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Abstract: Niacinamide (or nicotinamide) is a small-molecule hydrosoluble vitamin with essential
metabolic functions in mammalian cells. Niacinamide has become a key functional ingredient in
diverse skincare products and cosmetics. This vitamin plays a pivotal role in NAD+ synthesis, notably
contributing to redox reactions and energy production in cutaneous cells. Via diversified biochemical
mechanisms, niacinamide is also known to influence human DNA repair and cellular stress responses.
Based on decades of safe use in cosmetics, niacinamide recently gained widespread popularity as
an active ingredient which aligns with the “Kligman standards” in skincare. From a therapeutic
standpoint, the intrinsic properties of niacinamide may be applied to managing acne vulgaris,
melasma, and psoriasis. From a cosmeceutical standpoint, niacinamide has been widely leveraged as a
multipurpose antiaging ingredient. Therein, it was shown to significantly reduce cutaneous oxidative
stress, inflammation, and pigmentation. Overall, through multimodal mechanisms, niacinamide
may be considered to partially prevent and/or reverse several biophysical changes associated with
skin aging. The present narrative review provides multifactorial insights into the mechanisms of
niacinamide’s therapeutic and cosmeceutical functions. The ingredient’s evolving role in skincare
was critically appraised, with a strong focus on the biochemical mechanisms at play. Finally, novel
indications and potential applications of niacinamide in dermal fillers and alternative injectable
formulations were prospectively explored.

Keywords: antioxidants; cellular respiration; cosmeceuticals; dermal fillers; formulation; functional
ingredients; hyaluronic acid; niacinamide; skincare; viscoelastics

1. Introduction

Niacinamide, a member of the vitamin B3 family, has emerged as an important
and polyvalent functional ingredient in topical skincare products and cosmetics. Con-
sisting of two hydrosoluble molecular forms (i.e., niacin or nicotinic acid and niaci-
namide or nicotinamide; Figure 1), this vitamin is essential to various mammalian cell
physiological processes.
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hydrosoluble molecular forms (i.e., niacin or nicotinic acid and niacinamide or nicotinamide; 
Figure 1), this vitamin is essential to various mammalian cell physiological processes. 

 
Figure 1. Molecular structures of niacin and niacinamide in the vitamin B3 complex and their mo-
lecular constitutive role in NAD+ synthesis. NAD+, nicotinamide adenine dinucleotide. 

However, these chemical entities are not stored in the human body and their main 
dietary forms consist of niacinamide, niacin, and tryptophan from foodstuff sources (Fig-
ure 1) [1]. Of note, the assimilated niacin is bio-converted into niacinamide in vivo [1]. 
Importantly, while niacin and niacinamide share identical vitamin functions, their phar-
macological and toxicological profiles diverge [2]. Therein, the adverse effects of high en-
teral doses of niacin include cutaneous flushing (i.e., especially of the face and neck) and 
pruritus. In contrast, niacinamide does not possess cutaneous vasodilating properties, be-
ing extremely well-tolerated by the skin (e.g., no irritation, redness, burn, sting, or itch 
issues) [2,3]. Thus, niacinamide is a preferred formulation option for cosmetic applica-
tions. 

From a cellular functional standpoint, niacinamide is crucial for the synthesis of nic-
otinamide adenine dinucleotide (NAD+; Figure 1), which is then used to synthesize 
NADH and NADPH coenzymes. The latter are essential coenzymes in redox reactions 
and energy generation processes within mammalian cells [4–6]. Fundamentally, a docu-
mented involvement in DNA repair and stress responses may explain niacinamide’s role 
in cellular longevity and health improvement. Such effects are notably deployed through 
the attenuation of oxidative stress and inflammatory responses [6–8]. Furthermore, niacin-
amide has been clinically systemically used to treat several diseases such as pellagra, 
schizophrenia, and type I diabetes [9,10]. It has also demonstrated intrinsic anti-inflam-
matory potential in osteoarthritis [11].  

Labeled as a “GRAS” (i.e., generally recognized as safe) food additive and nutrient, 
niacinamide was granted approval for cosmetic use in Japan and the European Union [12]. 
Therein, due to its potent antioxidant activity, niacinamide has been widely used as an 
excipient in various types of dermo-cosmetic formulations [13]. Of note, clinical tests on 
niacinamide found no stinging with concentrations up to 10%, no irritation up to 5%, and 
no irritancy during a 21-day test at 5% concentration [12]. Over the last decade, niacina-
mide has become highly popular as an active ingredient, since it very closely meets the 
“Kligman standards” of cosmeceutical formulation analysis [14,15]. Namely, the follow-
ing elements have been shown:  

Figure 1. Molecular structures of niacin and niacinamide in the vitamin B3 complex and their
molecular constitutive role in NAD+ synthesis. NAD+, nicotinamide adenine dinucleotide.

