified, leading to decreased KEAP1-dependent
ubiquitination of NRF2 and rapid accumulation of newly synthesized NRF2. Subsequently,
stabilized NRF2 translocates to the nucleus and forms a heterodimer with small musculo-
aponeurotic fibrosarcoma (sMAF) proteins, inducing transcriptional activation by binding
to antioxidant-responsive elements (AREs) [10–13] or electrophile-responsive elements
(EpREs) [14]. Canonical NRF2 target genes encode factors required for glutathione syn-
thesis (Gclc and Gclm), detoxifying ROS and xenobiotics (Txnrd1, Prdx1 and Nqo1), heme
metabolism (Hmox1), phase II conjugation, DNA repair, NADPH production, proteostasis,
and so on (Figure 2; reviewed in [15–17]).
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Figure 1. The KEAP1-NRF2 system as a defense mechanism against oxidative stress and elec-
trophilic stress. Under a steady state with well-controlled redox balance, NRF2 is ubiquitinated and
degraded. Reactive oxygen species and electrophiles inhibit KEAP1-dependent ubiquitination of
NRF2, stabilizing NRF2 and resulting in consequent induction of NRF2 target genes. Red spiked
circles indicate reactive oxygen species and electrophiles.

In addition to elimination of ROS, ARE-independent transcriptional interference by
NRF2 has been reported and contributes to anti-inflammatory functions. Induction of
proinflammatory cytokine genes, such as Il6, and murine inflammatory phenotype models,
including experimental autoimmune encephalomyelitis (EAE) and Staphylococcus aureus
infection models, were ameliorated by supplementation with chemical NRF2 inducers
and genetic activation of Nrf2 [18]. It was also found that systemic activation of NRF2 by
Keap1 knockdown ameliorated tissue inflammation and lethality in Scurfy mice, which
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are deficient in regulatory T cells [19]. Similarly, it is expected that NRF2 contributes
to the amelioration of chronic smoldering inflammation under both physiological and
pathological conditions.
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Figure 2. Beneficial impacts of NRF2 activation on aging-related phenotypes. When NRF2 is pharmacologically activated
with drugs and phytochemicals or genetically activated in mice, various aging-related phenotypes are alleviated. NRF2
target genes are primarily involved in detoxification, antioxidant function, metabolism, and anti-inflammatory function.

Although activation of the KEAP1-NRF2 system reduces the expression of proin-
flammatory cytokine genes, its constitutive activation by Nrf2 gain-of-function mutation
or Keap1 mutation may represent a risk to maintaining physiologically healthy condi-
tions. For instance, constitutive activation of NRF2 resulted in reduced quiescence of
long-term hematopoietic stem cells in steady-state hematopoiesis [20], attenuated differen-
tiation of both osteoclasts and osteoblasts [21], severe hyperkeratosis of the esophagus and
forestomach in the juvenile [22], and therapeutic resistance and aggressive tumorigenic
activity in cancer cells [23–26]. These observations suggest that transient activation of the
KEAP1-NRF2 system is beneficial but that persistent activation is not.

In this review, the contribution of the KEAP1-NRF2 system to aging-related conditions
and diseases is described, including cellular senescence and organismal aging/longevity
(Figure 2). In addition, the possibility of intervening in the aging process by modulating
the KEAP1-NRF2 system is discussed.

