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Abstract: Proanthocyanidins (PACs), which are oligomers or polymers of flavan-3ols with potent
antioxidative activity, are well known to exert a variety of beneficial health effects. Nonetheless,
their bioaccessibility and bioavailability have been poorly assessed. In this review, we focused on
the metabolic fate of PACs through the digestive tract. When oligomeric and polymeric PACs are
orally ingested, a large portion of the PACs reach the colon, where a small portion is subjected
to microbial degradation to phenolic acids and valerolactones, despite the possibility that slight
depolymerization of PACs occurs in the stomach and small intestine. Valerolactones, as microbiota-
generated catabolites of PACs, may contribute to some of the health benefits of orally ingested
PACs. The remaining portion interacts with gut microbiota, resulting in improved microbial diversity
and, thereby, contributing to improved health. For instance, an increased amount of beneficial
gut bacteria (e.g., Akkermansia muciniphila and butyrate-producing bacteria) could ameliorate host
metabolic functions, and a lowered ratio of Firmicutes/Bacteroidetes at the phylum level could
mitigate obesity-related metabolic disorders.
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1. Introduction

Proanthocyanidins (PACs), also known as condensed tannins, are substances that
produce red anthocyanidin pigments when decomposed by acid and are oligomers or
polymers of flavan-3-ols, such as epicatechin and catechin. They are widely distributed in
fruits, grains, and leaves [1–5], especially in cocoa, black soybeans, cinnamon, apples, and
grape seeds [6]. In addition, grape seed PACs have an average degree of polymerization
(DP) between 2 and 17 [1].

We previously reported that grape seed PACs have direct antioxidant potential in vitro
against di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH; a stable radical), superoxide
anion radical (O2

−•), hydroxyl radical (•OH), singlet oxygen (1O2), and hydrogen peroxide
(H2O2) [7]. In oxidative-stress-induced cells, PACs significantly improved antioxidant en-
zyme activities (e.g., glutathione peroxidase, superoxide dismutase, and catalase), leading
to decreased levels of reactive oxygen species and malondialdehyde [8]. In addition, they
significantly activate the nuclear factor–erythroid 2-related factor 2 (Nrf2)/antioxidant
response element (ARE) pathway, including the increased expression of NAD(P)H:quinone
acceptor oxidoreductase 1 and heme oxygenase 1. These characteristic features observed
in vitro are thought to contribute to various therapeutic effects, including anti-adipogenesis
in adipocytes [9], anti-cancer effects in several cancer cells [10–14], and neuroprotective
effects in rat pheochromocytoma cells (PC12 cells) [15–18].

In in vivo studies, PACs alleviated severe acute pancreatitis in mice via their anti-
inflammatory properties [19], exerted anti-obesity and anti-diabetic activity in a type 2
diabetes model of KKAy mice [20] and anti-obesity activity in a mouse model of high-fat-
diet-induced obesity [21], and showed neuroprotective activity in zebrafish and rat models
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of Parkinson’s disease [8,22]. We previously demonstrated that orally administered grape
seed PACs prevented bone loss in the lumbar vertebrae and femur in ovariectomized (OVX)
mice, and they ameliorated the healing of defects created on the calvaria and osseointegra-
tion of a tibial implant in OVX rats, likely by counteracting the accelerated osteoclastogenic
activity induced by estrogen deficiency [23]. To attain a better understanding of such
health-beneficial activities, pharmacokinetic analysis is imperative. However, there is a
paucity of evidence related to the structural complexity of PACs. Thus, in this review, we
focused on the bioaccessibility and bioavailability of PACs by exploring their metabolic
fate through the digestive tract.

