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Abstract: Molecular networking drove the selection of material from V. tenuifolia organs that targeted
active flavonoid glycosides. To optimize the extraction process, the flowers of V. tenuifolia were used
to produce an anti-inflammatory extract. The effects of variables—organic solvent ratio; extraction
time; and temperature—were investigated by the response of anti-inflammatory activity. Bioactivities-
guided experiments helped identify fractions with high total phenolic and flavonoid content as well
as antioxidant potential. Furthermore, one new compound (1), 19 first isolated together, and two
known compounds were obtained and identified from the active fraction of this plant. Among them,
compounds (15 and 22) were first reported for nuclear magnetic resonance (NMR) data from this study.
All the isolates were evaluated for their anti-inflammatory capacity throughout, modulating nitric
oxide (NO), interleukin (IL)-1β, and IL-8 production. Active compounds were further investigated for
their regulation and binding affinity to the inducible nitric oxide synthase (iNOS) and cyclooxygenase-
2 (COX-2) proteins by Western blot and in silico approaches, respectively. The findings of this study
suggested that the developed extract method, active fraction, and pure components should be further
investigated as promising candidates for treating inflammation and oxidation.

Keywords: Vicia tenuifolia; molecular networking; extraction and purification; anti-inflammatory;
molecular docking

1. Introduction

Inflammatory bowel disease (IBD) is a term that refers to both ulcerative colitis and
Crohn’s disease. Its pathogenesis corresponds to dysregulation of the immune system
involving gut flora [1]. Upon activation of the immune system, proteins may induce
cytokines and chemokines derived from cells involved in immune responses. An increase
in their levels may affect either the synthesis or secretion of reactive oxygen species,
prostaglandins, and nitric oxide in inflammatory cascades. These cytokines are beneficial in
maintaining the integrity of the intestinal mucosa through their interactions with harmful
bacteria [2]. On the other hand, excess cytokine production exacerbates the inflammatory
process of IBD [3]. There is no cure for IBD. However, cytokine-based therapies may offer
greater specificity to prevent the development of IBD symptoms, thus reducing disease
progression and negative effects [4].

Legumes contain high levels of protein, carbohydrates, vitamins, and minerals. They
have a low glycemic index, are low in fat, and are cholesterol-free. Thus, the consumption
of legumes may have many health benefits due to their high energy content. In particular,
legumes may support the consumption of high calories with a low blood glucose level
to improve glycemic, cholesterol, and lipid control [5,6]. Among legumes, Vicia tenuifolia
is a health-promoting food with pharmacological potential due to its content of miner-
als, proteins, and nutrients such as amino acids, fatty acids, lectins, and albumins [7,8].
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Previous reports indicated that the polyphenol content of V. tenuifolia may be associated
with antioxidant activity [9] and antiproliferative effects [7]. Our previous report [10]
revealed the anticancer capacity of V. tenuifolia. However, there is no study to investigate
the anti-inflammatory effect of fractions and constituents from this plant growth in Korea.

Isolation and purification of chemicals from natural sources consumes much time
and effort by researchers, as well as experimental costs, when we re-isolate the known
structures of molecules already described. In this study, we performed an effective method
using dereplication for preliminary structural assessment to save the time and cost of
experiments by evaluating and inferring the structures of molecules predicted in the extract
through online databases of natural product compounds [11]. The above method may
detect the known compounds from the extracts by separating the molecular constituents,
subsequently achieving their spectral signatures, and then searching for or predicting
candidates having identical properties from online library data (Global Natural Product
Social Molecular Networking, GNPS) [12] or using cheminformatics programs [13,14]. By
this way, many novel compounds and their derivatives [12,13,15] were rapidly obtained,
with a higher priority for the discovery of natural products.

Continuing our efforts to find active constituents from natural sources [16,17] for the
treatment of inflammatory diseases, we found that the total extract of V. tenuifolia had a
significantly potent anti-inflammatory effect once extraction methods were optimized by
using a non-toxic organic product. Thus, this study supported an effective technique for
extracting the bioactive components of V. tenuifolia for industrial applications. Herein, we
establish an extraction method by optimizing variables such as solvent ratio, extraction
time, and temperature. In contrast, the assessment of total phenolic and flavonoid contents
and antioxidant and anti-inflammatory activities aimed to identify the bioactive fraction
and separate the active components. A total of 22 compounds were isolated and identified
from this plant. These isolates were also evaluated for their anti-inflammatory activities
through both in vitro and in silico studies, as well as Western blotting assays.

2. Materials and Methods
2.1. Plant Materials

The flowers of V. tenuifolia were collected from the herbal garden at Sunchon National
University (Suncheon, Korea) in May 2021 and identified by Professor Mina Lee (College
of Pharmacy, Sunchon National University). A voucher specimen (SCNUP 32) was stored
at the Pharmacognosy Laboratory, College of Pharmacy, Sunchon National University,
Suncheon-si, Jeonnam-do, Korea.

2.2. Selection of Organs for Extraction

The dried herbs, flowers, and fruits of V. tenuifolia were extracted using the same
method according to our previous report [17], and then concentrated in vacuo to obtain
total extracts, respectively. These extracts were further dissolved in methanol and filtered
through polytetrafluoroethylene membrane filters before LC-MS/MS analysis.

2.3. LC-MS/MS Conditions and Molecular Network Experiments

Three total extracts were analyzed using our previous method [18] with a slight
modification. Particularly, mobile phase elution of a gradient solvent system consisted
of channel A (pure water containing 0.1% formic acid) and channel B (acetonitrile, 0.1%
formic acid) as follows: 5–15% (B) for 0–4 min, 4–35% (B) for 4–12 min, 35–45% (B) for
12–17 min, 45–100% (B) for 17–23 min and held for three minutes, and 100–5% (B) for 1 min
before re-equilibrium with 5% (B).

