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Abstract: Evidence has shown that caffeine administration reduces pro-inflammatory biomarkers,
delaying fatigue and improving endurance performance. This study examined the effects of caffeine
administration on the expression of inflammatory-, adenosine receptor- (the targets of caffeine),
epigenetic-, and oxidative metabolism-linked genes in the vastus lateralis muscle of mice submitted
to lipopolysaccharide (LPS)-induced inflammation. We showed that caffeine pre-treatment before
LPS administration reduced the expression of Il1b, Il6, and Tnfa, and increased Il10 and Il13. The
negative modulation of the inflammatory response induced by caffeine involved the reduction of
inflammasome components, Asc and Casp1, promoting an anti-inflammatory scenario. Caffeine
treatment per se promoted the upregulation of adenosinergic receptors, Adora1 and Adora2A, an effect
that was counterbalanced by LPS. Moreover, there was observed a marked Adora2A promoter
hypermethylation, which could represent a compensatory response towards the increased Adora2A
expression. Though caffeine administration did not alter DNA methylation patterns, the expression
of DNA demethylating enzymes, Tet1 and Tet2, was increased in mice receiving Caffeine+LPS, when
compared with the basal condition. Finally, caffeine administration attenuated the LPS-induced
catabolic state, by rescuing basal levels of Ampk expression. Altogether, the anti-inflammatory effects
of caffeine in the muscle can be mediated by modifications on the epigenetic landscape.

Keywords: cytokines; inflammasome; epigenetics; DNA methylation; adenosine receptors; bioenergetics

1. Introduction

Regular, moderate-intensity exercise has been proven to promote an anti-inflammatory
state that helps prevent the development of chronic diseases (for a review see [1]). Strenuous
exercise can lead to increased levels of blood proinflammatory cytokines, which are linked
to fatigue, and therefore, to reduced performance [2]. This scenario has led to caffeine
administration being used to increase alertness [3], to accelerate metabolism [4], and to delay
fatigue development in aerobic and anaerobic exercises, including muscular strength [5],
running [6], cycling [7], and team sports [8], among others.

While it is unclear what molecular mechanisms are behind caffeine consumption and
its ergogenic responses, evidence is mounting that caffeine may induce anti-inflammatory
effects in both humans, and animals. For example, it has been demonstrated that caffeine
supplementation reduced inflammatory markers in the blood of athletes [9–11]. In the case
of animal models, reduced pro-inflammatory and increased anti-inflammatory markers
were not only seen in the blood of trained rats, but also in key tissues linked to exercise
performance, such as the brain, the lung, the heart and the skeleton, of rodents exposed
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to caffeine [12–16]. Furthermore, an elegant study involving 114 participants showed that
caffeine intake is associated with lower inflammation and activation of the inflammasome,
which resulted in less production of the pro-inflammatory cytokine interleukin-1 beta
(IL-1b) [17].

In addition, caffeine supplementation has been shown to cause changes in gene expres-
sion that could be linked to improved exercise performance [18–20]. These modifications
have been related to altered epigenetics, a term conceived to describe the possible causal
processes acting on genes that regulate phenotype [21]. Some of the reported effects of
caffeine are associated with DNA methylation [22], a major epigenetic factor influencing
gene activities. Considering that epigenetics can change the activity of a DNA segment
without changing the sequence, it is plausible that caffeine can modulate inflammatory
processes by changing the epigenetic landscape. When DNA methylation is increased in
a gene promoter, it will typically act to repress gene transcription, including the expression
of inflammatory mediators. Altogether, we aimed to understand whether caffeine can
modulate epigenetics to induce an anti-inflammatory scenario in the mouse skeletal muscle.

2. Materials and Methods
2.1. Animals

Adult Swiss male mice (3–5 months of age; body mass 45–50 g) from the central animal
house of the Centre for Biological Sciences, Universidade Federal de Santa Catarina (Brazil)
were kept in a controlled environment (22 ± 1 ◦C, 12 h light/dark cycle) with water and
food ad libitum, for ten days (acclimatation period). The experimental protocols were
approved by the Ethics Committee for Animal Research (PP00760/CEUA) of the Federal
University of Santa Catarina (Brazil). All efforts were made to minimize the number of
animals used and their suffering. Five mice were included per experimental group, unless
otherwise stated.

