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Abstract: Male fertility is strongly affected by the overexpression of free radicals induced by heavy
metals. The aim of this study was to evaluate the potential antioxidant, anti-inflammatory, and
gonado-protective effects of natural compounds. Biochemical and morphological assays were per-
formed on male albino rats divided into five groups: a control group (water only), a group orally
exposed to a metal mixture of Pb-Cd-Hg-As alone and three groups co-administered the metal
mixture and an aqueous extract of the Nigerian medicinal plant, Anonychium africanum (Prosopis
africana, PA), at three different concentrations (500, 1000, and 1500 mg/kg) for 60 days. The metal
mixture induced a significant rise in testicular weight, metal bioaccumulation, oxidative stress, and
pro-inflammatory and apoptotic markers, while the semen analysis indicated a lower viability and a
decrease in normal sperm count, and plasma reproductive hormones showed a significant variation.
Parallel phytochemical investigations showed that PA has bioactive compounds like phlobatannins,
flavonoids, polyphenols, tannins, saponins, steroids, and alkaloids, which are protective against
oxidative injury in neural tissues. Indeed, the presence of PA co-administered with the metal mixture
mitigated the toxic metals’ impact, which was determined by observing the oxido-inflammatory
response via nuclear factor erythroid 2-related factor 2, thus boosting male reproductive health.

Keywords: Anonychium africanum (Prosopis africana); antioxidants; apoptosis regulator; heavy metals;
hormones; Prosopis africana gonado-protective effects; male reproductive toxicity

1. Introduction

The adverse impact of heavy metals on the physiological systems of animals has
been broadly reported [1–4]. Research over the years has shown that these substances
are recognized as highly hazardous elements, particularly for their detrimental effects on
human and animal health [2,3,5]. They have negative effects on reproductive tissues [6],
which may be linked to the increase in testicular disorders [7]. Further, they have been
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shown to be implicated in delayed development and reduced fertility [8,9], testosterone (T)
production, and the inducement of testicular morphologic damage [10,11]. Additionally,
they have been associated with reduced sperm counts, elevated numbers of abnormal
spermatozoa, testicular degeneration, and impaired testicular growth [12]. These adverse
effects in male animals contribute to a decrease in both sperm quality and quantity [9] and
may result in damaging genetic and epigenetic consequences affecting their fitness [13].

The harmful effects of heavy metals have been mostly evaluated through in vitro as
well as in vivo studies using several term exposures to either one metal or to a combinatory
mix [3,5,14–16]. Toxic metals, including lead, cadmium, mercury, and arsenic, are com-
monly present in our surroundings, found in various sources such as food, water, soil, and
air. Exposure to these metals can have toxic effects on the testis, resulting in alterations
to seminiferous tubules, testicular stroma, and a decrease in spermatozoa count, motility,
viability, as well as aberrant spermatozoa morphology [17,18]. During exposure to metals,
protective enzymes are activated or induced under oxidative stress, allowing the cell to
keep its homeostasis. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a major role
in the transcriptional activation of antioxidant genes via an antioxidant response element
(ARE). Prior to its nuclear translocation, Nrf2 moved from the cytoplasm to the plasma
membrane, according to immunocytochemistry and subcellular fractionation studies [19].
Intracellular transcription factors play key roles in regulating genes associated with cellular
defense mechanisms. Notably, Nrf2, activator protein 1, and nuclear factor kappa B (NF-κB)
are recognized for their involvement in cytoprotection [20]. Among these, Nrf2 stands out
as a crucial mediator in modulating cellular stress levels. In quiescent cells, Kelch-like ECH-
associated protein 1 (Keap1) interacts with Nrf2 in the cytoplasm, controlling its activity.
However, upon exposure to oxidative stress, Nrf2 dissociates from Keap1, translocates to
the nucleus, and induces the expression of cytoprotective genes [21]. This cascade leads
to the activation of downstream antioxidant enzymes such as catalase (CAT), glutathione
reductase (GR), superoxide dismutase (SOD), and glutathione peroxidase (GPx) [22]. Simi-
larly, NF-κB transcription factors regulate a spectrum of genes involved in inflammatory
responses, cell proliferation, and neoplastic transformation. These genes encompass vari-
ous chemokines, cytokines, apoptotic regulators, adhesion molecules, and oncogenes [20].
Although heavy metals are implicated in influencing NF-κB activity, the precise molecular
mechanisms remain elusive.