However, these chemical entities are not stored in the human body and their main dietary
forms consist of niacinamide, niacin, and tryptophan from foodstuff sources (Figure 1) [1]. Of
note, the assimilated niacin is bio-converted into niacinamide in vivo [1]. Importantly, while
niacin and niacinamide share identical vitamin functions, their pharmacological and toxico-
logical profiles diverge [2]. Therein, the adverse effects of high enteral doses of niacin include
cutaneous flushing (i.e., especially of the face and neck) and pruritus. In contrast, niacinamide
does not possess cutaneous vasodilating properties, being extremely well-tolerated by the skin
(e.g., no irritation, redness, burn, sting, or itch issues) [2,3]. Thus, niacinamide is a preferred
formulation option for cosmetic applications.

From a cellular functional standpoint, niacinamide is crucial for the synthesis of nicoti-
namide adenine dinucleotide (NAD+; Figure 1), which is then used to synthesize NADH
and NADPH coenzymes. The latter are essential coenzymes in redox reactions and en-
ergy generation processes within mammalian cells [4–6]. Fundamentally, a documented
involvement in DNA repair and stress responses may explain niacinamide’s role in cellular
longevity and health improvement. Such effects are notably deployed through the attenua-
tion of oxidative stress and inflammatory responses [6–8]. Furthermore, niacinamide has
been clinically systemically used to treat several diseases such as pellagra, schizophrenia,
and type I diabetes [9,10]. It has also demonstrated intrinsic anti-inflammatory potential in
osteoarthritis [11].

Labeled as a “GRAS” (i.e., generally recognized as safe) food additive and nutrient,
niacinamide was granted approval for cosmetic use in Japan and the European Union [12].
Therein, due to its potent antioxidant activity, niacinamide has been widely used as an
excipient in various types of dermo-cosmetic formulations [13]. Of note, clinical tests on
niacinamide found no stinging with concentrations up to 10%, no irritation up to 5%, and
no irritancy during a 21-day test at 5% concentration [12]. Over the last decade, niacinamide
has become highly popular as an active ingredient, since it very closely meets the “Kligman
standards” of cosmeceutical formulation analysis [14,15]. Namely, the following elements
have been shown:

(i) Niacinamide effectively penetrates the stratum corneum, reaching its intended target
in sufficient amounts;

(ii) It exerts its effects via specific biochemical mechanisms of action within cutaneous
cells and on human skin;
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(iii) Peer-reviewed, double-blinded, placebo-controlled clinical trials with statistically
significant results substantiating the efficacy claims have been published.

In terms of topical applications, niacinamide has been widely employed for the treat-
ment of acne vulgaris, melasma, atopic dermatitis, rosacea, and psoriasis, while its oral
administration for non-melanoma skin cancer prevention has also been studied [10,16].
Notably, niacinamide’s popularity is also attributed to its recognized skin-antiaging prop-
erties. Importantly, cutaneous aging involves causative factor-dependent morphological
changes, encompassing epidermal thinning (i.e., especially in chronologically aged skin),
wrinkles, laxity, dermal elastosis (i.e., especially in photoaging), telangiectasia, and aberrant
pigmentation [17]. The underlying mechanisms are complex and may involve cellular
senescence, DNA damage, oxidative stress, inflammation, and genetic mutations, which
can be mitigated or reversed by niacinamide. Indeed, this vitamin was proven to be effec-
tive in clinical studies for fine lines/wrinkles, hyperpigmentation spots, yellowing, rough
texture, and red blotchiness [3]. Moreover, this specific functional ingredient is one of the
most widely used antioxidants in anti-aging topical formulations, with an increase in usage
of about 10% between 2013 and 2018 [18]. Specifically, several comprehensive reviews,
such as those by Boo et al. (2021), Poljsak and Milisav (2018), or Levin and Momin (2010),
provide detailed summaries of niacinamide’s efficacy in clinical studies [6,7,14].

Generally, the present narrative review delves into the less-known mechanisms of
action of niacinamide in cosmetic formulations. Specifically, it explores the effects of this
polyvalent ingredient on NAD+-dependent enzymes and its functions as an antioxidant, its
anti-inflammatory and antimicrobial activities, with a special focus on its role in cutaneous
anti-aging. Additionally, critical discussion points and perspective elements were set
forth herein around current formulation challenges and potential novel applications of
niacinamide (e.g., in dermal fillers and cutaneous bio-stimulants). Overall, the present
work provides concise and specific insights into niacinamide’s important and evolving role
in functional skincare and cutaneous appearance optimization.

2. Mechanistic Insights into the Functions and Activities of Niacinamide
2.1. NAD+-Dependent Enzyme Regulation by Niacinamide

Being essential to NAD+ formation (Figure 1), niacinamide influences the activity
of several enzymes that are critical to basic cellular activity, such as sirtuins and poly-
(ADP-ribose) polymerases (PARP). Notably, sirtuins are a family of proteins, dependent
on and stimulated by NAD+ formation, but which are inhibited by an excess of free
niacinamide [19,20]. Thus, exogeneous administration of niacinamide is considered to
inhibit SIRT-1 activity [21,22]. Similarly, niacinamide-mediated inhibition of SIRT-2 was
correlated with decreases in melanoma tumoral cell growth [23].

Importantly, these metabolic proteins are involved in several skin-relevant cellular
functions and processes, including aging, UV damage responses, oxidative stress, inflamma-
tion, and wound repair [22,24,25]. Research has also revealed the role of sirtuins in a variety
of skin diseases, including melanoma and non-melanoma skin cancers [23,24,26]. Thus,
sirtuins are important as conserved regulators of cutaneous aging and longevity [19,27].
However, given that the sirtuin family consists of various proteins, which have been iden-
tified in different cell types and tissues, the ultimate and net effects of their inhibition or
stimulation may vary [24].

