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Abstract: Ultraviolet (UV) radiation promotes the generation of reactive oxygen species (ROS) and
nitrogen species (RNS), resulting in skin damage. Cosmetic industries have adopted a strategy to
incorporate antioxidants in sunscreen formulations to prevent or minimize UV-induced oxidative
damage, boost photoprotection effectiveness, and mitigate skin photoaging. Many antioxidants are
naturally derived, mainly from terrestrial plants; however, marine organisms have been increasingly
explored as a source of new potent antioxidant molecules. This work aims to characterize the
frequency of the use of antioxidants in commercial sunscreens. Photoprotective formulations currently
marketed in parapharmacies and pharmacies were analyzed with respect to the composition described
on the label. As a result, pure compounds with antioxidant activity were found. The majority of
sunscreen formulations contained antioxidants, with vitamin E and its derivatives the most frequent.
A more thorough analysis of these antioxidants is also provided, unveiling the top antioxidant
ingredients found in sunscreens. A critical appraisal of the scientific evidence regarding their
effectiveness is also performed. In conclusion, this work provides an up-to-date overview of the use
of antioxidants in commercial sunscreens for a better understanding of the advantages associated
with their use in photoprotective formulations.

Keywords: sunscreens; antioxidants; trends; scientific evidence; photoprotection

1. Introduction

Excessive exposure to ultraviolet radiation (UVR) is associated with serious health
risks such as UV-induced skin damage, skin photoaging (atrophy, pigmentary changes,
and wrinkles), solar sunburn, skin sensitization, and malignancy [1]. UV skin damage
depends on the duration and intensity of UVR exposure, particularly UVA (320–400 nm),
UVB (290–320 nm), visible light, and infrared (IR) radiation [2]. UVB radiation only has
the capacity to reach the epidermis and is responsible for the largest number of deleterious
occurrences on the skin [3,4]. However, UVA radiation is the main promoter of skin
photodamage, penetrating the dermis and contributing to the production and release of
reactive oxygen (ROS) and nitrogen (RNS) species [4,5]. Skin oxidative stress causes cellular
damage, as well as the activation of matrix metalloproteinases (MMPs), which break down
matrix proteins, including collagen and elastin, resulting in the reduction in skin hydration
and elasticity and acceleration of wrinkle formation [6,7].
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Several studies have supported the benefit of the daily use of sunscreens to prevent
solar skin damage [8–11]. Most sunscreens are composed of a combination of UV filters,
to ensure broad spectrum protection and improve the solar protection factor (SPF) value.
Regarding their capacity to absorb UVR, UV filters can be categorized as UVA, UVB, or
broad-spectrum UV filters (UVA and UVB). Additionally, UV filters can be distinguished
as organic, which can only absorb UVR, or inorganic, which can also reflect and scatter
it [12]. Furthermore, sunscreens usually incorporate antioxidant substances to stabilize the
formulation and confer additional protection against UV-mediated oxidative stress [3].

According to their mechanisms of action, antioxidants are generally classified as
primary, secondary, or multifunctional [13]. Primary antioxidants, such as phenolic com-
pounds with several hydroxyl groups (-OH), have the capacity to convert directly free
radicals into stable products, by donating hydrogen or electrons [13]. On the other hand,
secondary antioxidants act indirectly through different mechanisms. Some described mech-
anisms include the chelation of transition metals, singlet oxygen quenching, and restoration
of the antioxidant activity of primary antioxidants [13]. Multifunctional antioxidants can
display the properties of both primary and secondary antioxidants [13].

Therefore, a wide range of antioxidants can be added to sunscreens to perform a
variety of functions. Antioxidants play an important role in the mitigation of oxidative
stress in the skin, thereby reducing the signs of skin aging [14–16], and in the treatment of
some UV-sensitive dermatosis, namely polymorphic light eruption, prurigo aestivalis, solar
urticaria, and porphyria [17]. In the specific case of photodermatoses, the oral or topical
administration of antioxidants aimed to neutralize the free radical species, preventing and
fighting their attack on cellular structures, confirming the important role of antioxidants
in UV-induced skin dermatoses [18] In fact, the skin has multiple antioxidant defense sys-
tems, including enzymatic, e.g., the glutathione-peroxidase-reductase enzyme system and
superoxide dismutase (SOD) and non-enzymatic, e.g., vitamin C, vitamin E, glutathione,
and coenzyme Q10 [15]. Topical antioxidants can potentially improve the intrinsic defense
systems of the skin [19]. Topical delivery of antioxidants can also boost the photoprotective
function of UV filters [20–22]. Several studies showed that some topical antioxidants used
in sunscreen formulations have photoprotective properties such as reduction in erythema,
sunburn cell development, and immunosuppression [21,23]. Further, several organic UV
filters used in sunscreens have proved to be unstable when exposed to solar radiation, giv-
ing rise to oxidized by-products [24,25]. As a result, the phototoxicity of these compounds
increases, and the photoprotective effect decreases [24,25]. Cosmetic ingredients with an-
tioxidant activity can contribute to the stability of UV filters, reducing free radical-induced
damage [22,24,25]. There is a constant search for new antioxidant compounds incorporate
into cosmetic formulations, and one of the sources of election is nature [26]. Since the
beginning, botanical compounds have been identified as potent antioxidants due to their
polyphenolic structures [27]. With the constant innovation of the cosmetic industry, mul-
tifunctional compounds are a prerequisite in the development of new cosmetic products.
More recently, the marine environment has been widely investigated as a source of natural
products with interesting biological activities, including anti-aging [28], and antioxidant
activities [29], resulting in the incorporation of some marine-derived products in cosmetic
formulations. This work provides the reader with an up-to-date overview of the most
commonly used antioxidants in commercial sunscreens and a better understanding of their
mechanism of action on the photoprotective effectiveness.

2. Materials and Methods
2.1. Data Collection

The label information of a pool of 444 sunscreens, from 43 international cosmetic
brands, marketed in Portuguese parapharmacies and pharmacies was collected in 2021, to
assess the presence of antioxidant ingredients in sunscreens. All information available on
the product labels was collected along with the information available on the manufacturers’
websites. This study was limited to cosmetics that only contained pure compounds with
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antioxidant activity in the skin. The analysis focused on the antioxidant ingredients with the
highest usage frequency. The list of antioxidants presents in the 444 sunscreen formulations
used for this study is provided in Supplementary Material (Table S1).