2.2. LPS-Induced Inflammation

Acclimatized mice were randomly divided into the following 4 groups (5 animals per
group): Vehicle: Animals that received an intraperitoneal (i.p.) injection of 0.9 % sodium
chloride (injection volume of 0.1 mL for every 10 g of body weight); Caffeine: Animals
that received an i.p. injection of caffeine (6 mg/kg of body weight); LPS: Animals that
received an i.p. injection of LPS (0.33 mg/kg of body mass; E. coli LPS, serotype 0127:B8),
and Caffeine+LPS: Animals that received an i.p. injection of caffeine and 15 min later
received the injection of LPS. Twenty-four hours after the treatment mice were euthanized
by cervical dislocation and the vastus lateralis muscle was immediately collected and
processed in Trizol as previously published by our group [23]. The dosage of LPS used was
based on previously published data [24,25].

2.3. RNA Extraction and cDNA Synthesis

For total RNA extraction, the vastus lateralis muscle was collected 24 h after the
administration of the different treatments (vehicle, caffeine, LPS and Caffeine+LPS), and
immediately homogenized with Ambion TRIzol Reagent (Life Sciences, Fisher Scientific Inc.,
Waltham, MA, USA). After adding 200 µL of chloroform, and followed by centrifugation at
17,000× g for 15 min at 4 ◦C, the upper aqueous layer containing the RNA was collected and
transferred to a new tube. Then, 800 µL of chilled isopropanol were added and after light
agitation, the RNA was precipitated by centrifugation at 17,000× g for 15 min at 4 ◦C. The
supernatant was removed by inversion and the precipitated RNA was washed with 1 mL
of 70 % alcohol and again centrifuged at 17,000× g for 5 min at 4 ◦C. Supernatants were
discarded and 50 µL of nuclease-free H2O was added to the tube. The quantity and purity
of the extracted RNA was estimated by using the NanoDrop spectrophotometer, at 260 and
280 nm. The synthesis of the cDNA was performed after treating the total RNA with DNase
I (Invitrogen, Carlsbad, CA, USA), and with high-capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA), according to the manufacturer’s instructions.



Antioxidants 2023, 12, 554 3 of 15

2.4. Real-Time Reverse Transcription and Quantitative PCR (RT-qPCR)

Real-time reverse transcription and quantitative PCR (RT-qPCR) reactions were per-
formed using SYBR Green Master Mix (PowerUp™ SYBR™ Green Master Mix-Applied
Biosystems, Foster City, CA, USA) with specific primers shown in Table 1. All the reac-
tions were carried out in a total of 10 µL, containing 5 µL of specific primers (0.4 µM of
each primer), 50 ng of cDNA and nuclease-free H2O in a QuantStudio® 3 Real-Time PCR
(Thermo Fisher Scientific, Waltham, MA, USA).

Table 1. Oligonucleotide primers and PCR conditions used in quantitative real-time PCR.

Gene (ID) Primer 5′-3′Sequence Reaction Condition Product Size (bp)

Il1b (16176)
Forward GAC CTT GGA TGA GGA CA 95 ◦C-15 s; 60 ◦C-30 s;

72 ◦C-30 s
183Reverse AGC TCA TAT GGG TCC GAC AG

Il6 (16193)
Forward AGT TCG CTT CTT GGG ACT GA 95 ◦C-15 s; 60 ◦C-30 s;

72 ◦C-30 s
191Reverse CAG AAT TGC CAT TGC ACA AC

Tnfa (11647) Forward CCA CAT CTC CCT CCA GAA AA 95 ◦C-15 s; 60 ◦C-30 s;
72 ◦C-30 s

259Reverse AGG GTC TGG GCC ATA GAA CT

Il10 (21926)
Forward CCA AGC CCT TAT CGG AAA TGA 95 ◦C-15 s; 60 ◦C-30 s;

72 ◦C-30 s
163Reverse TTT TCA CAG GGG AGA AAT CG

Il13 (16163)
Forward CAG TCC TGG CTC TTG CTT G 95 ◦C-15 s; 60 ◦C-30 s;

72 ◦C-30 s
165Reverse CCA GGT CCA CAC TCC ATA CC

Adora1 (11539)
Forward AGA ACC ACC TCC ACC CTT CT 95 ◦C-15 s; 63 ◦C-30 s;

72 ◦C-30 s
227Reverse TAC TCT GGG TGG TGG TCA CA

Adora2A (11540)
Forward ATC CCT CAGAGA AGG GAA GC 95 ◦C-15 s; 63 ◦C-30 s;

72 ◦C-30 s
300Reverse AGC TTC CCA AAG GCT TTC TC

Dnmt1 (13433)
Forward CCT TTG TGG GAA CCT GGA A 95 ◦C-15 s; 63 ◦C-30 s;