2.4. Selective Optimization Using Organic Solvent, Time, and Temperature for Extraction

The dried flowers (538.4 g) of V. tenuifolia were ground into powder and stored in
the refrigerator for further experiments. Firstly, this powder (2 g) was extracted with the
same volume of 20 mL of different solvent systems, including methanol in distilled water
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(DW) at 0%, 25%, 50%, 75%, and 100%, and ethanol in DW at 25%, 50%, 75%, and 100%, by
sonification for 90 min to obtain nine total extracts, respectively. To optimize the time and
temperature extraction, the same amount of dried material was extracted with 100% EtOH
during different periods of 30, 60, 90, and 120 min or different temperatures of 25, 30, 40,
and 50 ◦C effort total extracts, respectively.

2.5. Antioxidant Assay

The DPPH and ABTS radical scavenging activities were performed by following our
previous method [19].

2.6. Total Phenolic Content (TPC) Assay

Our previous publication [17] revealed that flavonoid glycosides were active com-
pounds targeting anti-inflammatory activities. Thus, the total phenolic content was deter-
mined using a colorimetric method [20] with a slight modification. At first, total extract
and gallic acid were dissolved in 1 mL of DMSO to obtain stock solutions. Then, they
were diluted 10 times with deionized water. Then, 100 µL of each of the resulting mixtures
were mixed with deionized water (1 mL). Folin–Ciocalteu’s phenol reagent (100 µL) was
added to each mixture at 0 min. Then, a Na2CO3 solution (7%, 1 mL) was added at 6 min.
At 90 min, the absorbance was measured at 750 nm using a spectrophotometer. The total
phenolic content is presented as “mg gallic acid equivalents (GAE)/g extract”. Gallic
acid was used as a standard material in ranges of 16.125 to 1000 (µg/mL) to build the
calibration curves.

2.7. Total Flavonoid Content (TFC) Assay

Colorimetric analysis was assayed by the aluminum chloride colorimetric method [21].
In particular, 2 mL of methanol was added to a 0.5 mL sample (catechin, extract, or fraction).
Then, 0.15 mL of NaNO2 (1.0 M) was added and vortex mixed. Approximately 3 min
later, 0.15 mL of AlCl3 (10% w/v) was added, followed by vortex mixing and 3 min of
equilibration time. Then, 1.0 mL of NaOH (1 M) was added. The final volume was adjusted
to 5.0 mL by using methanol. All the solutions were vortex mixed after the last step, and the
tubes remained in the dark for 40 min before measuring their absorbance at 415 nm by using
a spectrophotometer. Catechin was used as a standard in ranges of 6.25 to 1000 (µg/mL) to
build the calibration curves.

2.8. Extraction and Separation of Compounds (1–22)

According to the screening results of the NO assay, the optimal extract method was
employed for the extraction of dried flowers from V. tenuifolia. In detail, this material
was extracted with 100% EtOH by sonification for 90 min at 25 ◦C and then concentrated
at vacuo pressure to yield 91.2 g of total extract. Subsequently, this total extract was
successfully partitioned with increasing solvent polarity with n-hexane (Hex), methylene
chloride (MC), and n-butanol (Bu) solvents to obtain Hex (19.8 g), MC (0.7 g), Bu (28.8 g)
fractions, and water residue (DW, 41.9 g), respectively. These fractions were also evaluated
for their inhibition of NO production in LPS-stimulated RAW264.7 cells. Reasonably, the
Bu fraction was selected as the target fraction for isolation based on its bioactivities, TPC,
and TFC contents. The active Bu fraction was subjected to a Biotage MPLC [eluting with a
gradient solvent system of methanol in water (containing 0.1% formic acid) from 30% to
100% for 85 min; flow rate of 20 mL/min; UV detection at 210 and 254 nm; Column Biotage®

Sfär C18 120 g, Biotage, Uppsala, Sweden) to obtain eight fractions (Bu1–Bu8). Subfraction
Bu2 (1.2 g) was isolated to HPLC using Triart C18 column (10 × 250 mm, 5 µm, YMC,
Tokyo, Japan), UV detection at wavelength 254 nm, flow rate 3.0 mL/min, eluting with a
mobile phase of water (containing 0.1% formic acid, A) and acetonitrile (B) as a gradient
solvent system [0 min (2% B)–55 min (18% B)–60 min (20% B)–72 min (100% B)] to obtain
compounds 1 (tR 22 min), 3 (tR 18 min), 4 (tR 17 min), 6 (tR 13 min), 8 (tR 10 min), and 9 (tR
8 min). Fraction Bu5 was subjected to a prep HPLC using a Triat C18 column (10 × 250 mm,
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5 µm), UV detection at wavelength 265 nm, flow rate 3.0 mL/min, eluting with a gradient
solvent system from 0 min (19% B) to 85 min (100% B) to obtain compounds 2 (tR 38 min),
10 (tR 17 min), 15 (tR 27 min), and further purified using the same conditions by exchange
the isocratic elution of 17% B for 65 min, compound 13 (tR 49 min) and 20 (tR 52 min).
Fraction Bu6 was subjected to a prep HPLC using a Triat C18 column (10 × 250 mm, 5 µm),
UV detection at wavelength 265 nm, flow rate 3.0 mL/min, eluting with a gradient solvent
system from 0 min (19% B) to 85 min (100% B) to obtain compounds 5 (tR 14 min), 7 (tR
12 min), 11 (tR 69 min), 12 (tR 43min), 14 (tR 53min), 17 (tR 37min), 18 (tR 56min), 19 (tR
61min), and further purified using the same conditions by exchanging the isocratic elution
of 17% B for 80 min effort compounds 16 (tR 43min), 21 (tR 65min), and 22 (tR 50 min).