2.2. Data Analysis

The antioxidants contained in sunscreens were listed according to the International
Nomenclature of Cosmetic Ingredients (INCI). The collected data were analyzed regarding
the following parameters:

2.2.1. Antioxidants Use

The number of sunscreen products containing pure antioxidants on their labels was
evaluated and expressed as a percentage.

2.2.2. Top Antioxidants Used in Sunscreens

The antioxidants were identified from INCI lists and ranked in descending order of
occurrence to disclose the top six of the most used antioxidants in sunscreens.

2.2.3. Scientific Evidence Supporting the Photoprotection Effectiveness of Antioxidants

The scientific evidence for each antioxidant ingredient was searched on the online
databases PubMed, PubChem, Scopus, Cochrane, and KOSMET. A broader search was
performed using the keywords “INCI name” OR “synonyms”, when applicable, associated
with the keywords “photoprotection”, “oxidative stress”, “antioxidant activity”, “UV-
induced damage”, and “sunscreen”.

2.2.4. Chemical Structures Draw

Marvin 17.21.0, Chemaxon (https://www.chemaxon.com) was used for drawing
chemical structures of the top six of the most used antioxidants in sunscreens.

3. Results and Discussion
3.1. Overview of the Use of Antioxidants in Sunscreens

A preliminary analysis of the presence of antioxidants in 444 sunscreens commercially
marketed in 2021, in a total of 43 international cosmetic brands, showed that most sun-
screens (211, 47.5%) contained one antioxidant reported on their labels, and only a minor
percentage of sunscreens (21, 4.7%) did not contain antioxidants reported on their labels.
Mixtures of two, three, or four different antioxidants in the same formulation were also
identified (Figure 1).
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A total of 38 pure antioxidants were found in the sample of analyzed sunscreens. A
more comprehensive analysis was performed, and the top six pure antioxidants with the
highest usage frequency (above 4%) were identified (Figure 2). Vitamin E and its derivatives
(66.3%) are the most commonly used antioxidants. Vitamin C and derivatives were the
second most used antioxidants, totaling a usage frequency of 12.9%. Oxothiazolidine,
ferulic acid and its derivatives, ectoine, and niacinamide complete the top six of the most
used antioxidants in the pool of sunscreens analyzed, whose usage frequency ranged
between 4% and 7%. The usage frequency of vitamin E and its derivatives was notably
higher than that of the other six antioxidants.
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Figure 2. Usage frequency of the top six antioxidants with respect to the total number of occurrences
on the pool of sunscreens analyzed.

Several other antioxidants were identified in the sunscreen labels, whose frequency of
use varied between 1% and 4% (Figure 3). These are mostly naturally derived antioxidants,
such as glycyrrhetinic acid, beta-carotene, caffeic acid and its derivatives, gallic acid and its
derivatives, and hydroxyacetophenone. Another 15 antioxidants were found in the studied
photoprotective formulations with a usage frequency inferior to 1%.

Vitamin E and its derivative tocopheryl acetate were placed in first and second po-
sitions, respectively, in the top six most commonly used antioxidants in sunscreens. The
opposite was seen with the glycosylated tocopheryl derivative (tocopheryl glucoside) which
was found in a diminished number (36 formulations of the total 444 sunscreens) among
all the formulations analyzed (8.1%) (Figure 4). Tocopherol (vitamin E) was used with the
highest usage frequency in more than 280 sunscreens (63.7%), followed by its acetylated
derivative, tocopheryl acetate (51.1%). As can be seen, more than half of the available
and commercially marketed sunscreen formulations in 2021 contain tocopherol and/or
tocopheryl acetate, which could demonstrate that these antioxidants were the choices
preferred by the cosmetic industry for sunscreen products (Figure 4). Additionally, vitamin
E and its acetylated derivative are also widely found in cosmetic products, including in a
great variety of anti-aging formulations [14].

Ascorbic acid, mostly known as Vitamin C, and its derivatives were also found on the
labels of some sunscreens, specifically in 106 of the 444 sunscreens (Figure 5). Ascorbyl
palmitate derivative, with a usage frequency of almost 10%, was the ascorbic acid derivative
most frequently found on the labels of sunscreen formulations, followed by ascorbic acid
(6.3%), ascorbyl tetraisopalmitate (5.2%), 3-O-ethyl ascorbic acid (1.6%), and finally the
glycosylated derivative of ascorbic acid, ascorbyl glucoside, with a usage frequency <1%.
Compared to vitamin E and its derivatives, the usage frequency of vitamin C and its
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derivatives is five times inferior to the previous one. This could be explained by the fact
that, in contrast to vitamin E, a fat-soluble molecule, vitamin C is a hydrophilic compound,
and is thus challenging to introduce into cosmetic formulations.
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Ferulic acid and its derivatives, ethyl ferulate and ethylhexyl ferulate, are also among
the top six most commonly used antioxidants in sunscreen formulations (Figure 6). Ferulic
acid and ethyl ferulate are both present in nine of the 444 photoprotective formulations
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studied, with a usage frequency of 2.0%, and ethylhexyl ferulate was only found in eight of
the 444 total analyzed sunscreens (1.8%). These hydrophobic derivatives demonstrate more
stability in oxidative processes when compared with the parent compound, ferulic acid [30].
However, a similar usage frequency of all three compounds belonging to the ferulic acid
derivatives category was noticed. Considering that these compounds are cinnamates, they
tend to undergo photoisomerization in the presence of UV radiation [31]. Overall, ferulic
acid and derivatives (5.9%) were not as widely used in photoprotective formulations as
vitamin E and derivatives (66.3%) and vitamin C and derivatives (12.9%).
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Interestingly, Silva and Ferreira et al. analyzed and characterized the antioxidant
compounds present in anti-aging formulations over a seven-year period, and vitamin E and
its derivatives were the most used [14]. Tocopherol derivatives were more frequently found
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than tocopherol itself [14]. Herein, vitamin E and its derivatives were also the most used
antioxidants in sunscreen products; however, tocopherol (63.7%) was more frequently used
than tocopheryl acetate (51.1%) in sunscreens. Ascorbic acid and ascorbic acid derivatives
were widely used in anti-aging formulations, with usage frequencies of 11.0% and 20.0%,
respectively [14]. In sunscreens, both were used in lower percentages, probably because
they have other biological activities, such as the promotion of collagen synthesis, and are
more relevant to anti-aging products [14]. Niacinamide was the antioxidant with the fourth
highest usage frequency (5.3%) in the top ten of the most used antioxidants in anti-aging
products [14]. Herein, niacinamide was only found in 4.3% of the total sunscreens studied,
reaching the last place in the top six of the most used antioxidants in sunscreens. It is
possible to denote the presence of antioxidants in both categories of cosmetic products,
anti-aging and sunscreen formulations, with vitamin E and vitamin C and their derivatives
and niacinamide being the most used antioxidants in both cosmetic formulations, which
could suggest the multifunctional action of these antioxidants. Oxothiazolidine and ectoine
were detected only on sunscreen labels, and ferulic acid and its derivatives were found in
anti-aging cosmetic formulations with a usage frequency lower than 1% [14], compared
with their usage frequency of almost 6% in sunscreen products recently marketed.

