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Abstract: Humanity is battling a respiratory pandemic pneumonia named COVID-19 which has
resulted in millions of hospitalizations and deaths. COVID-19 exacerbations occur in waves that
continually challenge healthcare systems globally. Therefore, there is an urgent need to understand
all mechanisms by which COVID-19 results in health deterioration to facilitate the development
of protective strategies. Oxidative stress (OxS) is a harmful condition caused by excess reactive-
oxygen species (ROS) and is normally neutralized by antioxidants among which Glutathione (GSH)
is the most abundant. GSH deficiency results in amplified OxS due to compromised antioxidant
defenses. Because little is known about GSH or OxS in COVID-19 infection, we measured GSH,
TBARS (a marker of OxS) and F2-isoprostane (marker of oxidant damage) concentrations in 60 adult
patients hospitalized with COVID-19. Compared to uninfected controls, COVID-19 patients of all age
groups had severe GSH deficiency, increased OxS and elevated oxidant damage which worsened
with advancing age. These defects were also present in younger age groups, where they do not
normally occur. Because GlyNAC (combination of glycine and N-acetylcysteine) supplementation has
been shown in clinical trials to rapidly improve GSH deficiency, OxS and oxidant damage, GlyNAC
supplementation has implications for combating these defects in COVID-19 infected patients and
warrants urgent investigation.

Keywords: COVID-19; glutathione; oxidative stress; oxidant damage; GlyNAC

1. Introduction

Since 2019, the world has been in the grip of a pandemic caused by the novel severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes an inflammatory
viral pneumonia called coronavirus disease 2019 (COVID-19) [1,2]. Patients infected with
COVID-19 can develop fever and respiratory symptoms and are often admitted to the
hospital due to progressive dyspnea and systemic complications necessitating support
measures ranging from supplemental oxygen to the need for mechanical ventilation and
intensive care [3,4]. The COVID-19 pandemic is associated with episodic global surges
(‘waves’) associated with large numbers of patients seeking hospitalization which places
huge strains on healthcare staff, overruns hospitals and severely challenges healthcare
systems as was witnessed globally with the recent delta variant. The discovery and
rollout of COVID-19 vaccines were expected to boost herd immunity to rein in the raging
pandemic, but viral mutations, vaccine hesitancy and vaccine non-availability have led to
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the rise of new strains of SARS-Cov-2 sequentially named β, δ, κ, µ, and the recent South
African Omicron strain which has led to much global fear and concern due to its rapid
international spread and has been designated by the World Health Organization as a variant
of concern [5]. These newer strains appear to have variable vaccine resistance resulting
in breakthrough infections even in vaccinated patients, and COVID-19 waves continue to
surge even in heavily vaccinated countries as is currently occurring in the United Kingdom
and the European Union. As a result, the global scientific and medical communities are
urgently trying to prepare for and manage newer COVID-19 waves, as this cycle tends to
repeat at periodic intervals. In a new development, a recent study reports new data from an
analysis of 13638 patients (with and without COVID-19) which suggests that these patients
have an increased risk of death in the following 12-months [6]. While older adults (OA)
> 65 years of age have a higher risk of hospitalization and death due to acute COVID-19
infection [7], this new study reports that post-COVID mortality in adults < 65 year of age
is higher than those > 65 year of age [6]. The underlying reasons for this increase in post-
COVID mortality are currently unclear but unrelated to cardio-respiratory etiology and
attributed to COVID-19 related biological and physiological stresses [6]. Because COVID-19
is a highly dynamic and unpredictable disease it is urgently necessary to identify and target
all mechanistic defects which may be associated with poor health in patients with acute
COVID-19, and also in the post-COVID aftermath.

Oxidative stress (OxS) is a harmful condition caused by excess accumulation of reac-
tive oxygen species and is linked to lung disease [8,9], heart disease [10,11], neurological
disorders [12], diabetic complications [13], liver [14] and kidney diseases [15], and to the
biology of the aging process [16,17]. Under physiological conditions, OxS is neutralized
by antioxidants among which glutathione (GSH) is the most abundant endogenous intra-
cellular antioxidant [18–20]. Conditions with the highest risk of complications (including
mortality) as a result of COVID-19 infection include older age, diabetes and immunocom-
promised status [21–25], and all three conditions have in common a high risk of elevated
OxS and GSH deficiency [18–20]. We have studied GSH deficiency and OxS in older hu-
mans, immunocompromised HIV patients and diabetic patients and have reported that
correcting these defects with GlyNAC (combination of GSH precursor amino acids glycine,
and cysteine provided as N-acetylcysteine) significantly improves multiple additional
defects and boosts health [26–32]. Although GSH deficiency is proposed as the most likely
cause for serious manifestations and death in COVID-19 [33], little is known of GSH ad-
equacy, OxS, or oxidant damage in adults hospitalized with COVID-19. Therefore, we
measured intracellular GSH concentrations and plasma OxS in hospitalized COVID-19
patients and report our findings here.