Spectroscopic Data of Compounds 1, 15, and 22

Vicia D (1): Yellowish syrup; [α]26
D − 35.6 (c 0.025, MeOH); UV (MeOH) λmax (log

ε) 202 (3.95), 221 (3.85), 266 (3.80) nm; 1H NMR (400 MHz, DMSO-d6) and 13C NMR
(100 MHz, DMSO-d6) data see Table 1; HR-ESI-MS m/z 657.1632 [M-H]− (calc. for
C29H37O16, 657.1667), 511.1080 [M-H-Rha]−, 311.0755 [M-3H-Rha-Glc-2OH]−, 162.0394
[Glc]−, 147.2635 [Rha]−.

Table 1. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectroscopic data for compounds 1, 15, and
22, acquired in DMSO-d6 [δH, multiplicity (J in Hz)].

Position 1 15 22

1 - 107.5 - - - -
2 - 157.0 - 158.7 - 164.6
3 6.50 (1H, d, 2.3) 101.9 - 134.9 6.84 (1H, s) 103.6
4 - 157.3 - 179.9 - 179.8
5 6.21 (1H, d, 2.3) 104.0 - 150.4 - 160.8
6 - 150.3 - 129.0 6.44 (1H, brs) 97.8

7 3.45 (1H, d, 17.0)
3.62 (1H, d, 17.0) 29.0 6.24 (1H, s) 158.1 - 163.0

8 - 169.3 - 100.0 6.79 (1H, brs) 94.5
9 - - - 158.4 - 156.9

10 - - - 104.8 - 105.1
1′ - 117.9 - 122.9 - 122.8
2′ 7.11 (1H, d, 1.9) 105.2 8.09 (1H, d, 8.9) 132.3 7.46 (1H, d, 2.4) 112.9
3′ - 148.0 6.90 (1H, d, 8.9) 116.3 - 146.6
4′ - 140.3 - 161.7 - 151.3
5′ - 145.5 6.90 (1H, d, 8.9) 116.3 7.10 (1H, d, 8.6) 111.9

6′ 7.16 (1H, d, 1.9) 111.1 8.09 (1H, d, 8.9) 132.3 7.57 (1H, dd, 2.4,
8.6) 118.6

7′ - 163.8 - - - -
OCH3 3.78 (3H, s) 55.9 3.87 (3H, s) 61.9 3.87 (3H, s) 55.5

Glucosyl 2-O-Glc 3-O-Glc 7-O-Glc

1′′ 4.66 (1H, d, 7.3) 103.4 5.45 (1H, d, 7.6) 100.9 5.18 (1H, d, 7.3) 99.1
2′′ 3.20 (m) 73.2 3.74 (1H, m) 82.6 3.53 (1H, m) 76.5
3′′ 3.29 (m) 77.0 3.59 ((1H, d, 8.9) 77.9 3.50 (1H, m) 76.8
4′′ 3.15 (m) 69.3 3.35 (overlap) 71.3 3.20 (1H, m) 69.5
5′′ 3.22 (m) 76.3 3.18 (1H, m) 78.3 3.43 (1H, m) 75.4

6′′ 3.44 (m)
3.67 (m) 60.6

3.47 (1H, dd, 5.7,
11.9)

3.70 (1H, m)
62.6 3.45 (1H, m)

3.73 (1H, m) 60.3

Glycosyl 8-O-Rha 2′′-O-Glc 2′′-O-Api

1′′′ 5.65 (1H, d, 1.8) 94.0 4.74 (1H, d, 7.4) 104.8 5.35 (1H, d, 1.5) 108.5
2′′′ 3.49 (m) 69.4 3.36 (overlap) 75.6 3.74 (1H, d, 1.5) 75.8
3′′′ 3.23 (m) 70.1 3.35 (overlap) 77.9 - 78.9

4′′′ 3.15 (m) 71.4 3.33 (overlap) 71.1 3.66 (1H, d, 9.4)
3.91 (1H, d, 9.4) 73.8

5′′′ 3.29 (m) 70.7 3.28 (overlap) 78.2 3.31 (overlap) 64.0

6′′′ 0.96 (1H, d, 6.2) 17.7 3.30 3.35 (overlap)
3.65 (1H, m) 62.4 - -

Assignments were confirmed by COSY, HSQC, HMBC, and NOESY spectra.
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Approximately 6-Methoxykaempferol 3-O-sophoroside (15): Yellowish syrup; [α]26
D +15.8

(c 0.05, MeOH); UV (MeOH) λmax (log ε) 214 (3.75), 253 (1.50), 348 (4.10) nm; 1H NMR
(400 MHz, DMSO-d6) and 13C NMR (100 MHz, DMSO-d6) data see Table 1; HR-ESI-
MS m/z 641.1710 [M+H]+ (calc. for C28H32O17H, 641.1718), 317.1349 [M+H-Glc-Glc]+,
179.0633 [Glc]+.

Diosmetin 7-O-(2′′-apiosyl)-glucoside (22): Yellowish syrup; [α]26
D − 55.6 (c, MeOH);

UV (MeOH) λmax (log ε) 214 (4.05), 254 (4.00), 344 (3.95) nm; 1H NMR (400 MHz, DMSO-
d6) and 13C NMR (100 MHz, DMSO-d6) data see Table 1; HR-ESI-MS m/z 595.1650
[M+H]+ (calc. for C27H30O15H, 595.1663), 301.1406 [M+H-Glc-Api]+, 179.0633 [Glc]+,
149.0231 [Api]+.

2.9. Anti-Inflammatory Assay
2.9.1. Cell Culture and Cell Viability

Cell culture and viability were discussed in our previous report [22]. Briefly, human
colon epithelial (HT-29) and mouse macrophage (RAW264.7) cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM), followed by adding 10% FBS, streptomycin
sulfate (100 µg/mL), and penicillin (100 IU/mL). Then, they were incubated in a humid-
ified atmosphere of 5% CO2 at 37 ◦C. Then, they were seeded into 96-well plates. After
incubation for 24 h, they were treated with samples (total extract, fractions, or isolates) and
stimulated with LPS, respectively. The cell viability was assessed using an MTT assay. The
absorbance of the formazan crystals was carried out at 570 nm in a microplate reader (Bio
Tek Instruments, Winooski, VT, USA).