3.2. Scientific Evidence Supporting the Photoprotection Effectiveness of the Top Six Antioxidants
3.2.1. Vitamin E and Derivatives

Tocopherol, a naturally occurring lipophilic vitamin, is widely found in fruits, vegeta-
bles, and seeds, and has been reported for its strong antioxidant activity [32], as a scavenger
of ROS, namely peroxyl radicals, preventing the oxidation of biomolecules such as pro-
teins and lipids [32], as well as its cytoprotective activity. Additionally, tocopherol was
also reported for inhibiting the activity of protein kinase C (PKC) and its mediated path-
ways, suggesting its beneficial effects in several pathologies, including diabetes mellitus
and cardiovascular and inflammatory diseases [33–36]. Tocopherol reveals poor chemical
and photo-stability, along with a particular susceptibility to oxidation by alkoxyl radi-
cals, resulting in the subsequent formation of chromanoxyl radicals [15]. For that reason,
the development of new derivatives obtained through molecular modifications on the
original compound are urged, namely tocopherol acetate and tocopheryl glucoside [15]
(Figure 7). While tocopherol acetate results from the acetylation of the free aromatic hy-
droxyl group of α-tocopherol, tocopheryl glucoside results from the addition of a glucose
sugar unit [14,37]. These pro-vitamins do not have any activity, by themselves, requiring
bioactivation by cutaneous phosphatases or esterases to release in situ the free active vi-
tamin E [38–40]. Moreover, due to its high hydrophobicity, tocopherol has poor topical
formulation and aqueous solubility, which could potentially be overcome by the use of both
pro-vitamins [41]. Even though tocopheryl acetate presents a more lipophilic character than
its parent compound, the higher stabilization, and less probability of being oxidized, along
with its insertion in the skin phospholipid bilayer, potentiate the neutralization of free
radicals [15,42,43]. On the other hand, tocopheryl glucoside turns into a more lipophilic
and active molecule–free tocopherol–after cleavage of the glycosidic bond, catalyzed by
β-glucocerebrosidase in the stratum corneum [37].
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There are several studies supporting the multifunctional antioxidant and photopro-
tection efficacy of vitamin E. A single-center, open, placebo-controlled intra-individual
study carried out on 30 patients showed that pre-treatment of photosensitive sites with a
topical vitamin E formulation significantly reduces photosensitivity [44]. In addition, the
results achieved with all irradiation-induced reactions in patients treated with vitamin E or
a simple vehicle indicated that formulations containing vitamin E are a promising approach
to prevent photoinduced skin damage [44]. Many in vivo studies performed in albino
mice revealed that α-tocopherol provided significant protection against skin oxidative
stress induced by UVB radiation, possibly due to an upregulation of a network of enzy-
matic and non-enzymatic antioxidants [45,46]. Moreover, the photoprotection provided
by tocopherol seems to result from its ability to partially absorb UVB radiation [47]. In
human keratinocytes exposed to UVA radiation, the application of tocopherol also provided
photoprotection by increasing glutathione production and reducing lipid peroxidation and
ROS and malondialdehyde (MDA) levels [42,43]. Tocopheryl acetate is the second most
prevalent antioxidant used in sunscreen formulations. Some authors argue that there is
no significative esterase activity to convert tocopheryl acetate into its active form [48,49].
In fact, according to a study performed on human volunteers, the epidermal and dermal
layers of human skin absorb tocopherol acetate less than α-tocopherol, and there is little
conversion of tocopherol acetate to free α-tocopherol [50]. Nevertheless, some in vivo stud-
ies conducted in albino mice revealed an increase in tocopherol skin levels, emphasizing
the protection against skin damage, albeit less significant than that provided by tocopherol
application, possibly as a result of its reduced UVB absorption [47,51]. Further studies
are required to clarify the photoprotective effectiveness of tocopheryl acetate, as well as
to improve its delivery and bioactivation in human skin. Although tocopheryl glucoside
is the vitamin E derivative less used in sunscreen formulations, some studies were per-
formed to confirm its multifunctional antioxidant and photoprotective effectiveness. A
study developed in both reconstituted human epidermis and viable human skin has shown
that tocopheryl glucoside reveals a higher percentage of metabolization to the active form
(α-tocopherol) than tocopheryl acetate, even though skin diffusion was slower [37]. In
fact, tocopheryl glucoside has been demonstrated to produce a significant reservoir effect,
associated with a progressive supply of free tocopherol, first in the stratum corneum and
then in the other skin compartments, conferring protection for at least 24 h [37,38].