Generally, since sirtuins and PARP are both part of basic cellular biochemical pathways,
their functions and effects are intertwined. For example, by inhibiting SIRT-1, niacinamide
increases PARP-1 activity, which deploys an anti-inflammatory action [28]. Therefore,
niacinamide can also be classified as a PARP-1 agonist [28]. In addition to decreasing the
expression level of pro-inflammatory cytokines, the PARP-1 enzyme plays an important
role in DNA repair [29]. As mentioned before, PARP activity depends on NAD+ availability,
meaning that DNA repair will also be modulated by niacinamide bioavailability [5,30,31].
Notably, in vitro studies demonstrated that niacinamide could effectively reverse DNA
damage, decrease keratinocyte death rates, and prevent cellular senescence [30,32].
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Furthermore, PARP-1 plays a fundamental role in DNA repair and in the regulation of
genes involved in inflammation, apoptosis, and cellular differentiation [29]. Interestingly,
both PARP-1 hyperactivation and inhibition can be associated with cell death. Therein,
niacinamide contributes to maintaining an equilibrium in enzymatic activity and in cell
homeostasis through PARP-1 regulation [29,33]. Several additional in vitro studies with
keratinocyte models showed that niacinamide effectively promoted and reversed DNA
damage, even when these were caused by extrinsic factors (e.g., UV exposure) [34–36].

Overall, the competitive interplay for NAD+ between PARP and sirtuins allows to
conjointly set forth multiple theories of cutaneous aging [19]. Thus, a better understanding
of their respective actions could help to further unravel aging mechanisms. Notwithstand-
ing, as a coenzyme in the glycolysis pathway, niacinamide is an essential component to
ensure efficient DNA repair by avoiding cellular senescence, apoptosis, and carcinogenesis,
through its roles in PARP and sirtuin regulation [24,25].

2.2. Antioxidant Activity of Niacinamide

Oxidative stress (i.e., generation of reactive oxygen species [ROS] and free radicals)
occurs naturally due to internal metabolic dysfunctions and is intensified by external
damaging factors (e.g., UV radiation, pollution) [37,38]. This physiological cellular state
impairs DNA repair, increases pro-inflammatory cytokine synthesis, and stimulates matrix
metallopeptidase (MMP) production, contributing to skin aging and skin diseases [29,37].
Therefore, oxidative stress is usually considered the core driving factor in cutaneous
aging [17].

As reviewed by Nakai et al., oxidative stress results from an increase in ROS and other
oxidants, exceeding the cellular antioxidant capacity [39]. Therein, ROS and free radicals
are produced within a complex pathway, which involves several enzymes such as NADPH
oxidase and nitric oxide synthase (NOS) [39]. Specifically, these two enzymes play an
important role in the intracellular oxidation pathway, as they intervene in the initial steps
of the ROS cascade (Figure 2) [39].

As mentioned before, niacinamide is a precursor for NAD+, which is essential to pro-
duce NADP+ [6,30]. Niacinamide has been associated with lower NADP/NADPH ratios,
thus its administration might decrease NADPH oxidase expression and activity. Thereby,
niacinamide contributes to decreased superoxide radical concentrations, as demonstrated
before in keratinocyte cultures [30,34]. This specific function is supported by another
in vitro study with keratinocytes, in which nicotinamide administration restored NAD
reserves, thereby completely reversing ROS accumulation [30]. Importantly, niacinamide
was also shown to increase superoxide dismutase levels, which also contributes to the
decrease in superoxide radical concentrations [40].

At the same time, niacinamide is well-known to interfere with nitric oxide synthase
(NOS) activity, but the exact mechanism remains unclear. Some in vitro studies with
macrophages have shown that niacinamide indirectly inhibits NOS activity by allowing
nitric oxide (NO) to inhibit its own formation [41,42]. In other words, NO will activate
a cascade that ultimately inhibits NOS [41]. Other evidence suggests that niacinamide
can also inhibit NOS mRNA production in cells, thereby decreasing the enzyme’s activity
and NO formation [43]. Furthermore, decreased NOS activity also derives from NAD’s
inhibition of PARP, which leads to a reduction in NOS expression and consequently to a
decrease in NO synthesis [44].

Besides regulating NADPH oxidase and NOS action, niacinamide was also demon-
strated to increase the enzymatic activity of catalase, transforming hydrogen peroxide
back into oxygen and water. As a result, decreased formation of hydroxyl radicals may
be observed, as well as inhibition of dermal collagen fibril disruption by MMPs [45,46].
Conjointly with enzymatic regulation attributes, niacinamide presents intrinsic scavenger
activity, being able to directly neutralize ROS and free radicals. Therein, high scavenger
activity was recorded for hydroxyl radicals and low scavenger activity was recorded for
NO [31,47]. Generally, by normalizing the activity of antioxidant enzymes and by neutral-
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izing oxidants, niacinamide was shown in vivo and ex vivo to ultimately prevent protein
oxidation and lipid peroxidation (Figure 2) [5,13,34,45,48,49]. Thus, it was shown that
the antioxidant functions of niacinamide safeguard cellular membrane integrity against
oxidation [13]. Finally, this functional ingredient is widely used as an antioxidant in anti-
aging topical formulations, which are mainly composed of 4% to 5% niacinamide [6,18].
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effect of niacinamide on these enzymes is illustrated in red. Conversely, the stimulatory effect of
niacinamide is represented by green arrows.