Anonychium africanum (Hughes and Lewis, 2022), also known as Prosopis africana
(PA) or “Okpeye”, is one of the plants utilized in traditional medicine in south-eastern
Nigeria. It is characterized by its dark rough bark, pale drooping foliage with small, pointed
leaflets, and sausage-shaped fruit. Rich in carbohydrates, fiber, protein [23], potassium,
magnesium, and significant amounts of essential amino acids and phytocompounds with
antioxidative, anti-inflammatory, and neuroprotective activity against metal mixture in
neural tissues [23,24], it is highly valued for its nutritional content. Fermentation further
enhances the nutritional value of PA and its antioxidant properties, a practice commonly
employed in Nigeria [25]. Whereas the literature seems to be inundated with studies on
individual metal testicular toxicity, information remains sparse on the toxicity of heavy
metal mixture. The present study has therefore been undertaken to evaluate the potential
protective effects of PA against heavy metal mixture exposure on the oxido-inflammatory
response in rat testicular tissues.

2. Materials and Methods
2.1. Collection of Anonychium africanum (Prosopis africana, PA) and Preparation of Crude Extract

African mesquite AM pods were harvested from Nsukka, Enugu State, Nigeria (Lati-
tude: 6.857816/N 60 51′ 28.138′′ Longitude: 7.411943/E 70 24′ 42.996′′) and identified by Mr.
Ozioko, Department of Botany, University of Nigeria, Nsukka, and were washed, sun dried
for three days, and blended to a powdery form. A total of 100 g of the powder was mixed
with 1000 mL of deionized water and shaken for 48 h [26]. The slurry was sieved and filtered
through a Whatman filter paper No. 1. The extract was then separated and stored at 4 ◦C.
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The crude extract was processed in a methanol extraction method as previously described
by Hossain et al. [27]. The resulting methanol extract was concentrated using a rotary
evaporator, and the dried residue was subjected to quantitative phytochemical screening.
The methanol fraction was subjected to a gas chromatography–mass spectrometry analysis.

2.2. PA Preparation for Analysis by Gas Chromatography-Mass Spectrometry (GC-MS)

The GC-MS analysis of the methanol extract was performed using the Thermo/Finnigan
Surveyor System. For this, an Ion Trap mass spectrometer was used, coupled with an elec-
trospray ionization (ESI) source. Data acquisition was performed and mass spectrometric
data were evaluated using data analysis software (Xcalibur Qual Browser 3.1; Thermo Elec-
tron, San Jose, CA, USA). Sample preparation and chromatographic separation was carried
out following the method reported in Orisakwe et al. [24] and in Bagewadi et al. [28].

2.3. Acute Toxicity Testing (LD50)

Acute oral toxicity (LD50) was performed following Lorke’s median lethal dose
method [29].

2.4. Animal Ethics and Maintenance

All animal maintenance and experiments were conducted in accordance with the
guidelines specified in the protocol sanctioned by the UNIPORT Research Ethics Committee
with approval reference number UPH/CEREMAD/REC/MM72/093.

Male albino rats (n = 56), 6 weeks old and weighing 80–100 g, were housed in
421 × 290 × 190 mm plastic polymer cages. Ambient temperature for the rats was main-
tained at 25 ± 2 ◦C, 50 ± 10% relative humidity, and a 12 h light–dark cycle. Ad libitum
access to standardized feed pellets was provided (Hybrid Feeds Ltd. (Kaduna, Nigeria), km
8, MFD, 4 October 2020, with an expiration date of 6 January 2023, NAFDAC No A9-0232).
The feed composition included crude protein (15.5%), fat (3.6%), crude fiber (4.6%), calcium
(1.1%), available phosphorus (0.40%), methionine (0.37%), lysine (0.77%), and metabolized
energy (2550 kcal/kg). Additionally, the rats had access to deionized water. They were
acclimatized in the UNIPORT Pharmacology Animal House for a period of 14 days.