2.9.2. Measurement of NO Production

No assay was followed in our previous study [16]. The level of NO production was
determined by measuring the amount of secreted nitrite from the cell culture supernatants.
In detail, RAW264.7 cells (1 × 105 cells/well) were pretreated with samples (total extract,
fractions, 100 µg/mL, and isolates 1–22, 100 µM). After 1 h, RAW264.7 cells were stimulated
with LPS (1 µg/mL) and continuously incubated for 16 h. Then, the collected medium
was supplemented by the same volume of Griess reagent (w/v, 1%), sulfanilamide (v/v,
5%), phosphoric acid (w/v, 0.1%), and N-(1-naphtyl) ethylenediamine at room temperature.
After 10 min, the absorption was determined at 550 nm. The NO production was calculated
from treated samples and controls.

2.9.3. Measurement of IL-8 Production

The IL-8 production assay [19] was used on HT-29 cells (3 × 105 cells/well) in
96-well plates using an ELISA kit (BD OptEIATM, San Jose, CA, USA) following the
manufacturer’s instructions.

2.9.4. IL-1β Assay

The assay was to evaluate the expression of IL-1β in RAW264.7 cells under LPS
stimulation. RAW264.7 cells were incubated with compounds (1–22, 100 µM) for 2 h. Then,
RAW264.7 cells were stimulated with LPS (1 µg/mL) and continuously incubated for
20 h. The level of IL-1β in the culture medium was measured by an ELISA kit (Invitrogen,
cat. no. KHC0011; Thermo Fisher Scientific, Inc., Waltham, MA, USA) following the
manufacturer’s instructions.

2.10. In Silico Study

Molecular docking studies were performed using MGL 1.5.6 tools. The structures of
proteins [iNOS (PDB ID: 3E7G), COX-2 (PDB ID: 5IKQ), and IL-8 (PDB ID: 5D14)] were
obtained from the RCSB protein data bank (https://www.rcsb.org; accessed on 5 June
2023). They were cleaned, and they added hydrogen atoms as well as Kollman charges. The
structure of Vicia D (1) was prepared and minimized by the Avogadro package via the force
field method (MMFF94). Other structures (8, 11, 13, 15, 16, 20, and 22) were downloaded

https://www.rcsb.org
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from PubChem (https://pubchem.ncbi.nlm.nih.gov (accessed on 6 June 2023)). Then,
these obtained data were converted into the pdbqt file format. The ligand optimization
was assessed by adding Gasteiger charges. Then, the Lamarckian genetic algorithm with
default parameters was applied for a total of 100 runs. The binding affinity calculations
were performed using AutoDock 4.2 [17]. The visualization was expressed using the Pymol
and Discovery Studio 2021 tool programs.

2.11. Western Blotting Assay

The reduction levels of iNOS and COX-2 protein expression on RAW264.7 cells by the
strong active compounds were tested following our previous study [17].

2.12. Statistical Analysis

Data were expressed as the mean ± SD (n = 3) from at least three independent experi-
ments. Graphprism version 8.0.1 software (Graphpad Software, La Jolla, CA, USA) was
applied for statistical analysis. The obtained values were evaluated by one-way ANOVA
analysis, followed by Tukey’s multiple comparison test. Differences were considered to be
significant at * p < 0.05 and ** p < 0.01, compared to controls.

3. Results
3.1. Selection of V. tenuifolia Organ Based on Molecular Networking Guidance

Our previous study [11] revealed that 6′′-acetylapiin was extracted from other Vicia
species, showing significant anti-inflammatory capacity. Thus, we targeted flavonoid
glycoside derivatives to find the active components in different organs of V. tenuifolia. Total
extracts of various parts (flowers, fruits, and herbs) of the plant were analyzed by using
an untargeted LC-MS/MS workflow process of molecular networking. The dereplication
of LC-MS/MS spectral data were conducted using feature-based molecular networking
(FBMN) [12], allowing the detection and relative quantification of LC-MS/MS spectral
ions via chromatographic extracts. As shown in Figure 1, MN-II showed the presence of
the above compound as a highlighted node. The pie chart suggested that this flavonoid
glycoside contained a relative abundance from flower extracts higher than that of herbal
and fruit extracts. Therefore, the flowers were selected as material for further studies.
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Figure 1. Molecular networking analysis of total extracts of different organs [flower (green), fruits
(yellow), and herbs (orchid)] of V. tenuifolia. A detailed view of the MN-II cluster (round frame) with
a node (tangerine frame) of m/z 606.1585 pointed to compound potential anti-inflammatory activity
by in silico prediction.

3.2. Optimization of Extraction Method

The dried flowers of V. tenuifolia were extracted with different solvent systems of
organic in water, including 25%, 50%, 75%, and 100% (MeOH); 25%, 50%, 75%, and 100%
(EtOH); and 100% water effort total extracts, respectively. These extracts were then screened

https://pubchem.ncbi.nlm.nih.gov
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for their anti-inflammatory capacity by modulating NO production in LPS-stimulated
RAW264.7 cells at different concentrations of 10 and 50 µg/mL. As shown in Figure 2,
the total extract of 100% EtOH exhibited a potential anti-inflammatory effect (inhibition
rate of 42.67%) without a cytotoxic effect on RAW264.7 cells at a tested concentration
of 50 µg/mL (Figure 2A,B). Thus, the optimal solvent of 100% EtOH was selected for
further experiments.
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Figure 2. Cytotoxic and NO production of different total extracts of V. tenuifolia in LPS stimulated
RAW264.7 cells by extracting with different solvent ratios (A,B), extraction times (C,D), and tempera-
tures (E,F), respectively. Each experiment was performed in triplicate. The data are represented as
the mean ± SD. * p < 0.05, ** p < 0.01 vs. LPS-treated group.