2.3. Anti-Inflammatory Activity of Niacinamide

Niacinamide is well-known for its anti-inflammatory properties. It is widely used
to combat inflammatory acne, with proven clinical effectiveness [50–52]. Furthermore,
niacinamide was shown to reduce inflammation in a metabolic syndrome model, in inflam-
matory bowel disease, osteoarthritis, Alzheimer’s disease, and in models of nociceptive and
inflammatory pain [11,49,53–55]. Of note, inflammatory responses are complex phenomena,
also exacerbated by oxidative stress, which increases inflammatory cytokine release [37]. As
previously discussed, niacinamide presents a strong antioxidant activity, which ultimately
contributes to decreased inflammatory responses.

In addition to reducing ROS levels, niacinamide is also known to inhibit the secretion
of pro-inflammatory cytokines through PARP regulation. Macrophage treatment with niaci-
namide resulted in inhibited SIRT, which consequently increased PARP-1 activity [28].
Importantly, PARP-1 activation is linked to COX-2 inhibition and to increased B-cell
lymphoma-6 protein (BCL6) expression, with anti-inflammatory effects [28]. Furthermore,
COX-2 inhibition by niacinamide was also associated with a decrease in PGE2 secretion by
activated macrophages, since it is a major COX-2-dependent prostaglandin [56].
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Notwithstanding, niacinamide is also known to directly inhibit PARP, leading to
a reduction in NOS expression and consequently to a decrease in NO synthesis [44,57].
Additionally, PARP inhibition by niacinamide also decreases PGE2 secretion and myeloper-
oxidase activity, which also contributes to its anti-inflammatory action [57]. Even though
the effect of niacinamide on PARP receptors requires further studies to be completely
understood, it clearly leads to an overarching and multimodal anti-inflammatory action.

From a more specific mechanistic viewpoint, niacinamide inhibits the production of
pro-inflammatory cytokines (e.g., TNF-α, PGE2, IL-1, IL-6, and IL-8) by controlling NFκB-
mediated transcription and increases the production of anti-inflammatory mediators (e.g.,
IL-10 and MRC-1) [28,32,54,56,58,59]. The decrease in IL-1aRA/IL-1a inflammatory skin
biomarkers was also observed in a clinical study involving 40 panelists after two weeks of
administration of a 5% niacinamide emulsion [60–62]. Notably, the decrease in cytokine
responses upon niacinamide administration is considered to be dose-dependent [56,58].
Additionally, niacinamide also contributes to the suppression of the expression of MHC
class II, through the reduction in interferon-γ levels. This was achieved both with in vitro
fibroblast cultures and in vivo, with a downregulation of the immune response [40,60].
Moreover, by decreasing the levels of inflammatory mediators, niacinamide prevents ker-
atinocyte senescence, consequently decreasing the production of senescence-associated
secretory phenotype (SASP) [32]. Of note, senescent cells remain metabolically active and
secrete several molecules, including pro-inflammatory cytokines, chemokines, and pro-
teases [61]. A study by Bierman et al. showed that by preventing keratinocyte senescence,
niacinamide also decreases the production of cytokines associated with SASP [62].

Niacinamide’s anti-inflammatory action also stabilizes mast cells (i.e., in the dermis),
suppressing mast cell degranulation and anaphylactic responses in mice [63,64]. Mast cell
activation would lead to fibroblast senescence, wherein niacinamide operates on various
components of the inflammatory cascade. Thereby, the vitamin actively participates in
the restoration of a cellular equilibrium [65]. Furthermore, since pruritus inflammatory
symptoms are thought to be related to the release of histamine from cutaneous mast cells,
niacinamide is considered to possess an anti-pruritic activity [66]. Moreover, the symptoms
are also potentiated by dry skin, which is attenuated by the stimulation of ceramide
synthesis by niacinamide. Therefore, the described combination of mast cell stabilization
and preservation of the skin barrier places niacinamide as a key soothing molecule during
pruritic outbreaks.

2.4. Antimicrobial Activity of Niacinamide

Niacinamide was shown to possess antibacterial, antifungal, and antiviral activity,
with the literature focusing mainly on its antibacterial activity. The latter was demonstrated
in murine Gram-positive and Gram-negative sepsis models, as well as against Escherichia
coli and Staphylococcus aureus [67,68]. Niacinamide’s antimicrobial activity was also shown
to effectively prevent biofilm formation in several clinical studies [69–71]. Moreover, niaci-
namide’s antibacterial activity strategically places it as an interesting active ingredient for
acne treatment, as sustained by several clinical studies [72–74]. Therein, its topical applica-
tion for acne vulgaris treatment displayed efficacy levels similar to those of clindamycin
(i.e., in terms of anti-inflammatory activity). Furthermore, it is underlined that niacinamide
possesses antimicrobial activity against Cutibacterium acnes [71]. Interestingly, niacinamide
was more efficacious in oily skin types than in non-oily skin, with concentrations ranging
from 2% to 4% in topical applications [50,72–74].