72 ◦C-30 s
240Reverse CTG TCG TCT GCG GTG ATT

Dnmt3A (13435)
Forward GAG GGA ACT GAG ACC CCA C 95 ◦C-15 s; 63 ◦C-30 s;

72 ◦C-30 s
216Reverse CTG GAA GGT GAG TCT TGG CA

Dnmt3B (113436)
Forward AGC GGG TAT GAG GAG TGC AT 95 ◦C-15 s; 63 ◦C-30 s;

72 ◦C-30 s
91Reverse GGG AGC ATC CTT CGT GTC TG

Tet1 (52463)
Forward GAG CCT GTT CCT CGA TGT GG 95 ◦C-15 s; 65 ◦C-30 s;

72 ◦C-30 s
367Reverse CAA ACC CAC CTG AGG CTG TT

Tet2 (214133)
Forward AAC CTG GCT ACT GTC ATT GCT CCA 95 ◦C-15 s; 65 ◦C-30 s;

72 ◦C-30 s
211Reverse ATG TTC TGC TGG TCT CTG TGG GAA

Tet3 (194388)
Forward GTC TCC CCA AGT CCT ACC TCC G 95 ◦C-15 s; 63 ◦C-30 s;

72 ◦C-30 s
137Reverse GTC AGT GCC CCA CGC TTC A

b-actin (11461)
Forward TCT TGG GTA TGG AAT CCT GTG 95 ◦C-15 s; 58 ◦C-30 s;

72 ◦C-30 s
82Reverse AGG TCT TTA CGG ATG TCA ACG

Gapdh (14433) Forward AGG CCG GTG CTG AGT ATG TC 95 ◦C-15 s; 58 ◦C-30 s;
72 ◦C-30 s

530Reverse TGC CTG CTT CAC CAC CTT CT

2.5. DNA Extraction

Genomic DNA (gDNA) was extracted from the mouse muscle 24 h after the treatments.
Tissues were homogenized in extraction buffer (10 mM Tris pH 3.0; 0.5% SDS, 5 mM EDTA)
and then digested with proteinase K solution at 65 ◦C for 16 h. Additionally, 500 µL of
equilibrium phenol was transferred to the tube and thus the mixture was spun down at
17,000× g for 15 min. The upper aqueous layer containing the target DNA was preserved
and mixed with 200 µL of chloroform. The mixture was centrifuged at 17,000× g for
15 min and the supernatant was collected and transferred to a new tube. Then, 800 µL of
isopropanol and 150 µL sodium acetate 3 M was added to the mixture. Next, the mixture
was centrifuged at 17,000× g for 15 min. The supernatant was removed, and the pellet was
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washed with 500 µL of 70 % alcohol, centrifuged at 17,000× g for 5 min. The supernatant
was then completely discarded and 50 µL of nuclease free H2O was added to the tube. The
quantity and purity of extracted gDNA was estimated by using the spectrophotometer
apparatus NanoDrop, at 260 and 280 nm.

2.6. Enzymatic gDNA Treatment

After confirming the quantity and purity by spectrophotometry (OD 260/280 ≥ 1.8
and OD 260/230 ≥ 1.0), the gDNA was treated with T4-β-glucosyltransferase (T4-BGT)
and subsequently with MspI and HpaII (New England BioLabs, Beverly, MA, USA). For
this, three tubes (A, B and C) containing 400 ng gDNA of each sample were treated with
40 mM UDP glucose and T4-BGT (1 unit) for 1 h at 37 ◦C, followed by enzyme inactivation
for 10 min at 65 ◦C. Next, the samples were digested with H2O (tube A), MspI (tube B) and
HpaII (tube C) for 2 h at 37 ◦C according to the manufacturer’s instructions.