To optimize the extraction time, the same amount of dried materials was extracted
for different periods of 30, 60, 90, and 120 min at room temperature (25 ◦C) by using
100% EtOH. As a result, the residue at 90 min showed the strongest inhibition against
NO production at 100 µg/mL (Figure 2D). Thus, an extraction time of 90 min was set up
for further experiments. To investigate the temperature effect, the same dried plant was
extracted at different temperatures, including room temperature (25 ◦C), 30 ◦C, 40 ◦C, and
50 ◦C, for 90 min, using a solvent system of 100% EtOH. The obtained result exhibited that
the residue at room temperature (25 ◦C) exhibited the best inhibitory effect against NO
production. Whereas, all the tested samples did not cause any effect on the viability of
RAW264.7 cells (Figure 2E,F). Finally, the optimal extract conditions were established by
extraction at room temperature (25 ◦C) for 90 min using 100% EtOH organic solvent.

3.3. Anti-Inflammatory Capacity of Active Fraction

The dried material was extracted with 100% EtOH at room temperature for 90 min to
obtain the total extract. This concentrated extract was then successfully partitioned using
increasing polarity solvents to obtain Hex, MC, Bu, and DW fractions, respectively.

These fractions were also evaluated for anti-inflammatory effects by their inhibition of
NO, IL-1β, and IL-8 production in LPS-stimulated RAW264.7 and HT-29 cell lines, respec-
tively. In the NO assay, Hex, MC, and Bu fractions displayed good anti-inflammatory effects
against NO production (Figure 3B). In the IL-1β assay, all fractions showed a significant
reduction in IL-1β production induced by LPS in RAW264.7 cells (Figure 3C). However,
both Hex and MC fractions showed some toxic effects on the viability of RAW264.7 cells.
A similar result was also observed in the IL-8 assay (Figure 3D,E). Furthermore, the to-
tal extract and fractions were also screened for their inhibition against IL-6 and TNF-α
production in LPS-stimulated RAW264.7 cells. However, these samples did not exhibit a
significant effect.
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Figure 3. Cytotoxic (A,D), NO (B), IL-1β (C), and IL-8 production (E) inhibitory effects of total
extract or fractions of V. tenuifolia on RAW264.7 and HT-29 cells, respectively. Each experiment
was performed in triplicate. The data are represented as the mean ± SD. * p < 0.05, ** p < 0.01 vs.
LPS-treated group.

3.4. Antioxidant Effect, Total Phenolic (TPC), and Total Flavonoids (TFC) Contents of Extract
and Fractions

The total phenolic content varies among the fractions from 0.26 to 2.82 GAE mg/g
total extract. In contrast, the Bu (2.82 ± 0.02 GAE mg/g) fraction showed the highest TPC,
followed by MC (2.52 ± 0.02 GAE mg/g), Hex (1.64 ± 0.01 GAE mg/g), and the lowest
DW (0.26 ± 0.01 GAE mg/g) fractions (Figure 4). In the TFC assay, the Bu fraction also
contained the highest TFC value of 3.99 ± 0.00 CE mg/g, followed by the Hex, MC, and
DW fractions. In addition, the total extract and fractions from V. tenuifolia also exhibited
antioxidant capacity through their scavenging activity against ABTS and DPPH radicals.
Among them, the Bu fraction displayed the strongest scavenging activity for both radicals
at a concentration of 100 µg/mL.
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After consideration of all the above results, the Bu fraction was selected for separation
to find the active constituents.

3.5. Structural Elucidation of 22 Constituents

The separation of the ethanolic total extract resulted in the isolation of 22 compounds,
as depicted in Figure 5. Compound 1 showed a primary deprotonated peak at m/z 657.1632
(calc. for C29H36O16, 657.1667). The mass fragmentation pathway of 1 produced the ion
peaks at [M-H]− at m/z 511.1060 and m/z 311.0755, which correspond to a reduction of
[M-H-rham]− and [M-3H-rham-glc-2OH]−, respectively. On the other hand, the MS2 ion
products showed peaks at m/z 147.2835 and 162.8927 (Figure S1, Supplementary Materials),
revealing the presence of rhamnosyl and glucosyl moieties [23]. In addition, the chemical
shift values of glycosidic signals were obtained from their spectroscopic data and compared
to those of identical signals from reported values [24,25], respectively. The 1H NMR
spectrum of 1 revealed the presence of 2,4,6 trihydroxy-aromatic units at δH 6.50 (1H, d,
J = 2.3 Hz, H-3), 6.21 (1H, d, J = 2.3 Hz, H-5), 3,4-dihydroxy-5-methoxybenzoyl [δH 7.16 (1H,
d, J = 1.9 Hz, H-2′), 7.11 (1H, d, J = 1.9 Hz, H-6′), 3.78 (3H, 5-OCH3)] units, two anomeric
protons at δH 5.65 (1H, d, J = 1.8 Hz, H-1′′′) and δH 4.66 (1H, d, J = 7.3 Hz, H-1′′), which
are suggested to respectively correspond to α-and β-glycosidic units, along with a geminal
coupling constant in methylene group at δH 3.45 (1H, d, J = 17.0 Hz, H2-7) and 3.62 (1H, d,
J = 17.0 Hz, H2-7), and a secondary methyl at δH 0.96 (3H, d, J = 6.2 Hz, H3-6′′′) together
with other carbonic signals (Table 1). The 13C NMR spectrum of 1 revealed 27 signals,
including two carboxylic at δC 169.3 (C-8) and 163.8 (C-7’), as well as 12 aromatic and two
glycosidic groups that were classified by Dept and HMQC spectra. The spectroscopic data
(Figures S1–S8, Supplementary Materials), for 1 consisted of those reported compounds [25]
with some differences from the functional group of the second phenyl (B) ring and sugar
unit attachment. Briefly, the HMBC spectrum showed the correlations of H-2′ (δH 7.11)
to C-4′ (δC 140.3)/C-6′ (δC 111.1)/C-7′ (δC 163.8) and those of H-6′ (δH 7.16) to C-2′ (δC
105.2)/C-4′ (δC 140.3)/C-7′ (δC 163.8), establishing the B-ring partial structure. The HMBC
cross-peaks of H-1′′ (δH 4.66)/H-3 (δH 6.50) to C-2 (δC 157.0) suggested the Glc-linkage
at the C-2 position of the A-ring (Figure 6). Moreover, the HMBC correlations of H-7
(δH 3.45/3.62)/H-1′′′ (δH 5.65) to C-8 (δC 169.3) were confirmed to correspond to the
rhamnosyl unit linked to the C-8 position (Figure 6). Furthermore, the 5-OCH3 and C-2-
O-glc attachments were supported by NOESY correlations between H-6′ (δH 7.16) and H3
(δH 3.78), and those between H-3 (δH 6.50) and H-1′′ (δH 4.66) (Figure 6). With the above
information, the structure of compound 1 was successfully established and named Vicia D.