2. Cellular Senescence and the KEAP1-NRF2 System

Oxidative stress increases during aging. As part of the DNA damage response, DNA
damage foci are formed and significantly increase with age in the lung, spleen, dermis,
liver, and gut epithelium [27]. Such DNA damage is a major trigger of cellular senes-
cence, which is one of nine defined hallmarks of aging [28]. Cellular senescence is a cell
state implicated in various physiological processes and a wide spectrum of age-related
diseases [29]. In addition to DNA damage, exposure to chemotherapeutic drugs, oxidative
stress, mitochondrial dysfunction, and oncogene activation can cause cellular senescence
(Figure 3). Cellular senescence has been considered beneficial, for example, for contribut-
ing to the clearance of damaged and potentially oncogenic cells from tissues. Senescent
cells secrete proinflammatory cytokines and matrix metalloproteinases, referred to as
the senescence-associated secretory phenotype (SASP) [30,31]. This phenotype worsens
inflammation and disease conditions. Selective removal of senescent cells by small com-
pounds or chimeric T cells has been shown to be beneficial for improving pathologies
of age-associated diseases and for extending lifespan [32–34]. The relationship between
cellular senescence and the KEAP1-NRF2 system has been investigated (Figure 3). In
some occasions, NRF2 signaling decreases with aging due to downregulation of NRF2
expression and transcriptional activity [35,36]. NRF2 activity declines during senescence,
whereas silencing NRF2 leads to premature senescence, implying a negative spiral of NRF2
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dysfunction and cell senescence [37]. Consistently, genetic depletion of Nrf2 enhances
age-related induction of senescence markers and inflammatory SASP factors, exacerbating
the inflammatory status of the hippocampus [38]. Activation of the KEAP1-NRF2 system is
expected to suppress smoldering inflammation and to attenuate physiological dysfunction
during aging. Transient pharmacological activation of NRF2 in endothelial progenitor cells
from aged mice protected these cells against oxidative stress, ameliorated their biologi-
cal dysfunction and downregulated the NLR family pyrin domain containing 3 (NLRP3)
inflammasome [39]. In contrast, persistent genetic activation of NFR2 in skin fibroblasts
induces cellular senescence and leads to a cancer-associated fibroblast phenotype through
regulation of the matrisome [40]. Here, again, transient activation of NRF2 is beneficial,
whereas persistent activation of NRF2 is often detrimental, potentially explaining why
NRF2 is so tightly regulated at multiple levels from gene expression [41] to transcript
stability [42] to protein stability [8].
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Figure 3. The KEAP1-NRF2 system in cell senescence-related processes. Sublethal damage, such as oxidative stress, DNA
damage, mitochondrial dysfunction, and oncogene activation, triggers cellular senescence. During aging, senescent cells are
increased in various tissues, some of which exhibit a reduction in the activity of the KEAP1-NRF2 system. Senescent cells
produce inflammatory cytokines and matrix metalloproteinases, leading to smoldering inflammation and pathology. The
KEAP1-NRF2 system is expected to suppress the causes of cellular senescence and SASP gene expression.

3. Longevity and the KEAP1-NRF2 System

One of the central topics in aging research is the factors affecting longevity among
species. Historically, many researchers have discussed the correlation between longevity
and body size and observed a tendency for a proportional relationship between them.
However, several species possess much longer, or shorter, longevity than expected. In par-
ticular, Brandt’s bats and naked mole-rats show much longer lifespans than that expected
based on their body size [4,43]. In the case of humans, the natural lifespan is estimated to be
approximately 30 years, but it is approximately 80 years in most developed countries [44].

A number of genetically modified mouse models exhibit increased longevity (re-
viewed in [45]). Such experimental models and long-lived species are resistant to both
endogenous and environmental stressors and resist age-related diseases such as cardio-
vascular and neurodegenerative diseases and cancers [46]. Although excess ROS reduce
lifespan by causing extensive cellular dysfunction and damage, birds are remarkably
long-lived. Generally, cellular stress resistance is an evolutionarily conserved feature of
longevity [47]. The KEAP1-NRF2 system is one of the major mechanisms that enhances



Antioxidants 2021, 10, 1929 5 of 19

cellular stress resistance. Constitutive activation of NRF2 has been observed in ~95% of
bird species, representing an adaptive mechanism capable of counterbalancing high ROS
levels [48]. In rodents, comparative analysis of naked mole-rats and nine other rodent
species revealed a positive correlation between lifespan and NRF2 activity. This observa-
tion was verified by a negative correlation between lifespan and suppressors of NRF2, i.e.,
KEAP1 and βTrCP, which are involved in the degradation of NRF2 [46]. In male fruit flies,
keap1 loss-of-function mutations have significantly beneficial effects on oxidative stress
tolerance and longevity [49,50]. In worms, constitutive nuclear accumulation of SKN-1, an
ortholog of Nrf/CNC proteins, increases stress tolerance and longevity [51].