2.7. Methylation-Specific qPCR (MS-qPCR)

MS-qPCR methylation data were derived from 5 independent animals and a technical
duplicate. The pattern of methylation (5-meC) and hydroxymethylation (5-hmeC) of the
promoter regions of Adora1 (island 1 (F: 5′ AAG GAG CTC ACC ATC CTG 3′); (R: 5′ GTG
GGT GGG CAC AGG GTA G 3′) and island 2 (F: 5′ CGA GAC TCC ACT CTG GC 3′);
(R: 5′ CAC CTC GGT ACT GTC CCT GT 3′)) and Adora2A (F: 5′ AGG GTG CGC CCA
TGA GCG GC 3′); (R: 5′ CAA CCC GAG AGT CTG ACC CGC CT 3′) were determined
in qPCR reactions containing 2x SYBR Green I Master (5 µL), 0.4 µM specific primers
(1 µL), 25 ng of treated gDNA (1.5 µL-3 conditions: H2O, MspI and HpaII) and q.s.p of
nuclease-free H2O (2.5 µL). Primer sequences were designed in regulatory regions with CpG
islands within regions of hypersensitivity to DnaseI, regulated by histone modification
markers and with transcription factor binding sites using the Primer3 Input program
(version 0.4.0) [26]. All primers sequences were blasted to confirm chromosomal location
by the in-silico PCR tool (https://genome.ucsc.edu/, accessed on 15 June 2022) and the
secondary structures and annealing temperatures analyzed using the Beacon Designer
program (http://www.premierbiosoft.com/, accessed on 15 June 2022).

2.8. Statistical Analysis

Data are presented as mean ± standard error of mean (SEM). Data were analyzed by
two-way ANOVA followed by the post hoc test of Tukey when F was significant. When
comparing two independent groups, Student’s t-test for independent samples was used.
The accepted level of significance for the tests was p < 0.05. Statistics and all graphs were
performed by using GraphPad Prism 9®.

3. Results
3.1. Caffeine Administration Reduced LPS-Mediated Inflammation in the Mouse Muscle

Figure 1 shows the effect of caffeine and/or LPS administration (i.p.) after twenty-four h
on pro-inflammatory cytokines gene expression in the mouse vastus lateralis muscle (Figure 1A).
LPS exposure significantly increased the expression of the pro-inflammatory cytokine Il1b
(F(1,16) = 6.46, p < 0.01) (Figure 1B). Moreover, the expression of the anti-inflammatory
cytokines Il10 (F(1,16) = 6.73, p < 0.05) (Figure 1E) and Il13 (F(1,16) = 5.36, p < 0.01) (Figure 1F)
were also upregulated, possibly as a physiological compensatory response elicited by LPS-
induced inflammation. Figure 1B shows that the expressions of Il1b and Il6 (Figure 1C)
were downregulated, and Il10 (Figure 1E) upregulated when caffeine was administered in
association with LPS. Furthermore, caffeine per se positively modulated the expression of
Tnfa (F(1,16) = 19.32, p < 0.001) (Figure 1D) and decreased the Il6 levels (F(1,16) = 2.20, p < 0.05)
(Figure 1C). However, no differences were observed in the levels of Il1b (Figure 1B), Il10
(Figure 1E), and Il13 (Figure 1F).

https://genome.ucsc.edu/
http://www.premierbiosoft.com/
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Figure 1. Caffeine administration reduced lipopolysaccharide (LPS)−mediated inflammation in the 
mouse vastus lateralis muscle. Adult Swiss male mice (3−5 months of age; body mass 45−50 g) re-
ceived a single intraperitoneal (i.p) injection of caffeine and/or LPS (See Materials and Methods for 
details). Schematic representation of the experimental protocol used to induced LPS-mediated in-
flammation in mouse, the muscle dissection and RNA/DNA extraction for the PCR analysis (A).The 
transcriptional profile of the cytokines Il1b (B), Il6 (C), Tnfa (D), Il10 (E) and Il13 (F) were evaluated 
by qPCR after the total RNA extraction (TRIzol®/Chloroform/Isopropanol method) from the muscle. 
Gene expression raw data were normalized by the average of the Ct of the 18s, Gapdh and β-actin 
genes and calculated by the method (2−ΔCt). Bars represent the mean ± standard error of mean of five 
independent experiments (animals) performed in technical duplicates. * p < 0.05; ** p < 0.01; and *** 

Figure 1. Caffeine administration reduced lipopolysaccharide (LPS)-mediated inflammation in the
mouse vastus lateralis muscle. Adult Swiss male mice (3–5 months of age; body mass 45–50 g) received
a single intraperitoneal (i.p.) injection of caffeine and/or LPS (See Materials and Methods for details).
Schematic representation of the experimental protocol used to induced LPS-mediated inflammation in
mouse, the muscle dissection and RNA/DNA extraction for the PCR analysis (A). The transcriptional
profile of the cytokines Il1b (B), Il6 (C), Tnfa (D), Il10 (E) and Il13 (F) were evaluated by qPCR after the
total RNA extraction (TRIzol®/Chloroform/Isopropanol method) from the muscle. Gene expression
raw data were normalized by the average of the Ct of the 18s, Gapdh and β-actin genes and calculated
by the method (2−∆Ct). Bars represent the mean ± standard error of mean of five independent
experiments (animals) performed in technical duplicates. * p < 0.05; ** p < 0.01; and *** p < 0.001 vs.
vehicle; ## p < 0.01; ### p < 0.001 vs. to caffeine, and && p < 0.01 and &&& p < 0.001 vs. LPS. Two-way
ANOVA followed by Tukey’s test.
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3.2. The Anti-Inflammatory Effect of Caffeine Was Mediated by Downregulating Nrlp3
Inflammasome Components