Vitamin E acts as a direct antioxidant against singlet oxygen and superoxide anions.
Additionally, when lipid peroxidation occurs in cell membranes, tocopherol’s function as
a “chain breaker” is reported, thus preventing lipid peroxidation by scavenging peroxyl
radicals [52,53]. The ongoing renewal of vitamin E by other biological agents is essential to
preserve its antioxidant capabilities. For that purpose, ascorbic acid and glutathione are
both necessary for the prolonged activity of vitamin E as they provide the requisite hydro-
gen ions when the tocopherol radical is produced [54]. Tocopherol also enhances collagen
synthesis while preventing collagen degradation by lowering MMP levels and maintain-
ing tissue inhibitors of MMP expression, thus preserving the dermis’ integrity [55,56].
Moreover, acute and chronic UV-mediated skin reactions such as erythema and edema,
sunburn-cell formation, DNA photo-adduct creation, immunosuppression, and photocar-
cinogenesis have been shown to be effectively reduced by topical application of vitamin
E [57,58].

3.2.2. Vitamin C and Derivatives

Ascorbic acid, chemically known as (5R)-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxyfuran-
2(5H)-one, extensively recognized as vitamin C, is widely found in fresh fruits and veg-
etables [59,60]. Vitamin C has been reported to have health-promoting effects and benefits
in several pathologies, such as cancer, diabetes, chronic inflammation, and cardiovascular,
neurological, and skin diseases [61]. Among all the biological activities, antioxidant activity
is highly frequently reported, due to its effective neutralization of ROS and interruption
of lipid peroxidation chain reactions [14,62]. Vitamin C is also capable of regenerating
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oxidized vitamin E [63,64]. Therefore, ascorbic acid, the most biologically active form of
vitamin C, has the ability to reduce several free radicals such as superoxide, hydroxyl,
alkoxyl, peroxyl, as well as tocopheroxyl radicals [59,65,66]. Although it is used as an active
ingredient in diverse cosmetic products, it is chemically unstable, which raises some obsta-
cles in the development of cosmetic formulations, especially aqueous formulations [63,67].
To overcome this limitation, the synthesis of ascorbic acid derivatives with desirable char-
acteristics has been explored. The majority of these derivatives were obtained through
the esterification of one or more hydroxyl groups present in the vitamin C structure with
small (3-O-ethyl ascorbic acid), or long organic chains (ascorbyl palmitate and ascorbyl
tetraisopalmitate) (Figure 8). In fact, ascorbyl tetraisopalmitate possesses all the hydroxyl
groups esterified with the long organic chain of palmitic acid, and together with ascorbyl
palmitate, substituted in only one hydroxyl group, constitute the vitamin C derivatives that
have higher lipophilic character than the parent compound [14]. Those derivatives could
also promote easy skin absorption [68]. Ascorbyl glucoside is the glycosylated derivative of
vitamin C, which is more suitable for aqueous formulations, and it seems to have a lower
skin penetration, releasing ascorbic acid in the skin after 24 hours [68]. All the ascorbic acid
derivatives are regarded as more stable than the parent compound, and like the vitamin E
derivatives, vitamin C derivatives could be hydrolyzed by skin enzymes, releasing pure
vitamin C in the skin [69].
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Ascorbic acid was already reported for its photoprotective effects against UVA and
UVB irradiation on human skin fibroblasts [70], keratinocytes [71], and stratum corneum
lipids [72]. Ascorbic acid also showed a significant increase in the skin deposition of
mineral UV filters without enhancing their skin permeation, increasing the durability of
sunscreen on the skin and consequently improving sun protection [73]. An in vivo study
using porcine skin demonstrated that vitamin C protects the skin from UV-induced damage,
reducing erythema and sunburn cell formation [74]. Topical ascorbic acid was shown to
significantly reduce the incidence of skin tumors in hairless mice after chronic exposure to
UVR [45]. In a double-blind randomized trial performed for 6 months, where the action
of the 5% of vitamin C cream and control (excipient) on photoaged skin was compared,
ascorbic acid led to a clinical improvement of the photoaging skin signs [75]. Ascorbyl
palmitate shielded the porcine skin from UV-induced free radicals [76]. However, two dif-
ferent studies found that ascorbyl palmitate did not protect mouse skin from UVB-induced
photoaging [45], and may also promote UVB-induced lipid peroxidation and cytotoxicity
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in human keratinocytes, which consequently exacerbates skin damage [62]. This is a result
of the oxidation of the lipid moiety of ascorbyl palmitate which can form UVB-induced
free radical metabolites [62]. So, more studies are needed to clarify these results. Ascorbyl
tetraisopalmitate also boosts cell tolerance to UVB exposure [77], prevents UVA-induced
damage in human keratinocytes and melanoma cells [78], enhances collagen production
and intracellular concentration of ascorbic acid, as well as inhibiting MMP activity [78].
An ex vivo study demonstrated that the topical application of ascorbyl tetraisopalmitate
in human skin explants decreased the sunburn cells formulations, increased the procol-
lagen type I, and upregulated the expression of tropoelastin expression when compared
with the vehicle [79]. Ascorbyl glucoside also limits UV-induced damage of human skin
keratinocytes [80,81], fibroblasts [80], and of a human reconstructed epidermal model [68].
Compared to ascorbic acid, 3-O-ethyl ascorbic acid had significant and prolonged DPPH
free radical scavenging action (0.032 g/L) [82–84]. Limited data are available concerning
in vitro and in vivo studies with 3-O-ethyl ascorbic acid, thus more research is required to
assess its effectiveness as a photoprotection booster [68,85].

Ascorbic acid can function as a free radical scavenger, an antioxidant that neutralizes
ROS, and a reducing agent for enzymatic processes. For these purposes, ascorbic acid
donates a single reducing equivalent, forming the radical monodehydroascorbate, which
reacts preferentially with other radicals generated during the oxidative stress process,
being oxidized to dehydroascorbate [59]. Thus, vitamin C can inhibit elastin synthesis and
the activation protein-1 (AP-1), leading to a reduction in MMP production and collagen
damage [21,86]. This vitamin also prevents the reduction in CD1a-expressing Langerhans
cells after UV exposure [87]. The mechanism of vitamin C photoprotection also includes
the reduction in erythema, sunburn cell formation, and immunosuppression [21].