Although increased stress tolerance and longevity seem to be closely related, they are
not necessarily equal (Figure 4). SKN-1/NRF2 deficiency results in increased vulnerability
to oxidative stress and a shortened lifespan in worms. The latter is rescued by DAF-
16/FoxO overexpression, which is related to the insulin/IGF-1 signaling pathway, but
the former is not, implying that the mechanisms underlying resistance to oxidative stress
and longevity are distinct [52]. Another example has been shown in a fly study. While
mild NRF2 activation extends lifespan, induction of NRF2 activation at high levels in adult
flies results in accelerated aging accompanied by signs of type 1 diabetes with altered
mitochondrial bioenergetics [53]. There seems to be a trade-off between extreme stress
tolerance and aging acceleration (Figure 4).
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Figure 4. The KEAP1-NRF2 activity and longevity. Although ROS induce aging-related phenotypes, oxidative stress is not
the only factor that regulates lifespan. In experimental models, mild activation of NRF2 extends lifespan by modulating ROS
levels and attenuating aging-related phenotypes. Strong NRF2 activation, rather than conferring extreme stress tolerance,
accelerates the aging process.

A similar trade-off is observed in the emergence of cancer cells with persistent ac-
tivation of NRF2. Loss-of-function of Keap1 or gain-of-function of Nrf2 due to somatic
mutations in their respective genes is frequently observed in solid tumors that occur in the
lung, head and neck, and bladder [54–56]. Consequent persistent activation of NRF2 in
cancer cells results in therapeutic resistance [57,58]. Such cancer cells are highly depen-
dent on NRF2 activity for their survival and proliferation, and this status is designated
NRF2 addiction [23,25,59]. The most characteristic feature of NRF2-addicted cancer cells is
their extremely enhanced detoxification and antioxidant capacities based on the massive
production of glutathione and massive uptake of cystine via the cystine transporter xCT,
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which is a cystine/glutamate antiporter [60]. Because glutamate is excreted via xCT and
consumed for glutathione synthesis, the robust stress tolerance of NRF2-addicted cancer
cells is thought to occur at the cost of metabolic imbalances, which needs to be corrected by
additional supplementation with glutamate [61].

Although many antioxidant drugs have failed to modify the mammalian lifespan [5,62],
it has been reported that treatment with NRF2-inducing agents exerts favorable effects.
Protandim, a mixture of botanical extracts including bacosides, silymarin, withaferin A,
epigallocatechin-3-gallate, and curcumin, activates NRF2 and extends median lifespan
in male mice [63]. In fruit flies, lithium extends lifespan when administered throughout
adulthood or even only later in life by inhibiting glycogen synthase kinase-3 (GSK-3),
resulting in consequent activation of NRF2. Intriguingly, combining genetic loss of Keap1
with lithium treatment revealed that high levels of NRF2 activation conferred stress resis-
tance, while low levels additionally promoted longevity [64], consistent with the trade-off
paradigm discussed above.

4. Tissue Aging and the KEAP1-NRF2 System

Judging from the distribution of cells positive for senescence-associated β-Gal and
oxidative stress markers, aging does not occur in a uniform manner among tissues in an
organism. In this review, we focus on sensory systems, glandular structures, the central
nervous system, and skeletal muscles as organs with aging processes that can be modified
by activation of the KEAP1-NRF2 system (Figures 2 and 5).