2. Materials and Methods
2.1. Study Approval

All subjects gave their informed consent for inclusion before they participated in
the study. The study was conducted in accordance with the Declaration of Helsinki, and
the protocol was approved by the Institutional Review Boards (IRB) at Baylor College of
Medicine, and Harris Health System in Houston, TX, USA.

2.2. Participants

A total of 60 participants (25 women, 35 men; age range 21–85 years), admitted with
COVID-19 (based on a PCR diagnosis) admitted to Ben-Taub General Hospital in Houston,
TX were recruited and results compared to 24 uninfected historical controls from our prior
studies conducted before the COVID-19 pandemic (pre-2019).

2.3. Study Details

The study involved a single blood draw at one time, collected within the first 24-h
of admission, after which patients concluded their participation in the study. Clinical lab
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work (plasma liver profile, BUN, Creatinine, glucose, blood counts) was obtained from the
hospital records on admission.

2.4. Outcome Measures
2.4.1. Glutathione Concentrations and Oxidative Stress

RBC (red-blood cell) glutathione concentrations were measured in duplicate using
the liquid chromatography (Waters ACQUITY UPLC System). Briefly, after blood was
centrifuged, and plasma removed, 500 µL of red-blood cells were mixed immediately
with 500 µL of chilled, isotonic monobromobimane buffer solution. This was subjected
to 3 freeze-thaw cycles with liquid nitrogen to lyse RBCs. After being vigorously vortex-
mixed, the whole blood–MBB mixture was incubated in the dark for the development of the
glutathione-MBB derivative. Proteins were then precipitated with ice-cold 20% perchloric
acid, and the supernatant fluid was analyzed for glutathione using the UPLC. To determine
GSSG concentrations, the reducing agent dithiothreitol was added to convert RBC-GSSG to
glutathione, and the sample was processed as described above to give concentrations of
total-GSH. The GSSG concentrations were obtained by subtracting the glutathione value
of the total GSH from the reduced GSH. Plasma markers of OxS (as Thiobarbituric acid
reducing substances, Cayman Chemical, Ann Arbor, MI, USA), and oxidant damage (as
F2-isoprostanes, 8-Iso-Prostaglandin-F2a, Cell Biolabs Inc., San Diego, CA, USA) were
measured using ELISA assays.

2.4.2. Plasma Biochemistry

Liver profile, creatinine, BUN, glucose and blood counts were obtained from the
hospital admission records.

2.5. Statistical Methods

Biomarker measures are summarized by means with standard deviations. Summary
statistics are stratified by cohort (Controls vs. COVID-19). A multiple linear regression
model estimated the mean (95% CI, confidence interval) response. A separate model is fit
for each outcome measure. Models include fixed effects for cohort, age group, and sex as
well as all two-way and three-way interaction terms. The models test 8 specific hypothesis
tests per measure. p-values are adjusted for multiple hypothesis tests using the Bonferroni
correction only within each model. Statistical significance is assessed at the two-sided
0.05 level. Model assumptions were assessed by residual analysis.

3. Results
3.1. Age

Controls were 51.7 ± 20.2 years of age, and hospitalized COVID-19 patients were
51.0 ± 14.6 years of age. Study participants included (a) Young Adults (21–40 y) with
COVID-19 (YA-C, N = 21) and uninfected Young Adults who served as controls (YA, N = 8);
(b) Middle-Aged adults (41–60 year) with COVID-19 (MA-C, N = 21) and uninfected
Middle-Aged adults who served as controls (MA, N = 8); (c) Older Adults (>60 year) in
the COVID-19 group (OA-C, N = 18) and uninfected Older Adults as the control group
(OA, N = 8).

3.2. Plasma Biochemistry

Laboratory results are shown in Table 1.