Figure 2 shows the effect of the administration of caffeine and/or LPS (i.p.) on NLRP3
inflammasome components gene expression in the mouse vastus lateralis muscle (Figure 2A).
Figure 2 shows that LPS administration elicited the upregulation of the inflammasome
assembly components Asc (F(1,15) = 28.90, p < 0.001) (Figure 2C) and Casp1 (F(1,15) = 58.57,
p < 0.001) (Figure 2D) in the mouse muscle, which was prevented by the administration of
caffeine (Caffeine+LPS experimental group). Although, LPS treatment per se did not alter
the levels of Nlrp3 expression 24 h after the administration, the combination with caffeine
provoked its upregulation (F(1,16) = 34.78, p < 0.001) (Figure 2B) in the mouse muscle. No
differences were induced by caffeine administration alone. Similar results were found in
the absolute gene expression (Figure S1).
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Figure 2. Caffeine administration rescued lipopolysaccharide (LPS)-induced Nrlp3 inflammasome
components upregulation in the vastus lateralis muscle of mice. Adult Swiss male mice (3–5 months of
age; body mass 45–50 g) received a single intraperitoneal (i.p.) injection of caffeine and/or LPS (See
Materials and Methods for details). NLRP3 inflammasome consists of a sensor (Nlrp3), an adaptor
(Asc) and an effector (Caspase-1) (A). The transcriptional profile of the components of the NLRP3
inflammasome Nlrp3 (B), Asc1 (C), and Casp1 (D). Gene expression raw data were normalized by
the average of the Ct of the 18s, Gapdh and β-actin genes and calculated by the method (2−∆Ct).
Bars represent the mean ± standard error of the mean of five independent experiments (animals)
performed in technical duplicates. *** p < 0.001 vs. vehicle; ### p < 0.001 vs. to caffeine, and
&&& p < 0.001 vs. LPS. Two-way ANOVA followed by Tukey’s test.

3.3. Caffeine Administration Enhanced the Expression of Adenosinergic Receptors in the Vastus
Lateralis Muscle Mice

Figure 3 shows the effect of caffeine administration on adenosinergic receptors gene
expression and gene methylation. Caffeine administration per se increased the expression
of Adora1 (F(1,16) = 10.03, p < 0.05) (Figure 3A) and Adora2A (F(1,16) = 16.26, p < 0.001)
(Figure 3B) in the mouse muscle, which was prevented by the administration of LPS alone
and combined with caffeine. LPS per se increased the levels of Adora1 (F(1,16) = 10.03,
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p < 0.01) (Figure 3B). Considering that gene expression can be controlled by epigenetics,
the levels of DNA methylation and demethylation of Adora1 and Adora2A were analyzed.
While global DNA methylation was not modified by caffeine and/or LPS administration
(Figure 3C,D), 5-meC/5-hmeC ratio, used as an index of DNA methylation, was increased
under caffeine and Caffeine+LPS administration (F(1,16) = 0.16, p < 0.05) (Figure 3E). The
higher methylation of the Adora2A promoter might represent a homeostatic mechanism to
control the upregulation of the gene. Figure S2 shows that the absolute gene expression of
the two ARs, Adora1 and Adora2A, were similar in basal conditions.
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Figure 3. Caffeine administration induced the upregulation of genes encoding adenosinergic re-
ceptors in the vastus lateralis muscle of mice. Adult Swiss male mice (3–5 months of age; body
mass 45–50 g) received a single intraperitoneal (i.p.) injection of caffeine and/or LPS (See Materials
and Methods for details). The transcriptional profile of the components of the adenosine receptors
Adora1 (A), and Adora2A (B). DNA methylation and demethylation of Adora1 CpG island 1 (C), Adora1
Cpg island 2 (D), and Adora2A (E). Gene expression raw data were normalized by the average of
the Ct of the 18s, Gapdh and β-actin genes and calculated by the method (2−∆Ct). Bars represent the
mean ± standard error of the mean of five independent experiments (animals) performed in technical
duplicates. * p < 0.05; *** p < 0.001 vs. vehicle; # p < 0.05; ### p < 0.001 vs. to caffeine, and & p < 0.05 vs.
LPS. Two-way ANOVA followed by Tukey’s test.