4.1. Aging in Sensory Organs and the KEAP1-NRF2 System

Age-related hearing loss (AHL), also known as presbycusis, is the most common type
of sensorineural hearing loss in the elderly [65]. It is characterized by degenerative and
irreversible changes in inner ear sensory cells (Figure 5A) [66]. Histologically, impairment
has been reported in hair cells, spiral ganglion neurons, spiral ligament, and stria vascu-
laris [67,68]. Various factors causing AHL have been reported, such as ROS [69], exposure
to noise [70,71], ototoxic chemicals [72], systemic diseases [73,74], and genetic predispo-
sitions [75]. Most of these factors are more or less related to oxidative stress when they
damage cells. Excessive oxidative stress and/or decreased antioxidant capacity induces
oxidative damage in the cochlea [76–78]. During the pathogenesis of AHL, the contribution
of inflammation has also been described, as in the case of noise-induced hearing loss, which
is another major class of sensorineural hearing loss [79,80].

The KEAP1-NRF2 system protects cochlear cells from oxidative stress and inflam-
mation and contributes to the avoidance of hearing loss. The C57BL/6 mouse strain is a
well-studied model of early-onset AHL with a SNP in the Cdh23 gene [81]. A decline in
hearing first becomes apparent at high frequencies as early as 3–6 months of age [82] and
progresses to severe impairment by one year of age [83], which corresponds to middle age
in C57BL/6 mice [84]. NRF2 is expressed in the inner and outer hair cells and supporting
cells of the organ of Corti throughout the cochlea and is decreased in the organ of Corti
in older individuals [85]. Its suggested contribution to cytoprotection has been demon-
strated in genetically modified mice. Although Nrf2–/– mice maintained normal auditory
thresholds at 3 months of age, their cochlear structure and function were significantly
deteriorated compared to those of age-matched wild type mice at 11 months of age [86].
This result indicates that endogenous NRF2 is essential for resisting the progression of
age-related pathology in the auditory system. In contrast, genetic NRF2 activation achieved
by Keap1 knockdown (Keap1-KD) in mice enhanced the expression of multiple NRF2 target
genes, ameliorated cochlear degeneration, and maintained hearing ability at 12 months
of age compared to those in wild type mice [87]. Similarly, noise-induced hearing loss
was exacerbated in Nrf2–/– mice and prevented by pretreatment with the NRF2 inducer
2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) [88]. These results indicate
that suppression of oxidative stress by NRF2 activation contributes to the alleviation of
age-related structural alterations and functional decline in the cochlea. Indeed, many re-
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ports have shown that drugs activating the KEAP1-NRF2 system are beneficial for hearing
protection in vitro and in vivo (reviewed in [89]). NRF2 activation is likely to be a general
strategy for inner ear protection. In addition to inner ear, aging related eye disease such as
age-related macular degeneration is also caused by oxidative stress-induced damage to the
retinal pigment epithelium and can be ameliorated by genetic activating NRF2 [90].
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Figure 5. Aged or aging-related disease conditions in several organs. Normal conditions and
aged or aging-related disease conditions in the cochlea (A), glandular structures (B), brain (C), and
skeletal muscle (D). In the cochlea, aging-related oxidative stress irreversibly impairs hair cells, spiral
ganglion neurons, the spiral ligament, and the stria vascularis (A). In glandular structures such as
the lacrimal gland and salivary gland, elevated oxidative stress, collagen deposition, immune cell
infiltration, and apoptosis are observed (B). In aging-related neurodegenerative diseases such as
AD and PD, abnormal accumulation of oxidative stress and abnormal distribution of cells termed
microgliosis and astrocytosis are observed (C). Aged skeletal muscle exhibits reduced thickness and
decreased numbers of muscle fibers (D).
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4.2. Aging in Glandular Structures and the KEAP1-NRF2 System

Among organs and tissues, glandular structures are essential for retaining quality
of life. Aging is a risk factor for dry eye disease, which is a status of functional decline
of the lacrimal gland [91]. Oxidative stress is suggested to be a causative factor for the
pathogenesis of dry eye disease [92]. The lacrimal system consists of the lacrimal glands,
the tear film in contact with the conjunctiva and cornea, and the lacrimal drainage system
through the nasolacrimal duct to the nose [93]. Lacrimal glands undergo structural and
functional alterations with increasing age, and an increase in oxidative stress may play roles
in the decline of lacrimal gland function with age (Figure 5B). Age-related morphological
changes in lacrimal glands include diffuse fibrosis, diffuse atrophy, and periductal fibrosis,
which may be related to the decrease in tear outflow with age and interlobular ductal
dilatation [94].