2.5. Experimental Design and Dose Administration

Male albino rats were randomly divided into five groups, consisting of seven rats
in each group. Both the untreated and treated rat groups received their respective, once
daily, oral treatment doses by gavage for 60 days (Figure 1). The heavy metal mixture
(HMM) used consisted of the following metals and dosages per kg of body weight: lead (II)
chloride (20 mg/kg), mercury chloride (0.40 mg/kg), cadmium chloride (1.61 mg/kg), and
sodium arsenite (10.0 mg/kg) [10,30,31].
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Animal Experimental Groups:
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- Group 1. Negative Control: This control group of rats was given deionized water
orally once daily for 60 days.

- Group 2. Positive Control, HMM: This group received only the heavy metal mixture
at the dose standards described above daily for 60 days.

- Group 3. HMM + PA (500 mg/kg): This groups received the same heavy metal mixture
as the positive control but was treated with Prosopis africana aqueous extract at daily
doses of 500 mg/kg body weight for 60 days.

- Group 4. HMM + PA (1000 mg/kg): This group received the same heavy metal mixture
as the positive control but was treated with Prosopis africana aqueous extract at a daily
dose of 1000 mg/kg body weight for 60 days.

- Group 5. HMM + PA (1500 mg/kg): This group received the same heavy metal mixture
as the positive control but was treated with Prosopis africana aqueous extract at a daily
dose of 1500 mg/kg body weight for 60 days.

2.6. Body Weight Measurement

Animals were reweighed using an Atom electronic balance at weekly intervals to
monitor changes in body weight. Body weight changes at two-week intervals were used
to recalculate the heavy metal mixture and PA doses to accommodate for changes in body
weight. The percent body weight gain or loss was calculated as follows:

[Body weight on last day − body weight on day one]/body weight on day one × 100.

2.7. Measurement of Feed and Water Intake

A known weight (300 g) of feed and 200 mL of water were provided for each group of
rats daily and the amounts consumed daily were recorded.

2.8. Necropsy, Tissues and Organ Collection and Processing

Animals in the five experimental groups were euthanized under mild pentobarbital
anesthesia (50 mg/kg) at the end of 60 days of treatment. The epididymis of each rat was
excised, and a semen analysis was performed. The testis were promptly excised from
each male rat on a chilled dissection mat and washed in saline buffer (20 mM Tris–HCl,
0.14 M NaCl buffer, pH 7.4) once and then repeated. Organs were then weighed; one
part of the testis was kept in Bouin’s solution for 24 h and then a histopathology analysis
was performed. The testis (10% w/v) were homogenized in an ice-cold 50 mM Tris-HCl
(pH 7.4) using a Potter-Elvehjem type glass-Teflon tissue homogenizer, sonicated (given
10 bursts, for 15 s each interval) using a PCI Analytics sonicator (model 500F, PCI Analytics,
Thane, India) and then centrifuged at 3000× g at 4 ◦C for 15 min. Supernatants were then
collected and stored at −20 ◦C for heavy metal mixture and biochemical assays, including
tissue oxidative stress markers (CAT, SOD, GSH, GPX, MDA, and NO), ELISA assays
for transcriptional factors (Nrf2 and NF-κB) and an apoptotic marker (caspase-3), and
pro-inflammatory parameters (TNF-α and IL-6) [32].

2.9. Body Organ Index

The relative organ weight was calculated as follows:

[specific organ weight/final rat body weight at last day] × 100

2.10. Metal Concentrations in Tissue Samples

The metal ion content was determined using one gram of each tissue sample as
prepared according to the previously described procedure of Ozoani et al. [33].

2.11. Oxidative Stress Markers

Harvested rat testis were assayed for lipid peroxidation, which is marked by malon-
dialdehyde (MDA). Adopting the protocol from Ohkawa et al. [34], tissue MDA levels
were assayed spectrophotometrically. Nitric oxide (NO) was assayed using the Griess
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reaction [35]. Superoxide dismutase (SOD) activity was assayed by applying the previously
described technique of Misra and Fridovich [36]. Reduced glutathione peroxidase (GPx)
and glutathione (GSH) activity levels were assayed following the technique according to
Guerriero et al. [37] and Rotruck et al. [38].

2.12. Measurement of Inflammatory Markers

The levels of nuclear factor kappa B (NF-κB; Cat no.: E-ELR0674, Elabscience Biotech-
nology Company, Beijing, China), interleukine-6 (Il-6; Cat. no.: E-EL-R0015, Elabscience
Biotechnology Company, Beijing, China), and tumor necrosis factor alpha (TNF-α; Cat
no.: RTA00-1, R&D Systems, Elabscience Biotechnology Company, Beijing, China) were
detected in the testis of rats by enzyme-linked immunosorbent assay (ELISA) kits following
the manufacturer’s instructions.