3.3. GSH Adequacy

Compared to controls, RBC concentrations of total-GSH (tGSH) and reduced-GSH
(rGSH) in COVID-19 patients were 60% lower (Table 2). When these outcomes were
analyzed in discrete age groups, compared to uninfected controls, COVID-19 patients
had 60.2%, 74.7% and 48.3% lower RBC concentrations of reduced GSH in the young
(21–40 years), middle-aged (41–60 years) and older humans (≥60 years) suggesting that
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GSH deficiency was present in young and middle-aged COVID-19 patients, and is more
severe in older COVID-19 patients (Table 3). Within the COVID-19 group, there was an
age effect with a progressive decrease in GSH concentrations with increasing age. (rGSH
shown in Figure 1).

Table 1. Plasma biochemistry. Values are means ± SD. Means are significantly different at p < 0.05.

Parameters Uninfected Controls Hospitalized
COVID-19 Patients

Hemoglobin (g/L) 13.9 ± 0.8
n = 24

14.0 ± 4.3
p = 0.9
n = 59

Total protein (g/dL) 7.2 ± 0.4
n = 24

6.6 ± 0.5
p < 0.0001

n = 55

Total bilirubin (mg/dL) 0.7 ± 0.2
n = 24

0.6 ± 0.3
p = 0.08
n = 55

Alanine transaminase (U/L) 22.2 ± 7.3
n = 24

54.2 ± 45.5
p = 0.001

n = 55

Aspartate transaminase (U/L) 20.0 ± 8.2
n = 24

51.5 ± 56.3
p = 0.008

n = 55

Alkaline phosphatase (U/L) 70.2 ± 26.2
n = 24

78.4 ± 38.3
p = 0.3
n = 55

BUN (mmol/L) 13.4 ± 3.6
n = 24

17.2 ± 8.2
p = 0.03
n = 58

Creatinine (mg/dL) 0.9 ± 0.2
n = 24

0.7 ± 0.2
p = 0.0006

n = 58

Table 2. GSH and oxidative stress. Data are reported as means ± SD.

Outcome Measure Controls
N = 24

Hospitalized
COVID-19 Patients

N = 60

RBC-total GSH
(mmol/L.RBC) 1.2 ± 0.5 0.5 ± 0.2

p < 0.0001

RBC-reduced GSH
(mmol/L.RBC) 1.0 ± 0.6 0.4 ± 0.2

p < 0.0001

RBC-GSSG (mmol/L.RBC) 0.2 ± 0.2 0.1 ± 0.0
p > 0.99

RBC GSH/GSSG 9.4 ± 10.1 8.0 ± 9.2
p = 0.5

Plasma TBARS (µM/L) 9.3 ± 9.9 28.2 ± 10.6
p < 0.0001

Plasma F2-isoprostane
(pg/mL) 93.7 ± 71.0 201.6 ± 51.0

p < 0.0001
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Table 3. Effect of age on intracellular glutathione and plasma biomarkers of oxidative stress and
oxidant damage. Data are reported as multiple regression estimates (95% confidence intervals)
adjusting for cohort, age group, and sex. p-values adjusted for multiple hypothesis tests using
Bonferroni correction within each outcome measure. Means are significantly different at p < 0.05.
YA = young adults (21–40 years), YA-C = young adults with COVID-19 (21–40 years); MA = middle-
aged adults (41–60 years), MA-C = middle-aged adults with COVID-19 (41–60 years); OA = older
adults (≥60 years), OA-C = older adults with COVID-19 (≥60 years).

Physical
Function

Young
Adults

(21–40 years)

Young
COVID-19

Patients
(21–40 years)
YA vs. YA-C

YA-C vs. OA-C

Middle-Aged
Adults

(41–60 years)

Middle-Aged
COVID-19

Patients
(41–60 years)
MA vs. MA-C

MA-C vs. YA-C

Older Adults
(≥60 years)

Older
COVID-19

Patients
(≥60 years)

OA vs. OA-C
OA-C vs. MA-C

RBC-total GSH
(mmol/L.RBC) 1.8 (1.7, 1.9)

0.7 (0.7, 0.8)
p < 0.0001
p < 0.0001

1.1 (1.0, 1.3)
0.3 (0.3, 0.4)
p < 0.0001
p < 0.0001

0.8 (0.6, 0.9)
0.3 (0.2, 0.4)
p < 0.0001
p > 0.99

RBC-reduced
GSH

(mmol/L.RBC)
1.7 (1.6, 1.8)