Compound 15 displayed characteristic signals corresponding to flavonoid glycosides.
In detail, its 1H NMR spectrum showed two magnetically equivalent spin systems at δH
8.09 (2H, d, J = 8.9 Hz, H-2′/6′) and 6.90 (2H, d, J = 8.9 Hz, H-3′/5′), an aromatic proton
at δH 6.24 (s, H-8), a methoxy group at δH 3.87 (6-OCH3), and two anomeric protons of
β-glycosidic units at δH 5.45 (1H, d, J = 7.6 Hz, H-1′′), 4.74 (1H, d, J = 7.4 Hz, H-1′′′). 13C
NMR spectrum of 15 expressed 28 carbons, including 16 signals belonging to aglycon
6-methoxykaempferol and 12 carbonic signals (Table 1). An HMBC cross-peak of H-1′′′

(δH 4.77) to C-2′′ (δC 82.6) confirmed the second glucose linkage to the C-2′′ of the first
glucose. This observation explained the downfield shift of C-2′′ (δC 82.6). In addition, the
HMBC correlation of H-1′′ (δH 5.48) to C-3 (δC 134.9) revealed that two glucoses connected
to 6-methoxykaempferol aglycone [26] through the C-3 position (Table 1). Signals of the
glycosidic units were also assigned and identified by analysis of their chemical shift values,
signal correlations from NMR spectra (Figures S10–S15, Supplementary Materials), and
comparison to those reported in the literature [27], respectively. Further assignments and
correlations of 15 were depicted in Figure 6. With the above evidence, the structure of 15
was established as 6-methoxykaempferol 3-O-sophoroside [28].
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Figure 5. Chemical structures of isolated compounds (1–22) from V. tenuifolia.

Compound 22 displayed an ABX spin system [δH 7.57 (1H, dd, J = 2.4, 8.6 Hz, H-6′),
7.46 (1H, d, J = 2.4 Hz, H-2′), 7.10 (1H, d, J = 8.6 Hz, H-5′)]; three olefinic protons at δH 6.84
(1H, s, H-3), 6.79 (1H, s, H-8), 6.44 (1H, s, H-6); a methoxy signal at δH 3.87 (4′-OCH3). Two
anomeric protons were also observed at δH 5.35 (1H, d, J = 1.5 Hz, H-1′′′) and 5.18 (1H, d,
J = 7.3 Hz, H-1′′), which respectively correspond to α- and β-glycosidic units. The 13C NMR
spectrum of 22 displayed 27 carbons, including 16 signals characterized for a diosmetin
backbone [29] and 11 signals assigned for two sugar units. The HMBC correlations of
protons at δH 6.79 (1H, s, H-8)/6.44 (1H, s, H-6)/5.18 (1H, d, J = 7.3 Hz, H-1′′) to C-7 (δC
163.0) indicated C-7-O-glc linkage. In addition, HMBC cross-peaks of H-1′′′ (δH 5.35) to
C-2′′ (δC 76.5) together with the COSY correlation between H-1′′ (δH 5.18) and H-2′′ (δH
3.53) confirmed the Glc-2′′-O-Api attachment. On the other hand, the HMBC cross-peak
of H3-4′ (δH 3.87) to C-4′ (δC 151.3) as well as the NOESY correlation between a singlet
methoxy at δH 3.87 and a doublet at δH 7.10 (1H, d, J = 8.6 Hz, H-5′) confirmed the 4′-OCH3
connection. Cross-peaks of H-1′′ (δH 5.18) to H-6 (δH 6.44)/H-8 (δH 6.79) were observed
in the NOESY spectrum (Figure 6). This information confirmed the 7-glc attachment. The
observation of chemical shift values of glycosidic signals agreed with those reported in
the literature [30]. Further identification of mass fragments and spectroscopic data were
provided (Figures S16–S22, Supplementary Materials), Based on the above evidence, the
structure of 22 was established as diosmetin 7-O-(2′’-apiosyl)-glucoside.