Since niacinamide’s direct action does not affect bacterial survival, its antimicrobial
activity is mainly attributed to the stimulation of both neutrophil action and antimicrobial
peptide (AMP) synthesis [68,75]. Additionally, niacinamide is known to activate multiple
cellular pathways, which can collectively lead to protection from pathogens, along with in-
nate immunity activation [68]. For example, niacinamide inhibits the nuclear PARP enzyme,
thereby preventing the integration of proviral DNA during viral infection [63]. Furthermore,
a synergistic antifungal activity of niacinamide and amphotericin B was demonstrated
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against Candida albicans and Cryptococcus neoformans, even though the mechanism remains
unclear [69].

Importantly, AMPs are part of the skin’s innate immune system, having broad antibac-
terial activity against Gram-positive and negative bacteria and also showing antifungal
and antiviral activity [67,76,77]. In fact, an increase in AMPs upon niacinamide applica-
tion has been shown to protect gut epithelial cells from infection [78]. Especially, AMPs
are also present in human skin tissues, including psoriasin (S100A7), RNase, lysozyme,
cathelidicins, and defensins [7,76,77]. It has been specifically demonstrated that sebocytes,
keratinocytes, and neutrophils can produce defensins, while the last two can also synthesize
cathelidicins [76].

Studies demonstrated that keratinocytes treated with a niacinamide solution were
successfully stimulated to synthesize AMPs in vitro, providing protection against skin
infection [68]. Furthermore, there is evidence that niacinamide can potentiate the activity
of cathelidicin LL-37 [77,79]. Specifically, due to niacinamide’s amphiphilic nature, the
molecule modulates the physical properties of the bacterial membrane and increases LL-37
bioavailability [77,79]. Of note, several studies correlated niacinamide’s antimicrobial
activity with increased neutrophil activity, demonstrating that niacinamide selectively
enhanced the neutrophil killing of Staphylococcus aureus and Citrobacter rodentium [75,77,80].

Of note, the antimicrobial activity of neutrophils consists of the combination of three
different actions: phagocytosis, NETosys, and degranulation [81]. During the degranulation
process, several molecules are released, including AMPs. An in vitro study with lung
epithelial cells infected with Streptococcus pneumoniae revealed that niacinamide blocks
the SIRT-1 receptor, reducing defensin expression but increasing IL-8 levels [21]. This
interleukin recruits neutrophils, which can then release AMPs, meaning that niacinamide
might have a neutrophil-dependent effect on the increase in AMPs [78,82]. However,
additional studies are needed to understand its influence on AMP release by alternative
skin cell types.

2.5. Sebum Production Reduction Activity of Niacinamide

Acne is a multifactorial disease, characterized by different pathways, which include
excess sebum production, abnormal keratinization, bacterial colonization by Cutibac-
terium acnes, and inflammation [4,83,84]. As described above, niacinamide possesses
anti-inflammatory and antibacterial activities, thereby contributing to the dual manage-
ment of important acne symptoms.

As concerns sebaceous activity, several clinical studies report that preparations with 2%
to 5% niacinamide can effectively reduce sebum production following topical application,
notably in Asian and Caucasian populations [74,85–88]. However, the mechanism which
leads to the sebostatic action of niacinamide remains unknown. Interestingly, niacin
(Figure 1), which is part of the vitamin B3 family, was shown to activate HCA2 receptors,
which are known to regulate sebum production in human sebocytes. Specifically, niacin’s
interaction with HCA2 receptors induces a transient Ca2+ elevation, which culminates with
lower sebum production [89].

Importantly, niacin’s carboxylic moiety is essential to bind to the receptor, whereas
niacinamide contains an amide group instead. Therefore, niacinamide does not bind to the
HCA2 receptor, yet one can argue that niacinamide can be bio-converted to niacin, thereby
indirectly decreasing sebum production [6,90]. While clinical studies widely support the
benefits of niacinamide for sebum reduction, more studies are needed to understand the
underlying mechanisms.

2.6. Skin Anti-Yellowing Activity of Niacinamide

Glycation is a spontaneous oxidative cross-linking reaction that occurs between pro-
teins (e.g., dermal collagens) and endogenous sugars. This reaction leads to the formation
of advanced glycation end products (AGEs), which affect different structures and physio-
logical functions of the skin [91,92]. Glycation is part of the physiological skin aging process,
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notably leading to the formation of a yellow end-product. Specifically, this compound
accumulates in the cutaneous extracellular matrix due to its long biological half-life, leading
to a yellowing appearance [3,91,93].

Importantly, oxidative radicals are the most important contributors to the glycation
process. Thus, antioxidants play an essential role in preventing AGE formation [91]. Due to
its potent antioxidant activity, niacinamide dampens this natural phenomenon, decreasing
sallowness (i.e., yellowing) of the skin, with proven efficacy in clinical studies enrolling
Caucasian females [3,93,94].