3.2.3. Oxothiazolidine

Oxothiazolidine (1,3-thiazolidin-2-one) is a heterocyclic compound with interesting
antioxidant activity [88] (Figure 9). It has been reported to possess good skin and cell
penetration and the ability to protect the skin against IR- and UV-induced alterations,
control accelerated skin aging, and preserve the epidermis, dermis, and dermal-epidermal
junction (DEJ) [88–90].
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Some studies have confirmed the multifactorial antioxidant and photoprotective
activities of oxothiazolidine. The antioxidant activity has been reported as noteworthy con-
sidering its actions regarding a large panel of ROS, including superoxide anion, hydrogen
peroxide, and hydroxyl radicals [91]. In 2008, Lafitte et al. evaluated oxothiazolidine re-
garding its ability to release taurine locally in the skin under oxidative stress conditions [90].
Taurine is a naturally occurring amino acid with a confirmed preventive effect against UVB-
induced skin damage [90]. The novel ingredient has shown antioxidant and electrophilic
scavenging properties [90]. Preliminary studies evidenced the photoprotective effect of
oxothiazolidine against UVA-induced oxidative stress, and its activity as a scavenger of
electrophilic species, such as toxic aldehydes, usually formed during lipid peroxidation
reactions with lipids present in the cellular membrane [90]. Taurine is a compound nat-
urally present in human skin, and in situ taurine production was already reported to
play an important role in photoprotective responses by limiting the UVR-induced cellular
apoptosis [92] and immunosuppression process [93]. Oxothiazolidine was also reported to
display photoprotective potential, preservation of collagen VII in DEJ, reduction in MMP-1,
cyclooxygenase-2 (COX-2), and decorin expression. Furthermore, its ability to reach the
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epidermis and dermis skin layers was demonstrated, using in vitro three-dimensional
model and ex vivo human skin explants [89]. Recently, Jacques et al. published a study
where the scientific proof of the sustained effect of oxothiazolidine as an antioxidant to be
used in sun protection cosmetic products was made [38]. A formulation containing the
antioxidant oxothiazolidine was prepared and investigated for its dermal bioavailability
and antioxidant properties [38]. An immediate complementary sunlight protective action
of oxothiazolidine was attained after topical application, due to its fast penetration and fast
reaction with ROS to give taurine, which was detected 30 minutes post-UV irradiation [38].
Indeed, oxothiazolidine and taurine possess antioxidant, protective, and anti-aging proper-
ties, with oxothiazolidine being more potent than the final compound taurine, regarding
its antioxidant potential [38]. Other derivatives of oxothiazolidine have been investigated,
and there are some registered patents of those derivatives for skincare [94], promotion of
desquamation of the skin [95], topical use against oxidative stress consequences [91], and
as active protective agents [96].

From a mechanistic point of view, oxothiazolidine reacts with ROS and undergoes
successive oxidation reactions, culminating in the opening of the cyclic portion of oxoth-
iazolidine to give the taurine-free form [90]. None of the oxidized intermediates were
detected by high-performance liquid chromatography (HPLC) analysis, suggesting that
the intermediates are unstable; thus, the oxidation of oxothiazolidine only stops when
the taurine compound is achieved [90], which corroborates the hypothesis of the mecha-
nism of action of oxothiazolidine. Oxothiazolidine acts in the neutralization of toxic and
reactive aldehydes presented as end products of lipid peroxidation [90]. It is achieved
through oxothiazolidine reaction with the cytotoxic aldehyde functional groups of those
compounds, given a more stable adduct, carbinolamine [90].

3.2.4. Ferulic Acid and Derivatives

Ferulic acid, chemically known as 4-hydroxy-3-methoxycinnamic acid, is a naturally
occurring phenolic acid present in several plants, including rice, oats, pineapple, grains,
flowers, fruits, coffee, peanuts, and nuts [97]. These natural products can be found in
their free form or conjugated with sugar, lipid, and protein structures [97]. Natural ferulic
acid has been described for its anti-inflammatory [98], antimicrobial [99], antitumor [100],
neuroprotectant [101], and antioxidant activities [102,103], as well as for uses in cosmetic
products [97,104,105]. The effective action of ferulic acid as a free radical scavenger has been
widely reported, specifically for superoxide anion radical and peroxyl radical, avoiding
oxidative stress processes, and inhibiting lipid peroxidation, respectively [102,106]. This
antioxidant response could be attributable to the aromatic hydroxyl group present in the
structure of the naturally derived phenolic acid [102,106]. Ethyl ferulate and ethylhexyl
ferulate are two ester derivatives obtained by the introduction of organic chains to the
parent compound, ferulic acid, presenting a more hydrophobic character (Figure 10).
Ferulic acid was already reported for its in vitro lipid peroxidation inhibitory effect, as
well as the scavenging activity of superoxide and hydroxyl radicals, terminating radical
chain reactions [103,107]. Like ferulic acid, ethyl ferulate and ethylhexyl ferulate were
already reported for their anti-inflammatory and antioxidant activities and ability to absorb
UVR [108,109].

In vivo and in vitro studies were performed to access the photoprotective action
of phenolic acids, including ferulic acid [104]. Adult human skin samples were used
to evaluate the protective effect of ferulic acid against UVB radiation, which was also
demonstrated to reduce UVB-induced erythema [104]. Skin absorption of this compound
was not influenced by the variation of the pH, thus presenting a similar skin penetration
rate in acidic and neutral pH [104]. The in vivo SPF value of a sunscreen formulation
containing two UV filters, ethylhexyl triazine (5.00%) and bis-ethylhexylmethoxyphenol
methoxyphenyltriazine (10.0%), and ferulic acid (1.00%) was determined and compared to
a similar formulation without ferulic acid [110]. Ferulic acid was demonstrated to enhance
the in vivo SPF value of the formulation (from 19.7 to 26) and to have protective effects
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against UV-induced erythema [110]. A similar study confirmed the potential of ferulic acid
to boost the photoprotective response of a sunscreen containing the same UV filters, and
also increased the UVA protection factor by 26% [111]. Interestingly the photoprotective
role of this naturally derived cinnamic acid was already discussed, where its UV filtering
and antioxidant activity was confirmed, namely in ROS scavenging action, thus protecting
skin from visible light and UV-induced oxidative stress events [112]. Ferulic acid is also
characterized by high absorption of UVR and radiation-initiated antioxidant potential [103],
inhibitory action towards the UVA-induced melanogenesis in the skin, and the protective
effect of Nrf2 towards UVA-mediated oxidative stress [113]. Indeed, a patent was registered,
mentioning ferulic acid ester derivatives as useful for cosmetic applications due to their
proven antioxidant and UV absorbent activities [114].
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UV-catalyzed radical-scavenging characterizes the mechanism of action of ferulic
acid [103]. By the abstraction of the electrons of radicals, a phenoxyl radical is formed;
however, owing to its lack of reactivity, the phenoxyl radical cannot initiate or contribute
to the propagation of radical chain reactions [103]. Ferulic acid can also inhibit melanin
formation, acting as a competitive inhibitor of tyrosinase enzyme [104,113], and protecting
against UVB-induced erythema [97,104].