Critical roles of NRF2 in cytoprotection and anti-inflammation in the lacrimal system
have been reported [95–97]. In addition, the antiaging effects of NRF2 in the lacrimal gland
have also been described. In the lacrimal gland of aged mice, ROS accumulation and heavy
infiltration of mononuclear cells are evident [98]. When Oltipraz, an NRF2 inducer, was
administered to aged mice, oxidative stress markers such as nitrotyrosine and 4-hydroxy-
2-nonenal (4-HNE) were decreased in the lacrimal gland. Concomitantly, infiltration of
immune cells into the lacrimal gland was also decreased, which was accompanied by a
significant increase in conjunctival goblet cell density compared to aged mice fed a standard
diet [99].

Dry mouth (salivary hypofunction or xerostomia) is another common complaint
among aged people, often resulting in oral diseases such as dental caries and periodontal
disease that is associated with chewing, swallowing, and speaking difficulties. In addition
to aging, xerostomia is also caused by medication, high doses of radiation, certain diseases
such as Sjögren’s syndrome, and so on. The aging process is associated with reduced
salivary flow in a salivary gland-specific manner [100]. Saliva seems to undergo chemical
changes with aging. As the amount of ptyalin decreases and mucin increases, saliva
becomes thick and viscous and presents problems for the elderly [101]. Histological
analysis has revealed an age-related decrease in the proportion of parenchymal tissue
versus stromal tissue in salivary glands [102,103]. Once again, oxidative stress is an
important factor in understanding the aging phenotypes of salivary glands (Figure 5B).
Hyposalivation and structural changes, parenchymal atrophy, fatty degeneration, and
stromal fibrosis are coupled with a reduction in the antioxidant capacity of salivary glands
in aged mice [104].

Similar to its roles in the lacrimal gland, NRF2 contributes to cytoprotection and
anti-inflammation in the salivary gland. Intense periductal lymphocyte infiltration is
observed in the salivary glands of Nrf2–/– mice [95]. The antiaging function of NRF2 in
the salivary gland has been demonstrated in Keap1-KD mice. Aging phenotypes of the
salivary gland, such as iron and collagen deposition, immune cell infiltration, increased
DNA damage and apoptosis accompanied by elevated oxidative stress, are all markedly
attenuated in Keap1-KD mice [105]. Intriguingly, anethole trithione, which has been shown
to increase salivary flow and is clinically used for the treatment of hyposalivation [106],
induces the expression of NRF2-dependent genes [107]. Treatment with astaxanthin,
which possesses strong antioxidant and anti-inflammatory effects [108], also prevents age-
related hyposalivation and inflammation in mice [109]. These observations suggest that
enhancing both antioxidant and anti-inflammatory functions simultaneously is essential for
maintaining healthy salivary glands and for the prevention of hyposalivation in the elderly.

4.3. Aging in the Brain, Neurodegenerative Diseases and the KEAP1-NRF2 System

Brain aging is a critical and common factor underlying neurodegenerative diseases
and dementia [110]. The brain shrinks with increasing age and suffers from deteriorating
changes at the molecular, cellular, tissue, and functional levels [111]. Similar to other or-
gans, oxidation of biomolecules, such as protein carbonylation and oxidized nucleic acids,
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increases in an age-dependent manner [112]. Within a physiological range of alterations,
age-related memory impairment has been shown to correlate with antioxidant capacities.
For example, plasma antioxidant vitamin levels correlate with cognitive performance in
healthy older people [113]. Increased levels of oxidative stress and/or antioxidant deficien-
cies are suggested to be risk factors for cognitive decline [114]. Intracellular glutathione
concentrations decrease with age in the mammalian brain, especially in the hippocam-
pus [115]. Under pathological conditions, oxidative stress has been implicated in the
progression of a number of neurodegenerative diseases, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) (Figure 5C) [116].
Oxidative stress and inflammation are increased in the brains of AD patients, which is
widely recapitulated in a number of model animals [117–119]. Decreases in antioxidant
molecules, including glutathione, glutathione peroxidase, glutathione-S-transferase, and
superoxide dismutase, have been observed in mitochondrial and synaptosomal fractions
of the postmortem frontal cortex derived from individuals with mild cognitive impairment
and AD patients [120]. Low levels of endogenous antioxidants and increased reactive
species have also been described in PD [121]. In addition to reduced antioxidant capacities,
a number of reports have described the so-called neuroinflammatory status in AD and PD
models and patients [122–125].