2.7. Skin Lightening Activity of Niacinamide

Lightening agents can improve hyperpigmentation disorders caused by hyperme-
lanosis (i.e., increased deposition of melanin), such as melasma, axillary hyperpigmentation,
lentigo senilis, and post-inflammatory hyperpigmentation [95,96]. Furthermore, uneven
skin pigmentation is one of the major changes characterizing extrinsic aging, which in-
creases the demand for compounds with depigmenting activity [97].

Importantly, niacinamide has been successfully applied in clinical studies for the
treatment of hyperpigmentation. In one study, a 4% niacinamide formulation successfully
decreased axillary hyperpigmentation [98]. Therein, the treatment induced a significant
colorimetric improvement, which was associated with its antimelanogenic action [98]. Of
note, in axillary hyperpigmentation, inflammation is also considered to be an associated
condition. Niacinamide effectively decreased epidermal melanin (i.e., decreased melanin
expression) and inflammatory marker levels (i.e., decrease in the number of mononuclear
and phagocytic cell infiltrates) [98]. Furthermore, niacinamide’s role in decreasing skin
pigmentation and inflammatory infiltrates was also correlated with its effectiveness in the
treatment of melasma [96]. Therein, in comparison with hydroquinone (i.e., traditionally
used for melasma treatment), niacinamide’s clinical efficacy took longer to be demon-
strated, but the latter caused fewer adverse effects, making it a safer option for longer
treatments [96].

As concerns niacinamide’s antimelanogenic action, studies have revealed that the
molecule does not affect tyrosinase catalytic activity or melanogenesis in melanocytes,
meaning that niacinamide does not seem to influence the synthesis of melanin [99,100].
Notwithstanding, visible pigmentation in mammals requires the transfer of melanin
granules from melanocytes to keratinocytes. In this case, there is strong evidence that
niacinamide blocks the transfer of melanosomes from melanocytes to surrounding ker-
atinocytes [95,99,101]. Thus, niacinamide has an antimelanogenic action, which is dose-
dependent and reversible, yet the exact inhibitory mechanism of melanosome transfer
requires further exploration [101].

Of note, keratinocytes produce melanotrophic factors that affect melanocyte prolifera-
tion, dendricity, and melanin synthesis [102]. Therein, niacinamide reduces the secretion
level of IL-6 by keratinocytes (i.e., a melanotrophic factor) [99,103]. Moreover, melanocytes
express PGE2 receptors, which respond to PGE2 secretion by keratinocytes, leading to
filopodia formation and driving melanosome transfer to keratinocytes [102]. Therein,
niacinamide can reduce PGE2 production by keratinocytes, so one could consider this
as a mechanism to prevent melanosome transfer from melanocytes to surrounding ker-
atinocytes [62]. However, in vitro experiments are required to test this hypothesis. Finally,
melanosome transfer by melanocytes is also stimulated by AGEs. Specifically, as niaci-
namide is also known to reduce AGE production, this mechanism may also contribute to
reducing cutaneous hyperpigmentation [3,92].

2.8. Cutaneous Extracellular Matrix and Skin Barrier Enhancement by Niacinamide

In proximity to the dermal–epidermal junction, the dermis is mostly composed of
fibroblasts and their secretory proteins, which form the extracellular matrix [17]. Cutaneous
aging leads to a natural decrease in fibroblast activity, with several studies showing a
decrease in SIRT expression [24]. Consequently, a decrease in ECM protein levels (e.g.,
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collagen and elastin) is observed, which is linked to both natural aging and photoaging [104].
Therein, the reduction in protein synthesis is also correlated to a ROS increase, which
induces cell senescence and degradation of ECM components, mediating premature skin
aging [104]. Therefore, the intrinsic antioxidant activity of niacinamide contributes to
cellular homeostasis, thereby contributing to skin ECM integrity. Additionally, niacinamide
stabilizes mast cells (i.e., in the dermis) by several mechanisms, such as through the
inhibition of inflammatory cytokine synthesis and through NAD+ increases [63,64]. Since
mast cell degranulation leads to fibroblast senescence, and since niacinamide prevents this
phenomenon, the latter contributes to normal fibroblast activity maintenance [65].

Fibroblasts also secrete matrix metallopeptidases (MMP), a group of catabolic enzymes
that lead to collagen degradation [105]. Importantly, MMP synthesis is stimulated by ROS
and inflammatory cytokines. Thus, niacinamide inhibits MMPs, due to its antioxidant
and anti-inflammatory activities [17,106,107]. Furthermore, it was shown that niacinamide
inhibits elastase activity, preserving the integrity of elastin in cutaneous ECM [107]. Inter-
estingly, niacinamide was also shown to boost collagen (and procollagen) production by
fibroblasts in ex vivo murine studies and in human trials. Therein, the follow-up demon-
strated a discontinuous improvement of collagen IV expression in the basal membrane by
niacinamide [8,98,106,107]. Moreover, fibroblast secretion of elastin and fibrillin was also
increased by niacinamide administration [106,107].

In addition to collagen destruction, collagen glycation also negatively impacts ECM
molecular organization, disrupting the longitudinal ordering of collagen fibrils, which
affects cell adhesion and migration [108]. As previously discussed, the antioxidant action
of niacinamide prevents collagen glycation, thereby contributing to cutaneous ECM in-
tegrity. Keratinocytes are also essential to ECM homeostasis, and niacinamide benefits their
biological activity.