3.2.5. Ectoine

Ectoine, chemically known as (6S)-2-methyl-1,4,5,6-tetrahydropyrimidine-6-carboxylic
acid, is an amino acid derivative isolated from marine bacteria and algae that live under
extreme conditions [115–117] (Figure 11). Reported for its antioxidant potential, ectoine
possesses high ROS scavenger activity, especially towards hydroxyl radicals [118]. This
amino acid derivative is biosynthesized in order to protect organisms’ organelles and
biomolecules against dehydration, which is caused by drastic variations in salt concen-
trations/deficit of water, affecting the osmotic equilibrium, and high temperatures [119].
Skin is a physical barrier that is constantly exposed to several external aggressors, with
frequent variations in temperature and excessive UVR exposure [120]. Therefore, ectoine
could be used for diverse cosmetic products, including sunscreens and products for dry
skin [115,121], acting as a good protective agent.
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The in vivo investigation of the beneficial properties of ectoine is underexplored
compared with several in vitro studies performed to evaluate the antioxidant and pho-
toprotective potential of this compound. One clinical study about the anti-aging and
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UV-protective effects of ectoine and its application for the development of skin care prod-
ucts was found [122]. A total of 104 healthy female volunteers participated in a randomized
and double-blind application test study, aiming to evaluate the compatibility and the ef-
ficacy of ectoine (using a cosmetic formulation containing 2% of ectoine) in comparison
to a vehicle emulsion, which corroborates the protective effects and UV-induced anti-
aging properties of ectoine [122]. Additionally, a moisturizing effect of ectoine was also
confirmed [122]. It was also shown that the topical application of ectoine decreased the
negative effects of excessive exposition to UVR [123]. The ability of ectoine to react with
hydroxyl free radicals was also reported [116]. Two major products, N-acetamide aspartate
and N-acetimide-β-alanine, were produced by the reaction between ectoine and hydroxyl
radicals, showing the scavenger potential of this compound in neutralizing species in-
volved in oxidative stress processes [116]. The decrease in Langerhans cells, which could be
induced by solar radiation, was reduced by ectoine application before sun exposure [123].
Ectoine was also confirmed as an effective natural compound that could be used in the
prevention of premature aging induced by solar radiation, specifically UVA radiation,
through the suppression of AP-2, the decrease in overexpression of intercellular adhesion
molecule 1 (ICAM-1) in keratinocytes, and the inhibition of the formation of photo-induced
mitochondrial DNA mutations in dermal fibroblasts [115]. The photoprotective potential of
sunscreens containing naturally derived compounds was tested, and ectoine demonstrated
a maximal protective effect of 92.7% and 68.9% against visible light and UVA/visible light,
respectively, at a maximum concentration of 0.1 mM [124]. A similar study demonstrated
the photoprotective effects of ectoine in UVA-induced oxidative damage in dermal fibrob-
lasts [125]. Indeed, it was also proved that this molecule upregulated the expression of
diverse genes associated with AKT/PI3K signaling pathways, decreased ROS levels, and
increased the levels of enzymatic and non-enzymatic antioxidants, superoxide dismutase,
and glutathione, respectively [121,125]. In addition, ectoine prevented the formation of
ceramides due to its quenching proprieties for singlet oxygen and, consequently, avoided
the initiation of inflammatory processes [103,115].

The mechanism underlying the protective effect of ectoine against UVR has recently
been studied. It is known that ectoine reduces the expression of proinflammatory agents,
restraining the initiation of inflammatory processes [115,126]. Further, it was hypothesized
and confirmed that the production of heat shock proteins is activated, which leads to a
protective response against UVR [124,126]. Ectoine also revealed quenching properties of
UV-induced ROS, namely singlet oxygen species [115,119]. More studies are required in
order to better understand the mechanism of action of ectoine, as a photoprotective agent
that has been used in sunscreens formulations.