2. Basic Structures of Proanthocyanidins (PACs)

Flavan-3-ols have a basic structure consisting of A, B, and C rings, in which 3, 5, 7, 3′, or
4′ is hydroxylated. For example, the 3-hydroxylated group has two conformations: the 2,3-
cis isomer is (−)-epicatechin, and the 2,3-trans isomer is (+)-catechin. Oligomers are formed
by C4-C8 or C2-O-C7 bonds between monomers with these basic structures. The isomers
are roughly divided into two groups according to their binding modes—those with C4-C8
or C4-C6 bonds are called B-type, and those with additional C2-O-C7 bonds are called
A-type (Figure 1). Naturally occurring B-type PACs are predominant in plants such as
cocoa, bayberry, and grapes [24–26]. Concerning PAC dimers, the A-type dimers and B-type
dimers are numbered as A1, A2, B1, and B2; e.g., B1 consists of (−)-epicatechin (C4-C8) (+)-
catechin, and B2 consists of (−)-epicatechin (C4-C8) (−)-epicatechin. Apart from the A- and
B-type dimers, PAC C1 (epicatechin-(C4-C8)-epicatechin-(C4-C8)-epicatechin) and PAC C2
(catechin-(C4-C8)-catechin-(C4-C8)-catechin) are trimeric and belong to the group of B-type
PACs. PACs are also divided into three categories: procyanidins (oligomeric PACs formed
from catechin and epicatechin), propelargonidins (from afzelechin and epiafzelechin), and
prodelphinidins (from gallocatechin and epigallocatechin) [27]. Based on the DP, PACs
with a low DP are called oligomers, and those with a high DP are called polymers. For
instance, previous papers defined oligomers and polymers as structures with DP values of
four to ten and those with more than ten, respectively [28,29].
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Regarding the DP and stereochemistry of oligomeric PACs, the condensation of
monomeric flavan-3-ol units compactly forms a helical PAC structure in an aqueous solu-
tion [30–32], leading to interactions between saliva proteins, which causes astringency in
wine-tasting processes [33]. In addition, the hydrophobicity of PACs, as measured with the
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octanol–water partition coefficient (logP), significantly decreases with an increase in the
degree of polymerization due to the large number of phenolic hydroxyl groups covering
them [34,35]. In more detail, PACs with a higher DP have a helical structure comprising a
hydrophilic surface covered by a large number of hydroxyl groups; their internal region is
hydrophobic, making them likely to interact with biogenic substances, such as proteins,
peptides, carbohydrates, lipids, and oligonucleotides [36].

3. Pharmacokinetics of Proanthocyanidins (PACs)
3.1. Oral Stability

Interactions between PACs and biogenic substances in the oral cavity vary. As is the
case with biogenic substance–phenolic compound interactions [37–39], PACs can interact
with carbohydrate polymers via hydrogen bonding, leading to the formation of non-
digestible amylose–PAC complexes [40–42]. In a previous report, sorghum PACs were
extractable after cooking with starches that varied in amylose content [43]. If PACs and
carbohydrate polymers interact hydrophobically and/or through hydrogen bonds, the
PACs are likely to be extractable. PACs also inhibit α-amylase due to a non-covalent
hydrophobic interaction with the enzyme [42,44,45]. Thus, when PACs are orally taken,
their bioavailability could be affected depending on the intradigestive environment. In an
in vitro oral digestion study where 5 mL of simulated saliva fluid composed of amylase
enzyme was applied to Chinese bayberry leaf PACs, the PAC dimers showed no significant
differences during in vitro digestion, whereas the trimers were significantly decreased after
2 min of oral digestion [46]. Concomitantly, the flavan-3-ol monomers probably increased
due to the degradation of the trimers. However, salivary proteins (proline-rich proteins
and histatins) are known to have an affinity to PACs [47–49], irrespective of the amylase–
PAC interactions, with the salivary protein–PAC complexes being present in the stomach.
The protein–PAC complexes that deposit in the stomach then separate due to the acidic
environment; for example, PAC trimer–amylase complexes were reported to separate in
the gastric environment of the stomach, resulting in an increase in trimer content [46].