0.7 (0.6, 0.7)
p < 0.0001
p < 0.0001

1.0 (0.9, 1.1)
0.3 (0.2, 0.3)
p < 0.0001
p < 0.0001

0.4 (0.3, 0.5)
0.2 (0.1, 0.3)

p = 0.036
p > 0.99

RBC-GSSG
(mmol/L.RBC) 0.2 (0.1, 0.2)

0.1 (0.0, 0.1)
p = 0.09
p > 0.99

0.1 (0.0, 0.2)
0.1 (0.0, 0.1)

p > 0.99
p > 0.99

0.4 (0.3, 0.5)
0.1 (0.0, 0.1)
p < 0.0001
p > 0.99

RBC GSH/
GSSG ratio 10.0 (4.9, 15.0)

14.7 (11.5, 17.8)
p = 0.8

p < 0.0001
16.7 (11.0, 22.3)

3.7 (0.6, 6.8)
p = 0.001

p < 0.0001
1.9 (0, 7.0)

2.5 (0, 5.7)
p > 0.99
p > 0.99

Plasma TBARS
(µM/L) 2.4 (0, 5.9)

18.1 (15.9, 20.3)
p < 0.0001
p < 0.0001

2.7 (0, 6.6)
29.9 (27.8, 32.1)

p < 0.0001
p < 0.0001

23.2 (19.7, 26.7)
39.6 (37.3, 41.8)

p < 0.0001
p < 0.0001

Plasma
F2-isoprostane

(pg/mL)
45.4 (23.5, 67.4)

162.3 (148.5, 176.0)
p < 0.0001
p < 0.0001

49.7 (25.2, 74.3)
195.9 (182.4, 209.4)

p < 0.0001
p = 0.006

190.1
(168.2, 212.1)

259.8 (245.6, 274.1)
p < 0.0001
p < 0.0001
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3.4. Oxidative Stress
3.4.1. Oxidative Stress

Plasma concentrations of TBARS (lipid peroxidation) were measured as an index
of OxS. Compared to controls, TBARS levels were 203% higher in COVID-19 patients
(Table 2). When these outcomes were analyzed in discrete age groups, compared to
uninfected controls, COVID-19 patients had 654%, 1007% and 70.6% higher concentrations
of TBARS in the young (21–40 year), middle-aged (41–60 year) and older humans (≥60 year)
respectively, suggesting that young and middle-aged COVID-19 patients have severe and
significantly elevated OxS. Although uninfected older adults (OA) already have elevated
OxS compared to younger adults [26,31], OxS in COVID-19 infected OA is higher than that
in uninfected OA. Within the COVID-19 group, there was an age effect with a progressive
increase in TBARS concentrations with increasing age (Table 3; Figure 2).
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3.4.2. Damage Due to OxS (Oxidant Damage)

Oxidant damage was measured as plasma concentrations of F2-isoprostanes (F2-I).
Compared to uninfected controls, plasma concentrations of F2-I were 115% higher in
COVID-19 infected patients (Table 1). When these outcomes were analyzed in discrete age
groups, compared to uninfected controls, COVID-19 infected patients had 257%, 294% and
37% higher concentrations of F2I in the young (21–40 year), middle-aged (41–60 year) and
OA (≥60 year) respectively, suggesting that young and middle-aged COVID-19 patients
had severely elevated markers of oxidant damage, and this was also more severe in OA
with COVID-19 infection than uninfected OA. Within the COVID-19 group, there was an
age effect with a progressive increase in F2-I concentrations with increasing age (Table 3;
Figure 3).
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cohort, age, group and sex.

4. Discussion

The key findings of this study are that (1) compared to uninfected controls, hospital-
ized COVID-19 patients have severe GSH deficiency, elevated OxS and increased oxidant
damage; (2) these defects also occur in younger COVID-19 patients; (3) the magnitude of
defects in COVID-19 patients increases with increasing age.

4.1. GSH Deficiency in COVID-19

Glutathione is the most abundant intracellular antioxidant tripeptide. Cellular synthe-
sis of GSH occurs from 3 amino acids cysteine, glycine and glutamic acid in two discrete
steps in the cytosol. GSH is present in multiple cellular components including the mi-
tochondria, nucleus and endoplasmic reticulum [34] where it plays important roles in
cellular protection and multiple pathways. For example, we have shown that depleting
GSH in young wild-type mice results in mitochondrial dysfunction and that correcting
GSH deficiency in old wild-type mice lowers reverses mitochondrial impairment, lowers
OxS and insulin resistance [29].