3.4. Caffeine+LPS Exposure Enhanced the De Novo DNA Methylation in the Vastus Lateralis
Muscle Mice

Figure 4 shows the effects of caffeine and/or LPS administration on the epigenetic
profile in the mouse vastus lateralis muscle. Caffeine+LPS significantly upregulated the ex-
pression of the maintenance methylation gene Dnmt1 (F(1,16) = 101.05, p < 0.001) (Figure 4A),
and de novo methylation gene Dnmt3A (F(1,15) = 1.26, p < 0.001) (Figure 4B), while the expres-
sion of de novo methylation gene Dnmt3B was significantly downregulated (F(1,16) = 0.06,
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p < 0.001) (Figure 4C) in the mouse muscle, when compared with the Vehicle and LPS
groups. Caffeine+LPS treatment also inhibited the expression of the gene encoding the
DNA demethylation enzyme Tet3 (F(1,16) = 133.5, p < 0.001) (Figure 4F), while no effect was
observed on Tet1 and Tet2 when compared with the basal condition (vehicle), or under
inflammation (LPS group). In addition, LPS modulated the expression of Tet genes; while
LPS positively modulated the expression of Tet2 (F(1,16) = 11.84, p < 0.05) (Figure 4E), LPS
administration negatively modulated the expression of Tet3 (F(1,16) = 133.50, p < 0.001),
when compared with the vehicle condition. LPS treatment also compromised the expres-
sion of Dnmt3B, which was partially attenuated by caffeine co-administration (F(1,16) = 0.06,
p < 0.01) (Figure 4C). Caffeine treatment per se increased the levels of Tet2 (Figure 4E), while
it inhibited Tet3 expression (Figure 4F).
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Figure 4. Caffeine plus lipopolysaccharide (LPS) administration induced de novo DNA methylation
in the vastus lateralis muscle of mice. Adult Swiss male mice (3–5 months of age; body mass 45–50 g)
received a single intraperitoneal (i.p.) injection of caffeine and/or LPS (See Materials and Methods
for details). The transcriptional profile of the de novo DNA methylation of Dnmt1 (A), Dnmt2A (B),
and Dnmt3B (C). The status of the DNA demethylation enzymes Tet1 (D), Tet2 (E), and Tet3 (F). Gene
expression raw data were normalized by the average of the Ct of the 18s, Gapdh and β-actin genes
and calculated by the method (2−∆Ct). Bars represent the mean ± standard error of the mean of
five independent experiments (animals) performed in technical duplicates. * p < 0.05; ** p < 0.01;
*** p < 0.001 vs. vehicle; ## p < 0.01; ### p < 0.001 vs. caffeine and && p < 0.01 and &&& p < 0.001 vs.
LPS. Two-way ANOVA followed by Tukey’s test.

3.5. Caffeine Administration Attenuated the Catabolic State Induced by LPS Administration in the
Mouse VASTUS lateralis

Figure 5 shows the effects of caffeine and/or LPS catabolism in the mouse muscle.
LPS treatment significantly elicited the upregulation of the energy status sensor gene Ampk
(F(1,16) = 5.35, p < 0.01) (Figure 5). The coadministration of caffeine significantly reverted
the effect induced by LPS.
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Figure 5. Caffeine administration reverted the catabolic effect induced by the administration of
lipopolysaccharide (LPS) in the vastus lateralis muscle of mice. Adult Swiss male mice (3–5 months of
age; body mass 45–50 g) received a single intraperitoneal (i.p.) injection of caffeine and/or LPS (See
Materials and Methods for details). Ampk gene expression raw data were normalized by the average
of the Ct of the 18s, Gapdh and β-actin genes and calculated by the method (2−∆Ct). Bars represent the
mean ± standard error of the mean of five independent experiments (animals) performed in technical
duplicates. ** p < 0.01 vs. vehicle; ## p < 0.01 vs. caffeine. Two-way ANOVA followed by Tukey’s test.