3.2.6. Niacinamide

Niacinamide, also called nicotinamide, commonly known as the active form of vitamin
B3, is an amide of the carboxylic acid of water-soluble niacin, and an essential compo-
nent of the coenzyme nicotinamide adenine dinucleotide (NAD) [127,128] (Figure 12). It
is easily obtained from natural sources such as potatoes, bananas, grains, turkey, and
tuna [129]. Anti-inflammatory and antioxidant activities of niacinamide have already been
reported, showing its efficacy in the treatment of several skin pathologies, namely rosacea,
acne [130,131], and dermatitis [130,132,133]. Niacinamide also reduces transepidermal wa-
ter loss (TEWL) [134] and suppresses the transference of the melanosomes to keratinocytes,
which consequently reduces hyperpigmentation [130,135].
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Three distinct clinical studies were already performed to support the protective effects
of niacinamide against the UVR negative effects on the skin. Several clinical studies have
been conducted to confirm the efficacy of the use of topical niacinamide in the treatment
of photoaging in Asian [136,137] and Caucasian [138] groups of women. These studies
demonstrated the protective effect of niacinamide against UV-induced immunosuppression
and the suppression of UV-induced melanosome transfer [136], contributing to its anti-
photoaging action and mitigating the hyperpigmentation effects, respectively [135,137].
The significant decrease in pro-inflammatory interleukins, after the cells treatment with
niacinamide [130], and the activation of DNA repair mechanisms in cases of UV-induced
skin damage [139] were also confirmed by in vitro studies. The amide derivative of niacin
was already reported for its protective effects against UV-induced skin aging and oxidative
stress in epidermal keratinocytes [139–141], in human dermal fibroblasts [142], and in
melanocytes [139,143] cell lines. Oral ingestion of niacinamide helps to avoid UV-mediated
immunosuppression and helps to maintain the levels of NAD controlled, thus avoiding the
loss of efficiency of the DNA repair mechanisms [129]. Accordingly to Sivapirabu et al.,
niacinamide could be used as an interesting agent in the optimization of the photoprotec-
tion of sunscreens, acting in the prevention of the immunosuppression effects induced by
both UVA and UVB radiation [144]. This study investigated the effects and the mechanisms
underlying the topical application of niacinamide, and the results achieved proved that
niacinamide increased the pool of enzymes involved in cellular metabolism, crucial for
the protection against UV-mediated immunosuppression [144]. Niacinamide was also con-
firmed as an anti-pollution agent, in which keratinocytes were protected from particulate
matter 2.5 (PM2.5)-induced oxidative stress in the skin [145]. Recently, two products were
studied, which combined niacinamide with ZnO nanoparticle composite [146], and a niaci-
namide/jojoba oil hybrid nanogel [147], both with photoprotective effects and application
as cosmetic products. The niacinamide coating of the ZnO nanoparticle composite demon-
strated lighting effects and diminished the transmission and high reflectance against UVR,
ensuring adequate UV protection [146]. Thus, the coating of niacinamide could be effective
for the development of new sunscreen formulations [146]. The nanogels demonstrated pro-
tective action towards the human epidermal keratinocytes against UVR, and consequently
can be added to sunscreen products in order to improve skin photoprotection [147].

The mechanism of action of niacinamide involves the prevention of immunosup-
pression induced by both UVA and UVB radiation and by increasing the enzymatic and
non-enzymatic antioxidants in the skin [144], which can be used to optimize the photo-
protective response of sunscreens. The reduction of immunosuppression, anti-photoaging
action [144], and activation of DNA repair mechanisms [139] could supplement the photo-
protective action of niacinamide.

4. Summary of the Mechanisms of Action of the Antioxidant in Sunscreens

The antioxidants investigated protect skin from a wide spectrum of UVR-related dele-
terious effects, being the main outcome of the in vivo studies the decrease in UV-induced
erythema. Regarding the mechanism of action, several research studies corroborate their
antioxidant action, as radical scavengers of UV-induced ROS and RNS (all the antioxi-
dants), including hydroxyl radical (oxothiazolidine, ectoine, vitamin C, and ferulic acid
and their derivatives), superoxide anion (oxothiazolidine, vitamin C, and ferulic acid and
their derivatives), hydrogen peroxide (oxothiazolidine, and vitamin C), peroxyl (vitamins
E and C, ferulic acid and their derivatives), peroxynitrite anion (vitamin C), singlet oxygen
(ectoine, and vitamin C), and toxic intermediates, namely reactive aldehydes (oxothiazo-
lidine). Additionally, some of them increase the levels of antioxidants associated with
enzymatic and non-enzymatic systems, such as vitamin E and derivatives, ectoine, and
niacinamide. Other mechanisms of action noted were the activation of DNA repair mech-
anisms in epidermal and dermal skin cells (oxothiazolidine, ectoine, and niacinamide),
inhibition of the immunosuppression processes (vitamins E and C, oxothiazolidine, and
niacinamide), decrease in Langerhans cells (vitamin C, and ectoine), reduction in the release
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of pro-inflammatory interleukins (ferulic acid, and ectoine), and metalloproteinases (vita-
mins E and C, and oxothiazolidine), tyrosinase inhibition (ferulic acid, and niacinamide),
as well as a decrease in the effects of sunburned cells (vitamins E and C). It is noteworthy
that all antioxidants possess a multifunctional mechanism of action. However, the absence
of comparative studies regarding the potency of the compounds restrains the conclusion
about the most potent and effective compound.

5. Conclusions

The adoption of protective measures is essential to avoid sunburn, photoaging, and
skin diseases induced by excessive solar exposure, which promotes the generation of ROS
and RNS, thus inducing oxidative stress. Sunscreens incorporate UV filters, frequently
combined with antioxidant compounds. In addition to stabilizing formulations and UV
filters, antioxidants can be used to boost the skin photoprotection effect. An up-to-date
overview of the most commonly used antioxidant compounds, in a total of 444 commercial
sunscreens available in the Portuguese market, as well as a compilation of the scientific
evidence regarding the photoprotective effectiveness of the most widely used antioxidants,
was herein performed. More than 95% of the sunscreen formulations contained at least
one antioxidant compound. This widespread use may be justified by the well-known key
role of UV radiation in generating skin oxidative stress. The majority of the antioxidants
are naturally derived, mostly from terrestrial sources, with the exception of ectoine, a
marine-derived compound, and oxothiazolidine, obtained by synthesis. Vitamin E and its
derivatives were the most used antioxidants in sunscreens, with usage frequency above
65%, followed by vitamin C and derivatives (12.9%). One antioxidant among the top six
(ectoine, 5.6%) is derived from marine organisms, bacteria, and algae, showing the potential
of marine-derived compounds as an interesting source for the discovery of compounds
to be incorporated in sunscreens. Oxothiazolidine (6.5%), ferulic acid and its derivatives
(5.9%), and niacinamide (4.3%) completed the list. By comparing these with the antioxidants
commonly present in anti-aging formulations, some conclusions can be drawn. Only 77 %
of anti-aging products included antioxidants. Vitamins E and C and their derivatives were
present in both cosmetic formulations with the highest frequency of use. Ferulic acid’s
usage frequency was six times higher in sunscreen products than in anti-aging formulations.
Ectoine and oxothiazolidine were only found in sunscreens. Vitamin C and niacinamide
were mostly found in anti-aging cosmetics, probably because of their well-known role in
the promotion of collagen synthesis and depigmenting action, respectively.