3.2. Gastric Stability

To investigate the gastric stability of PACs, several in vitro studies using simulated
gastric juice were conducted, but the results were controversial. PAC oligomers (trimer to
hexamer) purified from cocoa were hydrolyzed to mixtures of epicatechin monomer and
dimer [50], apple dimeric PAC B2 was almost completely degraded into (−)-epicatechin [51],
and the PAC content in an extract of Hypericum perfoliatum L. significantly decreased by
25% [52]. On the contrary, other studies reported that PACs with a high DP (mean DP ≥ 6)
from grape seeds were remarkably stable in the gastric environment and did not degrade
into more readily absorbable monomers [53,54], PACs from Acacia mearnsii remained stable
during gastric digestion in vitro [55], and the mean DP of PACs isolated from Choerospondias
axillaris peel was not affected [56]. A human in vivo study showed that cocoa beverage
PACs were stable during gastric transit, with the pH of gastric contents increasing from
1.9 ± 0.2 to 5.4± 0.2 after consumption [57]. Regarding the effects of macronutrients, it was
reported that a higher fat content or the presence of carbohydrate-rich food did not greatly
affect the in vitro gastric stability of PACs [54,58]. In summary, the gastric stability of PACs
depends on their types and on the electrolytes used, the dietary source, the duration of
exposure to the gastric environment, and the pH conditions of gastric juice [45,55,57]. The
timing of oral intake can be an important factor when considering gastric stability. For
instance, in the postprandial state, PACs were present with a mixture of foodstuffs and
gastric juice under acidic conditions. However, in the fasting state, there was little gastric
juice with slightly higher pH conditions because the acid secretion (a pH of 2 under basal
conditions with an empty stomach) was buffered by the food bolus [57]. Collectively,
PACs are depolymerized to some extent under gastric conditions and then pass into the
small intestine.
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3.3. Small-Intestinal Stability and Absorption

The first step after gastric digestion is exposure to pancreatic juice in the duodenum.
It was reported that slight depolymerization of PACs could be observed in an in vitro
small-intestinal model that used pancreatic enzymes and bile salts [54]. A similar in vitro
study showed that the mean DP of PACs was slightly decreased, which was possibly due to
interactions with digestive enzymes [56]. Collectively, PACs were rather chemically stable
with respect to depolymerization during their passage through the simulated duodenal
digestion. Regarding intestinal absorption of PACs, it was reported that the A1, A2, and
B2 PAC dimers were slightly absorbed without conjugation or methylation from the small
intestine in an in situ perfusion model of the rat small intestine [59]. Similarly, a study on the
absorption rate of PACs without digestion, which was measured with the Caco-2 monolayer
transport assay, showed that PAC dimers could traverse the Caco-2 monolayer [46], and
trimers and tetramers could be transported across Caco-2 cells at low rates [60].

3.4. Colonic Stability and Absorption

When PACs reach the colon, they are likely to be affected by gut microbiota. In in vitro
fermentation of grape seed extracts that were rich in B-type PACs, the maximum formation
of intermediate metabolites, such as valerolactones, valeric acid, several phenolic acids,
and gallic acid, was observed at 5–10 h of incubation with fecal microbiota. Subsequently,
the incubations (10–48 h) resulted in the appearance of mono- and non-hydroxylated forms
of previous metabolites, which was likely due to dehydroxylation reactions [61,62]. These
in vitro results were also consistent with those from a human study. When humans con-
sumed a test drink containing PACs with a DP ranging from 2 to 10, γ-valerolactones were
mainly detected in the plasma [63], thus rejecting the notion that PACs are broken down
into flavanols prior to their absorption. In another human study that was conducted to
comparatively investigate the metabolic fate of (−)-epicatechin, PAC B1 (a dimer) and
polymeric PACs, all of which were encapsulated in hard gelatin to minimize interactions
with the oral and gastric environments, it was observed that free PAC B1, 4-hydroxy-5-
(3′,4′-dihydroxyphenyl)valeric acid, 5-(3′,4′-dihydroxyphenyl)-valerolactone were detected
in the plasma after PAC B1 ingestion, but no dimeric or oligomeric PACs were detected in
the plasma after the ingestion of polymeric PACs with a mean degree of polymerization of
5.9 [64]. Thus, 5-(3′,4′-dihydroxyphenyl)-valerolactone is a dominant in vivo metabolite
of PAC B1 produced by the gut microbiota. Moreover, small portions of PAC B1 were me-
tabolized by the phase II metabolism after entering into circulation. In addition, microbial
degradation would be hampered because of the low uptake of compounds by bacteria due
to their huge molecular size. These findings were consistent with those of two rat studies
that showed that ingested polymeric PACs were present in the colon as the intact parent
compounds, and they were responsible for the local beneficial biological actions [65,66].