GSH levels have been reported to be inversely related to multimorbidity in older
adults (OA) [35]. It is established that OA in the geriatric age group have an increased
prevalence of GSH deficiency [18–20,26,29,30]. Therefore, the findings of this study are
interesting because they show a much more widespread prevalence of GSH deficiency in
all age groups of adult humans hospitalized with COVID-19, especially in younger humans.
This is an important discovery because younger humans are not expected to have GSH
deficiency, but we found that patients in the 21–40 and the 41–60 year age groups had
severe GSH deficiency compared to uninfected age-matched controls. OA with acutely
infected with COVID-19 have the highest rates of hospitalization and mortality [7]. In our
study, we found that OA hospitalized with COVID-19 had the lowest GSH concentrations,
with GSH levels lower than uninfected age-matched control OAs suggesting that when
older humans are infected with COVID-19, their GSH levels decline even further. Col-
lectively these data indicate that GSH deficiency is highly prevalent in patients admitted
to hospitals due to COVID-19. In previous clinical trials in OA, diabetic patients and in
HIV-infected patients, we found and reported that GSH deficiency occurs as a result of
decreased intracellular synthesis (due to deficiency of GSH precursor amino acids glycine
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and cysteine) [26–32]. Although the reasons for GSH deficiency in hospitalized COVID-19
patients are unclear, it could well be the result of a combination of factors including de-
creased synthesis and increased GSH utilization. In our prior trials [26–32], we found that
supplementing GlyNAC (combination of glycine and N-acetylcysteine, a cysteine donor) for
a relatively short period of 14 days improves/corrects GSH deficiency in OA, HIV-patients
and diabetic patients, and these data suggest the possibility that similar supplementation of
GlyNAC in COVID-19 patients could improve GSH deficiency, and warrants investigation.
The implications of GlyNAC supplementation in COVID-19 infection are discussed in a
subsequent section below.

4.2. Oxidative Stress and Oxidant Damage in COVID-19

Oxidative stress (OxS) is a harmful condition associated with cellular toxicity and or-
gan dysfunction due to oxidant induced damage. OxS contributes to dysfunction affecting
the lungs, heart, brain, liver, muscle, pancreas, and to abnormalities, such as inflammation
and vascular dysfunction which are commonly present in COVID-19 and other condi-
tions including aging, diabetes, HIV, Alzheimer’s disease, cardiovascular disease and
more [8–15]. Therefore, the findings of this study that COVID-19 is associated with exces-
sively elevated OxS and evidence of oxidant damage are important, as they could contribute
to COVID-19 related injury and mortality. Targeting OxS and oxidant damage effectively
could be key in improving health and survival in COVID-19 infected patients.

OxS originates from the accumulation of excess reactive oxygen species which are
formed in mitochondria during the process of energy generation. Cells usually depend on
antioxidants for protection from OxS and oxidant damage, and GSH is the most abundant
intracellular antioxidant [18–20]. Therefore, GSH deficiency can amplify the destructive
potential of OxS due to compromised antioxidant defenses. In uninfected humans, OxS
tends to occur mainly in older humans (>60 year of age) and not in younger age groups.
Indeed, the ‘free radical theory of aging’ was proposed in 1956 to suggest that elevated OxS
in older humans could be responsible for the aging process [16]. Therefore, the observation
in this study that COVID-19 infected patients in the young (21–40 year) and middle-aged
(41–60 year) groups have severely elevated OxS and oxidant damage is important, as they
could help explain the health deterioration associated with COVID-19 resulting in hospital-
ization and death. This is especially relevant in light of the recent COVID-19 surge with the
delta variant which disproportionately affected younger humans, and that the <65 year age
group has a higher rate of mortality in the 12-months following COVID-19 infection [6].
Certain populations are associated with a higher prevalence of elevated OxS (such as
OA, immunocompromised HIV-infected patients and diabetic patients) and COVID-19
infection in such patients could result in a catastrophic increase in OxS resulting in health
deterioration and is a probable reason why these groups are exceptionally vulnerable to
adverse outcomes related to acute COVID-19 infection. In clinical trials in these populations
of OA, HIV-patients and diabetic patients, we studied and reported that supplementing
GlyNAC provides powerful, biologically relevant cellular protection from the harmful and
toxic effects of OxS, without the risk of reductive stress [26–28]. Therefore, it is likely that
GlyNAC supplementation could play an important role in combating OxS and oxidant
damage toward protecting cellular health in COVID-19 patients and is discussed next.