The photoprotective action and antioxidant activity of the molecules were also com-
piled based on scientific evidence reported in the literature. The existence of a plethora of
scientific works confirming the effectiveness and safety of these antioxidants is possibly
the main factor that contributes to the vast use of those antioxidants in cosmetic products,
including sunscreens. For all the antioxidants used in sunscreens belonging to the top
six, at least one in vivo and/or clinical study was found. Vitamins E and C, ferulic acid
and their derivatives, as well as niacinamide, were the four antioxidants with the most
in vivo and/or clinical studies reported. In some cases, namely for vitamin E and vitamin
C derivatives, some in vitro contradictory results were found regarding their antioxidant
and photoprotective effectiveness. Oxothiazolidine and ectoine were the antioxidants with
fewer in vivo and/or clinical studies, showing the importance of more future research with
these two pure antioxidants for a better understanding of their applicability in photoprotec-
tive formulations. Together with ferulic acid, these three compounds were only included in
2010 in the inventory of cosmetic ingredients in Cosing, a European Commission cosmetic
ingredients database, with the last update in May of 2019 (ferulic acid) and November of
2022 (oxothiazolidine and ectoine). This might help explain the lower number of studies
described in the literature.

To conclude, this work identified the antioxidants present in commercial sunscreens
and their photoprotective action, unveiling the main mechanisms of action underlying
their effectiveness. Moreover, with this insight, the cosmetic industry could invest in the
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most promising antioxidant compounds, designing new sunscreen formulas to boost the
effectiveness of UV filters.

6. Strengths and Limitations

This study was performed for the Portuguese market, although the studied products
were mostly from international brands, and included only sunscreens marketed in phar-
macies and parapharmacies. This work contains detailed information on the composition
of sunscreens, which is a result of an exhaustive and comprehensive analysis of the label
information, and research of the scientific evidence in diverse databases, contributing to
the robustness of the insight presented. The information collected was organized and
subjected to a critical appraisal, unveiling an original and up-to-date overview of the use
of antioxidants in sunscreens. Some disparities can be found when compared to studies
performed in other markets, especially non-EU countries, or other distribution channels.
Another point that could contribute to the limitations of this work is the in-house studies
of cosmetic industries, which are not available in the usual databases and/or in online
sources, thus limiting sight of the full picture.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox12010138/s1, Table S1: CVS-document containing the list of
the antioxidants present in the 444 sunscreens formulations.
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2. Gromkowska-Kępka, K.J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. The impact of ultraviolet radiation on skin

photoaging—Review of in vitro studies. J. Cosmet. Dermatol. 2021, 20, 3427–3431. [CrossRef]
3. Krutmann, J.; Schalka, S.; Watson, R.E.B.; Wei, L.; Morita, A. Daily photoprotection to prevent photoaging. Photodermatol.

Photoimmunol. Photomed. 2021, 37, 482–489. [CrossRef]
4. Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T. UV-induced skin damage.

Toxicology 2003, 189, 21–39. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/antiox12010138/s1
https://www.mdpi.com/article/10.3390/antiox12010138/s1
http://doi.org/10.3390/ijms140612222
http://www.ncbi.nlm.nih.gov/pubmed/23749111
http://doi.org/10.1111/jocd.14033
http://doi.org/10.1111/phpp.12688
http://doi.org/10.1016/S0300-483X(03)00150-1
http://www.ncbi.nlm.nih.gov/pubmed/12821280


Antioxidants 2023, 12, 138 17 of 22

5. Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural Antioxidants: Multiple Mechanisms to Protect Skin
from Solar Radiation. Front. Pharmacol. 2018, 9, 392. [CrossRef]

6. Saguie, B.O.; Martins, R.L.; Fonseca, A.S.D.; Romana-Souza, B.; Monte-Alto-Costa, A. An ex vivo model of human skin photoaging
induced by UVA radiation compatible with summer exposure in Brazil. J. Photochem. Photobiol. B 2021, 221, 112255. [CrossRef]

7. Evangelista, M.; Mota, S.; Almeida, I.F.; Pereira, M.G. Usage Patterns and Self-Esteem of Female Consumers of Antiaging
Cosmetic Products. Cosmetics 2022, 9, 49. [CrossRef]

8. Hughes, M.C.B.; Williams, G.M.; Baker, P.; Green, A.C. Sunscreen and prevention of skin aging: A randomized trial. Ann. Intern.
Med. 2013, 158, 781–790. [CrossRef]

9. Guan, L.L.; Lim, H.W.; Mohammad, T.F. Sunscreens and Photoaging: A Review of Current Literature. Am. J. Clin. Dermatol. 2021,
22, 819–828. [CrossRef]

10. Iannacone, M.R.; Hughes, M.C.B.; Green, A.C. Effects of sunscreen on skin cancer and photoaging. Photodermatol. Photoimmunol.
Photomed. 2014, 30, 55–61. [CrossRef]

11. Seité, S.; Fourtanier, A.; Moyal, D.; Young, A.R. Photodamage to human skin by suberythemal exposure to solar ultraviolet
radiation can be attenuated by sunscreens: A review. Br. J. Dermatol. 2010, 163, 903–914. [CrossRef]

12. Jesus, A.; Sousa, E.; Cruz, M.T.; Cidade, H.; Lobo, J.M.S.; Almeida, I.F. UV Filters: Challenges and Prospects. Pharmaceuticals 2022,
15, 263. [CrossRef]

13. Hermund, D.B. Antioxidant Properties of Seaweed-Derived Substances. In Bioactive Seaweeds for Food Applications; Academic
Press: Cambridge, MA, USA, 2018; pp. 201–221.

14. Silva, S.; Ferreira, M.; Oliveira, A.S.; Magalhães, C.; Sousa, M.E.; Pinto, M.; Sousa Lobo, J.M.; Almeida, I.F. Evolution of the use of
antioxidants in anti-ageing cosmetics. Int. J. Cosmet. Sci. 2019, 41, 378–386. [CrossRef]
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