4. Discussion

Caffeine is a stimulant drug widely known and used due to its psychoactive and
ergogenic effects [27]. The effects of caffeine on physical exercise, endurance performance,
and fatigue stalling are well documented [28–30]. However, the molecular mechanisms
behind these modulations are still under study. To the best of our knowledge, this is the
first study to show that epigenetics is involved in the anti-inflammatory effects of caffeine
on the vastus lateralis muscle of resting mice. Here, we showed that treatment with caffeine
prevented an increase of the gene expression of LPS-induced pro-inflammatory cytokines
Il1b and Il6 and promoted the upregulation of the anti-inflammatory genes Il10 and Il13
in the mouse muscle. The anti-inflammatory state observed in the caffeine experimental
group occurred with decreased gene expression of the NLRP3 inflammasome components,
Asc and Casp1. Indeed, the activation of caspase 1 mediates the cleavage of pro-IL-1β to
generate and release its biologically pro-inflammatory active form, IL-1β [31]. Moreover,
caffeine administration promoted the upregulation of the adenosinergic receptors Adora1
and Adora2A, the signaling of which is known to induce vasodilatation, healing and anti-
inflammation, promotion of tissue blood flow and cellular homeostasis in different cell
types [32]. Thus, in order to maintain homeostasis, the upregulation of Adora2A might have
been responsible of triggering the methylation of its promoter. While DNA methylation
patterns were not altered by caffeine treatment, the DNA methylating status was increased
after Caffeine+LPS administration, suggesting that the observed adaptation to inflammation
induced by caffeine was due to epigenetics.

Caffeine is the most commonly consumed social drug to increase alertness, arousal and
energy [33]. Its consumption has been related to improvement in cognitive performance
and mood in healthy population [34,35], and is the main ergogenic resource used by athletes
to enhance exercise performance, extend time to exhaustion, and to delay fatigue [36].

Moreover, it has been shown that caffeine upregulated dopamine metabolism and
signaling, and increased the synthesis and turnover of noradrenaline, being closely as-
sociated with an improvement in both peripheral and central fatigue [37]. Furthermore,
the ergogenic effects of caffeine consumption have also been shown to be more evident in
fatigued than in well-rested subjects [38,39]. These effects are proposed to be mediated by
the non-selective antagonism of Adora1 and Adora2A [33]. Adora1 are widely expressed
in the cortex, hippocampus, cerebellum, and thalamus [33], and in the adipose tissue,
stomach, kidney, and heart [40]. Due to the capacity for lowering cAMP intracellular
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levels, the activation of Adora1 promotes bradycardia, inhibition of lipolysis, antinocicep-
tion, reduction of sympathetic and parasympathetic activity, neuronal hyperpolarization,
among others [41]. In contrast, Adora2A has a more restricted distribution, being more
expressed in the striatum, nucleus accumbens, and olfactory tubercle [33]. Skeletal muscle,
bladder, and the immune system are the tissues with the highest density of these receptors
in the periphery [42]. The activation of Adora2A triggers neurotransmitter release, anti-
inflammatory immune responses, and vascular smooth muscle cell relaxation, due to the
activation of signaling pathways mediated by increased cAMP intracellular levels [36,41].
Therefore, the typical effects of adenosine, the natural agonist of Adoras and the final
catabolite of ATP, that are associated with tiredness and drowsiness are counterbalanced
by caffeine.

The effective dose of caffeine to antagonize Adoras and to lead to increased exercise
time to fatigue ranges from 3 to 9 mg/kg in humans [28,43,44] and rodents [45,46]. These
doses have been shown to increase performance in endurance, intermittent and resistance
exercises in humans [5–8,47–50].

These effects have been associated with enhanced peripheral energy metabolism,
activation of ryanodine channels for quicker release of calcium, and oxidant system in the
muscle, improving muscle speed and strength (for a review see [16]). However, a large
body of evidence suggests that caffeine can also mediate its ergogenic effects by inducing
an anti-inflammatory status, preventing excessive endogenous catabolism and oxidative
stress [1,16,51]. The anti-inflammatory effect of caffeine is also supported by the fact
that individuals who suffer from cancer, obesity or liver, metabolic or neurodegenerative
disorders and for whom persistent inflammation has been reported, developed fatigue
when the symptoms appeared [52–58]. Moreover, high circulating levels of caffeine have
been associated with delayed onset or reduced risk of dementia in individuals with mild
cognitive impairment [59]. Furthermore, healthy individuals receiving an acute dose of
caffeine showed reduced levels of pro-inflammatory markers and delayed development
of fatigue [54,60]. Indeed, one of the first and most common symptoms associated with
system immune activation is fatigue [61]. In addition, regular coffee consumption has also
been associated with a reduced risk of low-grade inflammation in clinical conditions such
as type 2 diabetes mellitus [62], and metabolic syndrome [63].

Considering that fatigue is characterized by temporary reductions in voluntary mus-
cular force production, and cognitive and motivational changes that induces poor physical
performance [64], we aimed to study whether caffeine could induce anti-inflammatory ef-
fects in the inflamed mouse muscle, and whether these effects are associate with
epigenetic modifications.