Phenyl-γ-valerolactones, as microbiota-generated catabolites of PACs, have been
shown in preclinical studies to have some potential health-beneficial effects, such as re-
ducing the risk of colorectal cancer [67] and neuroprotection by regulating intracellular
proteolysis [68]. In a study in which the cellular antioxidant effect of polyphenol metabolites
was examined, 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone showed the highest antioxidant
effect among the investigated polyphenol metabolites [69]. It was also shown that 5-(3′,4′-
dihydroxyphenyl)-γ-valerolactone had catalase-like activity and promoted the Nrf2/ARE
pathway. Collectively, γ-valerolactones produced from PACs by gut microbiota may con-
tribute to some health-beneficial effects following oral ingestion of PACs.

3.5. Effects on Gut Microbiota

Apart from bacterial transformation, PACs could affect the gut microbiota. Although
most in vivo studies were conducted to investigate the effects of PACs on altered gut mi-
crobiota under certain pathological conditions, a few studies using normal animals have
been conducted. It was reported that dietary PACs for 6 days resulted in an ecological
shift in the microbiome, dramatically increasing the operational taxonomic units (OTUs)
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of Lachnospiraceae, unclassified Clostridales, Lactobacillus, and Ruminococcus in crossbred
female pigs. Further, intact parent PACs (dimer-pentamer) and major phenolic metabolites
(4-hydroxyphenylvaleric acid and 3-hydroxybenzoic acid) were found in feces [70]. It
was reported that Lachnospiraceae and Ruminococcus are the major butyrate and propionate
producers in human fecal samples [71], and butyrate can modulate oxidative stress in the
colonic mucosa of healthy humans [72]. In a review article, butyrate was reported to lead
to more specific and efficacious therapeutic strategies for the prevention and treatment of
different diseases ranging from genetic/metabolic conditions to neurological degenera-
tive disorders [73]. In particular, in a human study, the transfer of intestinal microbiota
from lean donors increased insulin sensitivity in individuals with metabolic syndrome
along with levels of butyrate-producing intestinal microbiota, suggesting that intestinal
microbiota should be developed as therapeutic agents for increasing insulin sensitivity
in humans [74]. If PACs have the ability to increase butyrate producers, they may work
not only for colonic health, but also for systemic health. Another study using weaned
piglets revealed that dietary grape seed PACs improved the microbial diversity in ileal and
colonic digesta, with the most abundant OTUs belonging to two phyla: Firmicutes and
Bacteroidetes [75]. The PACs also decreased the abundance of Lactobacillaceae and increased
that of Clostridiaceae, accompanied by improved intestinal mucosal barrier function and
increased concentration of propionic and butyric acids in the intestinal digesta. In a rat
study in which an 8-day oral gavage of grape seed PACs (monomeric (21.3%), dimeric
(17.4%), trimeric (16.3%), tetrameric (13.3%), and oligomeric (31.7%)) was administered
to normal female rats, the ratio of Firmicutes to Bacteroidetes at the phylum level was
lowered with increased plasma glucagon-like-peptide-1 level [76]. More recently, it was
reviewed that PACs have a prebiotic and antimicrobial role that favors homeostasis of the
intestinal environment, thus reducing the survival of Gram-negative bacteria that produce
lipopolysaccharide (LPS) [77]. As LPS triggers the activation of the Toll-like receptor-4
(TLR-4) inflammatory pathway, PACs can minimize endotoxemia.