There were also other compounds that were isolated and identified as ferulic acid
(2) [31], trans-p-coumaroyl-D-glucopyranose (3) [32], cis-p-coumaroyl-D-glucopyranose
(4) [33], L-tryptophan (5), and D-tryptophan (6) [34], D-phenylalanine (7), L-phenylalanine
(8), and adenosine (9) [35], Afzelin (10) [36], rhamnocitrin 3-O-glucoside (11) [37], kaempferol
7-O-glucoside (12) [38], kaempferol 3-O-(2′′-O-β-D-glucopyranosyl)-α-L-rhamnopyranoside
(13) [39], kaempferol 3-O-rutinoside (14) [40], quercetin-3-O-rhamnoside (16) [41], rutin
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(17) [42], rhamnetin 3-O-rutinoside (18) [43], 6′′-acetylapiin (19) [11], graveobioside A
(20) [44], and diosmetin 7-O-rutinoside (21) [45] by analysis of their spectroscopic data
compared to those reported from literature (Figure 4).
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and 53.5%, respectively. By contrast, no isolates show a significant cytotoxic effect on
RAW264.7 cells (Figure S23, Supplementary Materials).

Moreover, all isolates were also evaluated for their inhibition against IL-1β production
induced by LPS on the RAW264.7 cell line. As a result, compounds 21 and 22 strongly
inhibited IL-1β production at tested conditions by approximately 77% inhibition rates.
Compounds 5 and 13 also exhibited moderate inhibition. Meanwhile, other compounds
showed a weak to inactive effect against IL-1β production. No isolates showed any signifi-
cant effect on the viability of RAW264.7 cells (Figure 7B).

The above compounds were also examined for their anti-inflammatory effect against
IL-8 production in LPS-stimulated HT-29 cells. As shown in the figure, compounds (8, 11, 16,
and 22) strongly inhibited IL-8 production at concentrations of 100 µM. Other compounds
showed moderate to weak inhibition at the same tested conditions (Figure 7C). No com-
pounds caused any effect on the viability of HT-29 cells (Figure S23, Supplementary Materials).
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Figure 7. Inhibitory effects on NO (A), IL-1β (B), and IL-8 (C) production of isolated compounds
(1–22) at 100 µM. Each experiment was performed in triplicate. * p < 0.05, ** p < 0.01.

3.7. Molecular Docking Analysis

To verify the anti-inflammatory properties of active constituents, in silico approaches
were conducted to discover their inhibitory potential against IL-8 production, iNOS, and
COX-2 expression levels by evaluating their binding affinities through binding energies
and interactions of ligand-protein residues in the complexes. In the IL-8 model, compounds
(8, 11, 16, and 22) docked into the IL-8 protein, showing low binding energies ranging from
−7.50 to −4.92 kcal/mol (Figure S24, Supplementary Materials). These binding affinities
might verify their ability to reduce the level of expression of IL-8 production induced by LPS-
stimulated RAW264.7 cells. In the COX-2 model, all the docked compounds showed binding
energies ranging from −4.02 to −5.86 kcal/mol (Figure 8). In contrast, these compounds
also exhibited docking scores ranging from−8.34 to−6.92 kcal/mol when they were docked
to the iNOS protein. Thus, these compounds were prepared for Western blotting assays.
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3.8. Western Blot Analysis

Compounds (1, 11, 13, 15, 20, and 22) suppressed the expression of iNOS and COX-2
enzymatic proteins in LPS-induced RAW264.7 cells by Western blotting assay. Among
them, compounds (1, 11, 20, and 22) significantly reduced the expression level of both iNOS
and COX-2 (Figure 9). Whereas compound 13 showed a weak inhibitory effect. Compound
15 displayed a moderate inhibition of the iNOS expression level and a weak inhibition of
the COX-2 expression level.
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4. Discussion

The combination of an analysis workflow-based molecular network and biological
guidance led to the approach of the research object targeting the anti-inflammatory capacity
of molecules. in which a high-mass MS/MS-based molecular network has been allowed
to identify natural products rapidly. Furthermore, it has been developed and utilized in
various fields such as forensic analysis, clinical diagnosis, and the annotation of putative
drug metabolites [46,47]. Notably, molecular networks are beneficial for visualization,
clustering, comparison, and quantitation, which enable users to recognize the metabolite
and inter-sample differences as well as the therapeutic lead discovery of target molecules.
We investigated the chemicals from the total extract of different organs of V. tenuifolia by
analyzing their precursor and parent mass and MS/MS spectral properties using FBMN
and NAP through the GNPS web platform. As a result, the flowers of V. tenuifolia were
selected for research due to their high content of 6′ ′-acetylapiin compared to other organs
of this plant. Subsequently, anti-inflammatory activity guided the establishment of an
optimal extraction using variables of organic solvent ratio of MeOH and EtOH in water
ranging from 0 to 100%, extraction temperature, and time. The final extraction condition
was obtained using 100% EtOH at 25 ◦C for 90 min by sonification based on the inhibitory
effect against NO production in LPS-stimulated RAW264.7 cells. Then, the optimal extract
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condition was employed to extract the dried flowers of V. tenuifolia, which were successfully
fractionated into fractions. Above, bioassay-guided extraction and fractionation supported
industrial-scale preparation chromatography.