As in other organs, the KEAP1-NRF2 system plays important roles in the maintenance
of brain function [126–128]. Although Nrf2 is expressed in neurons, astrocytes, and mi-
croglial cells, it is substantially more active in astrocytes and microglial cells rather than
neurons [129,130]. NRF2 strongly enhances glutathione synthesis in the brain, especially
in astrocytes [10,127]. Glutathione produced in astrocytes is transported to neurons and
exerts beneficial effects in protecting neurons from oxidative damage [127,131].

In the aging brain, mRNA and protein expression levels of NRF2 appear to be de-
creased in general but increased at specific regions due to an adaptive response to patho-
logical changes [132,133]. The NRF2 activities are also altered in the brains of AD patients
and AD model AppNL-G-F/NL-G-F knock-in mice [134,135]. NRF2 deficiency aggravates
phenotypes of AD model mice, such as APP/TAU mice and APP/PS1 mice [136–139]. Con-
versely, genetic NRF2 activation by Keap1 knockdown in AppNL-G-F/NL-G-F knock-in mice
represses inflammatory cytokine gene expression, enhances glutathione synthesis, and
reverses memory impairment [140]. Similarly, overexpression of Nrf2 by viral vectors
protects hippocampal neurons of APP/PS1 mice and cultured hippocampal cells [141,142].
Pharmacological approaches to induce NRF2 activation have been performed to amelio-
rate neurodegenerative diseases [133]. The NRF2-activating chemicals CDDO-methyl-
amide and dimethyl fumarate (DMF) have been shown to improve cognitive function
in AD model mice [138,143]. Mild, long-term pharmacological induction of NRF2 us-
ing 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC) suppresses AD-like pathology in
AppNL-G-F/NL-G-F knock-in mice [140]. The beneficial effects of NRF2 have also been re-
ported in pathological status of PD. Dysregulation of the KEAP1-NRF2 system has been
described in PD [144,145]. In an MPTP-induced PD mouse model, Nrf2 deficiency exacer-
bates astrogliosis and microgliosis with elevated expression of inflammation markers [146].
Treatment with 6-MSITC protects neuronal functions in PD model mice [147]. Treatment
with DMF attenuates astrogliosis and microgliosis of tauopathy model mice and PD model
mice [148,149]. These results suggest that elimination of oxidative stress in the brain is a
promising strategy for the prevention and/or alleviation of neurodegenerative diseases.
Intriguingly, however, supplementation with antioxidants that quench oxidative stresses
does not have any effect in AD patients [150,151]. Appropriate control of neuroinflamma-
tion, in addition to suppression of oxidative stress, appears to be necessary to conquer
these diseases.