Of further note, nicotinamide boosts ceramide synthesis by activating the mRNA
expression of serine palmitoyl transferase (i.e., key enzyme for sphingolipid synthesis) and
by accelerating keratinocyte differentiation [63,109,110]. Niacinamide prevents keratinocyte
senescence due to photoaging and oxidative stress, with a study showing that it promotes
the repair of DNA damage induced by UV rays [32,35,36]. Moreover, niacinamide boosts
the expression of a differentiated type of keratin K1 [110]. However, the molecule has no
effect on the proliferation of keratinocytes [99]. In summary, niacinamide’s action affects
both fibroblasts and keratinocytes, improving ECM quality and skin barrier integrity, for
an overall increase in cutaneous health.

2.9. Cutaneous Anti-Aging Activity of Niacinamide

Skin aging corresponds to a series of physiological changes observed in cutaneous
tissues including thinning or thickening, dryness, laxity, dermal elastosis, telangiectasia,
aberrant hyperpigmentation, and the development of wrinkles [17,24,111]. These can be
caused by several internal factors (e.g., natural aging) or through contact with external
factors such as ozone, particulate matter, cigarette smoke, ultraviolet radiation (i.e., pho-
toaging), and an unhealthy lifestyle, which accelerates skin aging [17,37,39,112]. Of note,
the apparent signs of cutaneous aging may be different based on the main causative factor.
Therein, dermal elastosis and epidermal thickening are considered to be hallmarks of
photoaging, whereas epidermal thinning is characteristic of chronological skin aging.

Photoaging is one of the most discussed processes in the literature, since solar exposure
leads to chronic inflammation and oxidative stress, accelerating premature aging. At
the molecular level, the sunlight deteriorates DNA strands, with the cell damage being
amplified by the concomitant oxidative stress. Ultimately, this induces cellular senescence,
meaning that there is a decrease in the production of proteins (i.e., collagen/elastin) and
other critical components of skin structure [104]. Additionally, there is an increase in the
secretion of proinflammatory cytokines, chemokines, and proteases, which accelerates
ECM degradation. When stimulated by UV radiation, niacinamide increased the activity of
enzymes involved in cellular metabolism or energy production and significantly protected
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against immune suppression caused by UVBs or longwave UVAs [113]. Therefore, the
photoprotective effects of niacinamide can also help to explain its nonmelanoma and
melanoma preventive actions [23,24,26].

Of note, dermal fibroblast and keratinocyte bio-stimulation is a common target in anti-
aging treatments, aiming to prevent or reverse cellular senescence and to re-establish ECM
integrity. Specifically, niacinamide was proven to prevent cellular senescence, including in
keratinocyte and fibroblast models [30,32,62,65]. As mentioned before, the anti-senescence
activity of niacinamide derives primarily from its anti-inflammatory actions, such as the
resulting decrease in inflammatory mediators and the inhibition of mast cell degranula-
tion [32,62,65]. Moreover, the accumulation of DNA damages induced by oxidative stress
also leads to cell senescence, which can be reversed by niacinamide, as shown by several
studies [30,32,36]. Finally, fibroblast and keratinocyte senescence is associated with a gen-
eral decrease in collagen, elastin, and keratin production. Importantly, several studies
have demonstrated niacinamide’s efficacy for stimulating collagen, elastin, and ceramides
production [63,98,106,107,109,110]. Thus, niacinamide may tangibly improve cutaneous
ECM quality by acting at a cellular level, thereby reversing apparent aging signs.

As discussed previously, niacinamide is a precursor of NAD+; therefore, it prevents
the depletion of cellular energy and regulates the redox status of the cell. Additionally, it
balances the levels of various cellular metabolites, maintaining cellular homeostasis [6,63].
By acting as a potent antioxidant, niacinamide tackles oxidative stress, which is frequently
considered the core driving force in cutaneous aging (i.e., due to both intrinsic and extrinsic
factors) [17,39]. In conclusion, the anti-aging action of niacinamide may not be considered
as a specific feature, but as a combined result of its overall activity (Figure 3).
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Due to its influence on NAD+-dependent enzyme regulation and its anti-yellowing,
lightening, antioxidant, and anti-inflammatory activities, niacinamide preserves the extra-
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cellular matrix and contributes to the re-establishment of cutaneous functionality, prevent-
ing premature aging [62].

3. Niacinamide Formulation Challenges and Opportunities

As mentioned throughout this review, the vast majority of niacinamide’s action is ex-
erted in the epidermis or dermis. However, a majority of the considered niacinamide-based
formulations (i.e., as available on the market) are for topical application. Consequently,
such formulations need to be able to achieve transdermal delivery in order to exploit the
full potential of niacinamide’s activity. Of note, transdermal drug delivery is challenging
since molecules need to permeate the stratum corneum (i.e., the outermost layer of the
skin), which serves as a main barrier to drug penetration.