It has been suggested that the development of fatigue may activate pathways that pro-
mote the activation of nuclear factor kappa b (NF-κB), which is considered a prototypical
pro-inflammatory signaling pathway (for a review see [65]). NF-κB is known to be activated
by a wide array of mediators, including LPS, inflammatory cytokines such as IL-1b and
TNF-a, and reactive oxygen species, which in turn activates several signal transduction cas-
cades and induces changes in transcription factors that promote a pro-inflammatory status.
NF-κB’s activation induces the synthesis of pro-IL-1β and the activation of caspase 1 that in-
duces the proteolytic maturation of pro-IL-1β [31]. Caspase 1 and ASC are key components
of NLRP3 inflammasome, a multiproteic complex that induces inflammatory responses
and cell death in response to various danger signals [66], including pro-inflammatory
cytokines, reactive species, oxidized compounds that are known to accumulate in the
muscle and blood during exhaustive physical exercise [67–69]. Therefore, the effect of
caffeine on the inflammatory response induced by LPS that we observed in the mouse
muscle suggests that part of its ergogenic effects might be mediated by the inhibition of the
inflammasome assembly.

The anti-inflammatory effect might also be related to the positive effects we observed
on Adoras’ increased expression in the inflamed muscle. Thus, increasing the antagonism
of Adoras will potentiate the anti-inflammatory effect on different immune cell populations,
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that are cells known for their expression of high levels of Adora2A. Accordingly, it has been
proposed that caffeine is an immunosuppressor since it has shown to inhibit proliferation,
activation, and cytokine secretion by lymphocytes [70]. For example, it has been shown
that caffeine reduced TNF-a secretion and enhanced the expression of Adora2A in LPS-
activated human macrophages [70]. In addition, reduced ATP/AMP ratio, which occurs
during the inflammatory response [71], is a key modulator of enhanced AMPK signaling,
which denotes energy deficit. Although, we did not measure the levels of phosphorylated
AMPK, the restoration of basal Ampk gene expression suggests that caffeine also protects
the inflamed muscle by improving energy metabolism as previously proposed [72].

DNA methylation is also known to repress gene expression by blocking the promoter
sites at which activating transcription factors are bound [73]. The reduced global DNA
demethylation could be responsible for the upregulation of Ampk under LPS treatment,
which was rescued when caffeine was also administered. This is also in agreement with
the increased expression of pro-inflammatory cytokines, which was negatively modulated
after the coadministration of caffeine in our study. This effect has also been reported in
other tissues and cells. For example, LPS-challenged human peripheral blood mononuclear
cells exposed to caffeine at different concentrations (10–100 µM) for 24 h, negatively modu-
lated the production of TNF-α [74]. Similarly, mouse splenocyte cultures stimulated with
concanavalin A (a pro-inflammatory agent) showed reduced production of TNF-α, IL-2,
and IFN-γ when co-treated with 3.75 and 10 mM of caffeine for 24 h [75].

The DNA methylation machinery requires DNMT3a and DNMT3b for the de novo [76],
and DNMT1 for the maintenance [77] of DNA methylation. In general, when methylation
occurs in the promoter region of a particular gene, the gene expression is expected to
be repressed. DNA can also be demethylated by the action of ten-eleven translocation
(TET) enzymes TET1, TET2, and TET3 [78], which may result in enhanced gene expression.
Therefore, the balance of these processes may regulate the expression of different genes,
including the ones involved in inflammation and adenosine signaling as shown here.
Indeed, genome-wide meta-analyses identified several genes positively associating caffeine
consumption and DNA methylation [22,79,80]. While previous studies have shown that
caffeine intake is positively correlated with higher DNA methylation [22], we have shown
in this study that caffeine per se can be responsible for the negative modulation of the
expression of inflammatory genes in animals submitted to acute inflammation.

5. Conclusions

This study provides evidence for the anti-inflammatory effect of caffeine in the mouse
muscle. The immune system activated by LPS induced the release of pro-inflammatory
cytokines that was prevented by caffeine administration, an effect also observed in the
reduction of the inflammasome components, possibly by a modulatory effect of caffeine
on epigenetics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12030554/s1, Figure S1: Caffeine administration prevented
lipopolysaccharide (LPS)-induced Nrlp3 inflammasome components upregulation in the vastus
lateralis muscle of mice; Figure S2: Absolute gene expression of adenosine receptors in the mouse
vastus lateralis muscle.
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