4.4. Aging in Skeletal Muscle and the KEAP1-NRF2 System

Aging in skeletal muscle is characterized by a gradual decline in muscle function and
a reduction in muscle mass (Figure 5D). There are a spectrum of changes that occur in
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skeletal muscle in aged people, from physiological age-related sarcopenia to pathological
muscle wasting, such as in cancer cachexia [152]. In age-related sarcopenia, muscle mass is
reduced because the thickness of each muscle fiber and the total number of muscle fibers are
reduced. In particular, a reduction in type II muscle fibers, which are fast fibers, is one of the
characteristic features of aging [153]. When a reduction in muscle mass is combined with
an increase in body fat mass, body weight remains unchanged, representing a state called
sarcopenic obesity, a new category of obesity in aged people [154]. Loss of muscle mass
with aging is often due to the progressive loss of motoneurons. Muscle function progres-
sively declines because motoneuron loss is not adequately compensated by reinnervation
of muscle fibers by the remaining motoneurons [155]. Mitochondrial dysfunction and
impaired proteostatic mechanisms are other important contributors to the complex etiology
of sarcopenia. Exercise is currently considered the only effective method to treat sarcopenia,
which improves mitochondrial energetics and protein turnover [156]. Possibly related to
mitochondrial dysfunction, sarcopenia patients exhibit a high blood GSSG/GSH ratio and
increased plasma MDA/4-HNE protein adducts compared to nonsarcopenic patients [157].
While transiently increased oxidative stress often serves as a healthy stimulus for muscle
function and regeneration [158], uncontrolled accumulation of ROS leads to pathological
consequences [159]. In addition to oxidative stress, the age-associated inflammation milieu
also underlies sarcopenia. Inflammation markers, including erythrocyte sedimentation
rate (ESR) and C-reactive protein levels, are significantly higher in the sarcopenic group
than in the nonsarcopenic group [160]. Regardless of many reports on the involvement of
inflammation in sarcopenia, it is unclear whether inflammatory activation is due to aging
alone or caused by comorbidities [154].

With its antioxidant and anti-inflammatory functions, NRF2 is expected to have
an antiaging role in skeletal muscle. In aged Nrf2–/– mice, markers of oxidative stress,
mitochondrial 4-HNE, and protein carbonyls were robustly elevated [161]. Although the
absence of Nrf2 did not impact mitochondrial content [162], mitochondrial respiratory
performances were decreased [162,163] or unchanged [161] in skeletal muscles of Nrf2–/–

mice compared to those in age-matched wild type mice. Nrf2 deficiency causes a decline in
skeletal muscle performance in middle-aged and aged mice, whereas minimal differences
were observed in the physical performance between wild type and Nrf2–/– mice when they
are young [162,164]. In contrast, the amount of muscle mass normalized to body weight
is controversial in aged Nrf2–/– mice [161,164]. Because NRF2 induces a reductive cellular
environment, which is rather disadvantageous for myogenesis [158], muscle mass in aged
Nrf 2–/– mice may be determined by balancing the facilitation of myogenesis due to ROS
accumulation and muscle wasting due to increased oxidative stress and inflammation.
NRF2 is most likely enhancing skeletal muscle performance rather than exerting trophic
influences on skeletal muscle.

Consistently, skeletal muscle performance measured as exercise capacity is indeed
enhanced by NRF2 activation. Treatment of mice with one of the NRF2 inducers, CDDO-Im,
increases their maximum running speed and distance on the treadmill compared to those
treated with vehicle control [165]. Similarly, one of the NRF2-inducing phytochemicals,
curcumin, improves exercise performance in mice with heart failure [166]. Moreover,
genetic activation of NRF2 in skeletal muscles increases the slow oxidative muscle fiber
type and improves exercise endurance capacity in female mice [167].

A seemingly common feature of aged skeletal muscles is attenuated NRF2 pathway
activity. mRNA expression levels of Nrf2 were decreased in the gastrocnemius of old wild
type mice [164,168]. In myocardial cells of aged mice, nuclear translocation of NRF2 is
decreased, and subsequent DNA binding of NRF2 is significantly reduced [169]. Exercise
provides a clue to overcoming this issue. Exercise increases p62 phosphorylation and
NRF2 activity, enhancing antioxidant protein expression [170]. Because phosphorylated
p62 competes with NRF2 for KEAP1 binding [171] and because skeletal muscle-specific
p62 disruption cancels out exercise-induced antioxidant gene expression [170], exercise is
considered to activate the NRF2 pathway in a p62 phosphorylation-dependent manner. As
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described above, exercise is the only effective option for treating sarcopenia [156]. During
physical exercise, reactive oxygen species are increased (reviewed in [172]). Therefore,
activation of NRF2 occurs as an antioxidant response [173]. In this context, activation of
the KEAP1-NRF2 system in aged muscles, which exhibits decreased NRF2 expression, may
be beneficial for rapid clearance of reactive oxygen species and for enhancing the efficacy
of exercise. Dietary supplementation with NRF2 inducers antagonizes age-dependent
attenuation of NRF2 pathway activity. Supplementation with sulforaphane for 12 weeks
restored NRF2 activity, mitochondrial function, cardiac function, exercise capacity, glu-
cose tolerance, and activation/differentiation of skeletal muscle satellite cells in aged
mice [168]. Sulforaphane also alleviates pathological conditions in muscular dystrophy
model mice [174]. Thus, restoration of NRF2 activity and endogenous cytoprotective mech-
anisms is likely to be an effective strategy for protecting skeletal muscles from functional
declines caused by aging.