On one hand, the stratum corneum layer is mainly composed of dead, keratinized
cells with an intercellular matrix consisting mainly of ceramides, cholesterol, and free fatty
acids [114]. On the other hand, niacinamide is a class I drug (i.e., in the Biopharmaceutics
Classification System) with high aqueous solubility and permeability, which is challenging
for transdermal delivery [115,116]. Therefore, niacinamide permeation and deposition are
highly dependent on specific permeation enhancers, with hydrophobic excipients increas-
ing niacinamide retention in the upper skin layers (e.g., by encapsulating niacinamide into
oily vesicles) [115–118].

A study comparing three different oil-in-water niacinamide formulations concluded
that skin-barrier-mimetic formulations were more efficient in increasing niacinamide de-
posits, despite lower initial niacinamide concentrations [116]. Another study reported
a successfully increased niacinamide deposition while decreasing permeation (i.e., low
systemic distribution), by encapsulating the molecule into oily vesicles, which were then
suspended in a hydrogel for topical application [118].

More recently, there has been an effort to develop alternative means to increase niaci-
namide transdermal delivery. For example, niacinamide extrudates (i.e., prepared by hot
melt extrusion) were also shown to have increased skin deposition attributes in comparison
to a gel form, due to its higher adhesivity [119]. Furthermore, microneedles formulated
with sodium hyaluronate and amylopectin were shown to efficiently encapsulate and
deliver niacinamide, while niacinamide-imprinted starch-based biomaterials effectively
treated skin hyperpigmentation [120,121].

Another convenient way to circumvent the transdermal delivery challenge is to directly
inject niacinamide into the dermis, such as with the NCTF 135 HA® product (Laborato-
ries FillMed, Paris, France), a liquid mesotherapy formulation designed for intradermal
microinjection [122]. Besides this specific commercial formulation, the authors have no
knowledge of alternative intradermal niacinamide forms approved for cosmetic human use
in Europe. While NCTF 135 HA® does contain the molecule, mesotherapy formulations
are known to contain ingredients in “minute doses”; therefore, intradermal injections
of higher niacinamide concentrations would require additional safety assessments [123].
Outside of cosmetic applications, niacinamide injectables are available to treat vitamin
deficiencies (e.g., Infuvite®, FDA-approved) and as an absorption modifier in a fast-acting
subcutaneous insulin formulation (i.e., Fiasp®, EMA- and FDA-approved) [124]. Therefore,
niacinamide’s safety is in all probability maintained even when injecting higher doses for
cosmetic purposes.

In parallel to low-viscosity liquid formulations, niacinamide can also be found in
the Innoryos® formulation (Albomed, Schwarzenbruck, Germany), a hyaluronan-based
hydrogel for osteoarthritis viscosupplementation [125]. Therein, the vitamin not only
stabilizes the hydrogel but also displays an anti-inflammatory action in osteoarthritic
joints. Of note, cross-linked hyaluronic acid (HA) dermal fillers are among the most
popular injectable formulations in cosmetics, due to their documented quality, efficacy,
and reversibility [126]. These have also been efficiently loaded with different molecules,
such as proline and glycine, upgrading cross-linked HA dermal fillers into drug delivery
platforms [127].
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Considering the successful commercialization of Innoryos®, one could tangibly design
HA-based dermal fillers loaded with niacinamide. Specifically, this combination would
potentially enhance filler product stability, thereby extending its residency time, an issue
commonly encountered in aesthetic procedures [125]. Moreover, the incorporation of
niacinamide in HA fillers could facilitate the vitamin’s action on the dermis, amplifying
its beneficial effects. Importantly, recent research has shown that crosslinked HA-based
hydrogels could efficiently load and release niacinamide, which places these dermal fillers
as promising vehicles for future administration modalities of niacinamide (Figure 4) [128].
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Figure 4. Niacinamide formulation variants and their permeation/administration into the skin. The
aqueous formulation (A) is highly limited as regards penetration in the stratum corneum. However, an
oil-in-water formulation (B) is characterized by enhanced niacinamide permeation into the epidermis.
For a more direct impact on the dermis, aqueous solution (C) and hydrogel (D) intradermal injections
could offer increased niacinamide bioavailability and effectiveness.

4. Conclusions

Niacinamide, a member of the vitamin B3 family, is a key ingredient in cosmetics.
Well-tolerated by the skin, niacinamide is essential for NAD+ synthesis or PARP and sirtuin
regulation. By acting on the fundamental biochemical reactions within the cell, it displays
potent antioxidant properties and anti-inflammatory activities. Moreover, studies have
confirmed niacinamide’s antimicrobial activity, making it effective against bacteria and
preventing biofilm formation. With proven efficacy in acne treatment and sebum reduction,
niacinamide also addresses cutaneous hyperpigmentation and glycation-related yellow-
ing. Additionally, it contributes to the skin’s extracellular matrix integrity by preserving
collagen, inhibiting matrix-degrading enzymes, or promoting collagen and elastin produc-
tion. Overall, niacinamide tackles several major issues related to skin aging, positioning
itself as a multipurpose functional ingredient in skin rejuvenation. Despite transdermal
delivery challenges, new formulations (e.g., skin barrier-mimetic bases) and new adminis-
tration routes (i.e., intradermal injection) are promising to improve future cosmeceutical
applications of niacinamide.
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