These fractions were evaluated for TPC, TFC, antioxidant, and anti-inflammatory
assays. Among them, the Bu fraction showed the highest content of phenolic and flavonoid
compounds and the most potent scavenging activity on DPPH and ABTS radicals. As a
result, this active fraction was chosen for the isolation and identification of four phenolics,
five alkaloids, and 13 flavonoid glycosides from the flowers of V. tenuifolia. Among isolates,
vicia D (1) is a new compound, 6-methoxykaempferol 3-O-sophoroside (15) and diosmetin
7-O-(2′′-apiosyl)-glucoside (22) were first reported NMR data from this study, and fer-
ulic acid (2), trans-p-coumaroyl-D-glucopyranose (3), cis-p-coumaroyl-D-glucopyranose
(4), L-tryptophan (5) and D-tryptophan (6), D-phenylalanine (7), L-phenylalanine (8),
adenosine (9), afzelin (10), rhamnocitrin 3-O-glucoside (11), kaempferol 7-O-glucoside (12),
kaempferol 3-O-(2′′-O-β-D-glucopyranosyl)-α-L-rhamnopyranoside (13) [30], kaempferol
3-O-rutinoside (14), quercetin-3-O-rhamnoside (16), rutin (17), rhamnetin 3-O-rutinoside
(18), 6′′-acetylapiin (19), graveobioside A (20), and diosmetin 7-O-rutinoside (21), were
isolated for the first time from this plant. All the isolated compounds exhibited some
significant inhibition against inflammatory cytokines and mediators. Briefly, isolates (1–22)
showed an inhibitory effect against NO production without a cytotoxic effect at a tested
concentration of 100 µM. Whereas, compounds 5, 13, 21, and 22 displayed a moderate
to strong inhibitory effect against IL-1β production at the tested conditions. A structural
activity relationship was concluded based on the IL-1β assay. Compounds (10–14) be-
longed to kaemferol glycosides. However, compound 13 showed the strongest inhibition
against IL-1β production compared to others. This observation suggested that the rham-
nosidation at C-3 might be favorable to inhibiting IL-1β production. Compounds (20–22)
shared the same luteolin glycosides. However, compounds (21 and 22) have an OCH3
attached B-ring, showing a strong anti-inflammatory effect. Thus, this functional group
is important for inhibiting IL-1β production. In contrast, compounds (8, 11, 16, and 22)
significantly inhibited IL-8 production at concentrations of 100 µM. A structural activity
relationship was concluded based on the IL-8 assay. Compounds (10–14) possess the same
kaemferol backbone. However, compound 11 showed the strongest inhibition against
IL-8 production compared to others. Thus, the glucosidation at C-3 might be favorable
to inhibiting IL-8 production. Compounds (16–18) have the same quercetin backbone.
Compound 16 contained 3-rhamnoside, showing a better inhibitory effect than those of 17
and 18. Therefore, rhamnosidation at C-3 may promote an inhibitory effect against IL-8
production. Compounds (20–22) shared the same luteolin glycosides. However, compound
22 has 3′-OCH3, showing the best anti-inflammatory effect. Thus, this functional group
may be a key promoter of inhibitory effects against IL-8 production. Interestingly, this is
the first time that compounds (4, 13, 15, 20, and 22) and (3, 4, 11, 13, 15, 18, 20, and 22) have
been reported to have inhibitory effects against NO production induced in LPS-stimulated
RAW264.7 and LPS-induced IL-8 production in HT-29 cells, respectively. The bioactive con-
stituents (1–22) were obtained by optimizing the extraction process and chromatographic
method with significant inhibition, thus highlighting their own fraction. This finding also
clarifies the anti-inflammatory capacity of the total extract of this plant.

Furthermore, the active compounds (1, 11, 13, 15, 20, and 22) were evaluated for
their action mode by Western blotting assay. Among them, compounds (1, 11, 20, and 22)
showed a significant reduction in the expression of iNOS and COX-2. Therefore, it was
hypothesized that these inhibitors would have an impact on NO generation by blocking
the catalyst enzymes COX-2 and iNOS during the rate-limiting steps producing PGE2
and NO, respectively. Besides the protective effect on the integrity of the epithelial in-
testinal wall and suppressing colitis symptoms, prostaglandin E2 (PGE2) exacerbates the
inflammatory progression of IBD by switching the cytokines and chemokines profile via
different pathways [48]. On the other hand, iNOS and COX-2 enzymes are the key cat-
alysts for producing NO and PGE2. Conversely, PGE2 also upregulates the expression
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of COX-2. These feedback loops may amplify the activity of both COX-2 and PGE2 dur-
ing inflammatory progression [49]. Thus, iNOS and COX-2 inhibitors are considered a
theory to prevent inflammatory diseases through downregulating PGE2. These active
compounds also exhibited low binding energy when they were docked into the iNOS and
COX-2 proteins to form the complexes in silico. On the other hand, these compounds
also interacted with amino acids in the binding pocket of proteins through hydrogen or
hydrophobic interactions, respectively. In addition, in silico studies revealed that com-
pounds (8, 11, 16, and 22) exhibited good binding affinity when they were docked into
the IL-8 protein with low docked scores. These compounds occurred in the IL-8 protein,
surrounded by hydrogen and hydrophobic interactions. In silico results confirmed the
biological activity of active compounds against inflammatory cytokines and mediators,
suggesting that these active components should be examined for further in vivo studies
in order to verify their activity capacity for the purpose of developing products for the
treatment of inflammatory diseases.

5. Conclusions

This study is the first comprehensive research on the preparation of bioactive fractions
and purified compounds from V. tenuifolia targeting anti-inflammatory activity. This is the
first report on optimization of the extraction process of active components from V. tenuifolia,
which includes the solvent ratio of the usual organic solvent as well as extraction time and
temperature. Bioactive components were found to correspond to the anti-inflammatory
potential of the plant. These active compounds were also shown to downregulate the enzy-
matic proteins (iNOS and COX-2) during the production of the inflammatory mediators,
and they also inhibited cytokine (IL-8 and IL-1β) production in inflammatory progression.
Our in vitro and docking studies revealed significant potential for the anti-inflammatory
capacity of active components by accessing their experimental and in silico models. The
above optimal extract and fractionation results also demonstrated that the active fraction
had antioxidant capability and a good concentration of phenolic and flavonoid compo-
nents. Therefore, the existence of the bioactive components indicates that this legume may
support advancements in industrial food areas for human health against inflammation.
This was the first primary study reporting on the anti-inflammatory properties of fractions
and compounds, which is a newly reported benefit of V. tenuifolia. The knowledge gained
from this study provides new insights into the great potential of this legume in functional
product development due to its medicinal value. This is also proof that such legumes are
not only rich in various nutrients, but it also broadens the knowledge of their bioactivities.
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