4.3. Potential Benefits of GlyNAC Supplementation in COVID-19

Could GlyNAC supplementation have health benefits for patients with COVID-19?
Older age, immunocompromised status (such as HIV infection) and diabetes are among
pre-existing conditions most vulnerable to the ravages of COVID-19. In published clin-
ical trials in OA, HIV-infected patients and diabetic patients, we reported that GlyNAC
supplementation for 2-weeks rapidly improves GSH deficiency, OxS, and damage caused
by OxS [26–28], and longer durations of supplementation correct these defects [30,31]. A
computational analysis of therapeutic targets and discovery of potential drugs against
SARS-Cov-2 identified GSH as a key potential candidate [36]. GSH has been reported to
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inhibit replication of the influenza virus (which causes a viral respiratory pneumonia with
a high annual mortality rate in OA) [37], and we speculate that if boosting GSH can inhibit
replication of the SARS-Cov-2 virus which causes COVID-19, this could be a gamechanger
in the global fight against the COVID-19 pandemic. A small case study reported that
increasing GSH levels improved dyspnea in 2 patients infected with COVID-19 [38], and
NAC supplementation is reported to have a beneficial impact in ventilated COVID-19
patients [39]. However, the use of antioxidant supplements in COVID-19 should be used
with caution due to the risk of inducing reductive stress, a condition excess lowering of
reactive oxygen species can cause harm. In multiple clinical trials, we have shown that
GlyNAC successfully lowers OxS, without triggering reductive stress. Additional bene-
fits of GlyNAC supplementation comes from its ability to provide the vitally important
amino-acids glycine and cysteine. Glycine is a 1-carbon metabolite and a methyl-group
donor which is necessary for DNA synthesis, cellular reactions, brain, cartilage and cellular
health. Indeed, methyl-group deficiency has been proposed as a potential mechanism for
COVID-related complications [40]. Cysteine (from NAC) is critically important for support-
ing mitochondrial energy metabolism and donates a sulfhydryl group which is necessary
for multiple cellular reactions and biosynthesis of metabolites. By virtue of its ability to
provide glycine and cysteine and GSH, GlyNAC is referred to as representing a ‘power of
three’. The benefits of GlyNAC supplementation go well beyond correcting GSH deficiency
and OxS as it also improves inflammation, mitochondrial dysfunction, endothelial vascular
dysfunction, insulin resistance, genotoxicity, autophagy/mitophagy and muscle strength
as reported in human clinical trials [31,32]. This is relevant because similar defects are also
reported in patients with COVID-19 [41–48]. Overall, the combination of the findings of
this study, and the observations on the potential benefits of GlyNAC supplementation in
prior clinical trials suggest a potentially beneficial role for GlyNAC supplementation in
COVID-19 infected patients and supports the need for research studies to evaluate the
impact of GlyNAC supplementation in COVID-19.

4.4. Study Limitations

The limitation of this study is that blood was collected one single time within 24 h of
admission, and results should be interpreted with that caveat. Future studies are needed to
determine whether GSH deficiency and OxS worsen during the course of hospitalization,
and to establish a temporal scale on recovery (or lack of recovery) of these outcomes over
several months post-discharge from the hospital. Nonetheless, this pilot study does provide
new information that patients hospitalized for acute ongoing COVID-19 infection have
severe GSH deficiency and severely elevated OxS and these could be important targets to
consider in the care of such patients. Our study results support the need for future research
studies to understand more about redox upheavals in the immediate and delayed aftermath
of COVID-19 infection, and trials to understand whether combating GSH deficiency and
elevated OxS in acute COVID-19 infection can improve health, prevent complications, and
potentially save lives.

5. Conclusions

COVID-19 infection is associated with severe intracellular GSH deficiency, elevated
oxidative stress and oxidant damage. These defects are present in all age groups in-
cluding young and middle-aged humans where they are not normally expected. The
magnitude of these defects progressively increases with age and is most severe in older
humans > 60 year of age. Because GlyNAC supplementation has been shown to be highly
effective in correcting GSH deficiency, lowering OxS and oxidant damage in diverse popu-
lations including older humans, HIV patients and diabetic patients, it could also improve
these defects in patients with COVID-19, and needs to be evaluated in future trials.
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