As for animal studies under pathological conditions, most studies applied high-fat
diet (HFD)- or high-fat/high-sucrose diet (HFHSD)-induced metabolic syndrome model
animals. PAC-rich grape seed/pomace extract [78–80], PAC-rich cranberry extract [81],
and apple PACs [82] showed improved symptoms of metabolic syndrome concomitantly
with an altered gut microbial environment. Some studies revealed that PACs increase
Akkermansia muciniphila [78,80] or Akkermansia at the genus level [82], the former of which is
a well-known beneficial gut bacterium that improves host metabolic functions and immune
responses [83–89]. Accounting for 3–5% of the microbial community in healthy individuals,
A. muciniphila is a mucinolytic bacterium found in the mucus layer of the human gut [90],
and it has the potential to restore mucus thickness and intestinal barrier integrity [91,92].
This bacterium also has the ability to decrease the progression of many diseases, such
as obesity and type 2 diabetes mellitus [93,94]. As such, A. muciniphila is considered a
promising probiotic candidate [88]. At the phylum level, PACs could decrease the ratio
of Firmicutes/Bacteroidetes [79,82]. The dominant gut microbial phyla are Firmicutes,
Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia, with the
first two phyla being the most common in healthy human individuals [95]. Phylum-level
analyses of Firmicutes and Bacteroidetes have shown that they are associated with obesity
and that an increased population of Bacteroidetes, as well as a reduced population of
Firmicutes, could improve obesity [96–100]; this is likely via the depression of the increased
capacity for energy harvesting from the diet [99]. In a human study, the relative proportion
of Bacteroidetes was decreased in obese people in comparison with that in lean people, and
this proportion increased with weight loss with two types of low-calorie diets [101]. These
findings indicate that obesity is associated with a microbial component, paving the way
for investigations into the potential therapeutic implications of gut microbiota. Aside from
HFD- or HFHSD-fed animals, PACs normalized the imbalanced Firmicutes/Bacteroidetes
ratio observed in OVX mice in a menopause model and prevented OVX animals from
having an increased weight [102].
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If the microbial degradation of PACs is hampered because of the low compound up-
take by bacteria due to their huge molecular size, how exactly they affect the gut microbiota
becomes the primary concern. Some PACs exert antimicrobial activities by preventing
bacterial adhesion to human cells [103,104], with PAC-rich cranberry being used clinically
as an adjuvant therapy in the prevention of urinary tract infections [105]. It has also been
reported that anti-adhesion activity could be challenging in the development of new an-
timicrobials that are able to withstand the increasing repertoire of bacterial resistance [106].
In dentistry, PACs are known to have specific antibacterial characteristics of attacking
periodontopathogenic bacteria (Porphyromonas gingivalis), but not oral commensal bacteria
(Streptococcus salivarius) [107,108]. PACs’ antibacterial activity in the oral cavity may be
attributed to their biofilm-disrupting properties by interfering with the N-acylhomoserine
lactone-mediated quorum sensing of the bacteria, which tightly regulates the expression of
multiple virulence factors in opportunistic pathogenic Gram-negative bacteria [109,110].
Thus, PACs could be some of the substances affecting gut microbiota via antibacterial
activity. Further studies are needed to clarify the effects of PACs on the gut microbiota.

The aforementioned metabolic fate of PACs through the digestive tract and their
health-beneficial effects in association with gut microbiota are summarized in
Figures 2 and 3, respectively.
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disorders. Further, PACs have the potential to increase butyrate-producing microbiota
and decrease LPS-producing bacteria, leading to the prevention and treatment of different
diseases ranging from metabolic conditions to neurological degenerative disorders. These
microbial changes could confer some of PACs’ health-beneficial effects.
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