5. Pharmacological Intervention for Increasing NRF2 Activity

To pharmacologically activate the NRF2-dependent transcription, synthetic and natu-
ral compounds are utilized. Multiple mechanistic bases are applied for achieving NRF2
activation. One is based on the KEAP1 ability to sensitively respond to electrophiles.
Originally, exposure to low doses of electrophiles was found to evoke protective response
from the toxicity of high doses of electrophiles, which has been called “electrophilic coun-
terattack response” [175], and NRF2 turned out to be a key regulator of the response [10].
Electrophiles form covalent adducts to cysteine residues in the KEAP1 protein, resulting in
the inactivation of KEAP1, inhibition of NRF2 ubiquitination and stabilization of NRF2.
Interestingly, cysteine residues that are critical for the response to each electrophile is
distinct from electrophile to electrophile, which is described as “cysteine code” (reviewed
in [15]). Electrophiles are categorized into four groups according to the KEAP1 cysteine
codes for NRF2 activation [176]. DMF, an approved therapeutic agent for multiple sclero-
sis, ameliorates the disease course and improves the preservation of myelin, axons, and
neurons in an NRF2-dependent manner [177]. Phytochemicals such as isothiocyanates
derived from broccoli sprouts and Japanese wasabi, carnosine from rosemary, curcumin,
and sesamin are reported to activate the KEAP1-NRF2 system [178–182].

Another approach is disruption of KEAP1-NRF2 interaction. SQSTM1/p62 competes
with NRF2 for KEAP1 binding and activates NRF2 [171]. Induction of p62 expression
could result in the NRF2 pathway activation. Mimicking an action of SQSTM1/p62,
small molecules that occupy an interaction surface of KEAP1 have been developed [183].
Targeting protein–protein interaction (PPI) is expected to achieve higher specificity than
utilizing electrophilic reagents, because reactive cysteines in many other proteins can
be conjugated with electrophiles. Still another possible approach is targeting molecules
mediating KEAP1-independent NRF2 degradation pathway, such as HRD1 and IRE1 [184].

Compounds developed under these concepts are drug candidates, and some of them
are now under clinical trials. For instance, sulforaphane is under phase II trials for sub-
arachnoid hemorrhage and breast cancer, and bardoxolone methyl is under phase III
trials for pulmonary hypertension and renal diseases [185]. DMF has been approved for
multiple sclerosis and psoriasis [185] and expected to be effective for neurodegenerative
diseases [133,149]. More detailed information of compounds and clinical trials are compre-
hensively described in recent review articles (reviewed in [185,186]). Supplementation with
these compounds induces transient activation of cytoprotective genes and exerts beneficial
effects of NRF2 including antiaging effects (Figure 2).

6. Concluding Remarks

To achieve a healthier and longer life, it is essential to clarify the mechanisms of
the normal aging process. Although there are still many discussions and exceptions to
explore, the oxidative stress theory of aging provides us with much information on normal
and pathogenic processes. As described above, adequate interventions using food, drugs,
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physical exercise, and genetic modification decelerate aging and, as a result, ameliorate
aging-related diseases. We believe that modulation of the KEAP1-NRF2 system represents
a promising approach to this challenge.
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