2.13. Measurement of Apoptotic and Redox Transcription Markers

The activity of caspase-3 (Cas-3) (Cat. no.: E-EL-R0160, Elabscience), and levels of
nuclear factor erythriod 2-related factor 2 (Nrf2) (Cat. no.: E-EL-R1052, Elabscience) and
Heme Oxygynase-1 (Hmox-1) (Cat. no.: E-EL-R0488, Elabscience) were assayed in the testis
of rats from each of the control and treatment groups by enzyme-linked immunosorbent
assay (ELISA) kits.

2.14. Reproductive Hormones Analysis

The reproductive hormones were analyzed in the plasma of male albino rats according
to methods of Qiu et al. [39] for follicle-stimulating hormone (FSH); the methods of Frank
and Rushlow [40] for luteinizing hormone (LH); the methods of Vanderpump et al. [41] for
prolactin; and the methods of Guerriero et al. [42] for progesterone and testosterone.

2.15. Semen Analysis

For the semen analysis, the epididymis was surgically removed, incised, and semen
was aspirated into a dish with phosphate-buffered saline. After a 10 min incubation period,
motility was assessed on a slide, categorizing sperm as active, sluggish, or immotile [43].
Viability was determined using an eosin–nigrosine stain, expressed in cell/mL [44]. The
caudal epididymal sperm count was performed via hemocytometry [45], and morphol-
ogy was examined after mixing with 2% eosin Y and incubation [46]. Morphological
abnormalities were graded, and pH was measured using a pH meter, while viscosity was
characterized as either highly viscous, semi- or slightly viscous, or non-viscous [47].

2.16. Statistical Analysis

Data were shown as the mean ± standard deviation. Statistical analyses were per-
formed using SPSS (version 20 for Microsoft Windows, Albuquerque, NM, USA). The data
were evaluated for normality and homogeneity by applying the Kolmogorov and Smirnoff
test and the Levene test, respectively. Multiple variable comparisons were evaluated using
a one-way analysis of variance using Microsoft Xlstat 2014. Tukey’s multiple range post
hoc test was applied for comparing levels of significance between groups. Pandas was
utilized in obtaining the descriptive statistical parameters for the rat testicular biomarkers.
Correlation and regression analyses were performed to highlight the relationship between
the protective action of PA and heavy metal-induced testicular oxidative complications and
their pathophysiological changes as observed in the testis [48]. A multivariate analysis
of variance consisting of principal component analysis and hierarchical cluster analysis
(Euclidean distance measure) was applied to validate the curative action of PA on the
oxidative damage to the testis [49]. Differences with a p-value of <0.05 were considered
statistically significant.
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3. Results
3.1. Phytoconstituents in Aqueous Extract of Anonychium africanum (Prosopis africana, PA)

Retention time (min), detected in the aqueous extract of Prosopis africana (PA) using gas
chromatography–mass spectrometry (GC-MS), indicates compounds such as phlobatannins,
flavonoids, polyphenols, tannins, saponins, steroids, and alkaloids, as shown by Orisakwe
et al. [24].

3.2. Acute Toxicity Test of Prosopis africana Aqueous Extract

The results of acute toxicity (LD50) after oral administration reveal that the PA aqueous
pod formulation has an LD50 greater than 5000 mg/kg. Furthermore, no deaths were
reported following the administration of the PA aqueous pod formulation at any of the doses
administered. These findings suggest that this preparation possesses a wide therapeutic
range and is relatively safe.

3.3. Effect of Prosopis africana on the Body Weight and Absolute and Relative Weight of Testis of
Male Albino Rats Exposed to HMM

The results in Table 1 reveal that rats treated with the HMM alone consumed less food
and water when compared to the control group. However, when exposed to a combination
of the HMM and the PA aqueous extract at the highest dose (PA 1500 mg/kg), rats exhibited
values for feed intake and fluid intake similar to those of the control group.

Table 1. The effect of the heavy metal mixture and Prosopis africana on feed intake, fluid intake,
absolute testicular weight, relative testicular weight, and body weight (shown as initial weight, final
weight, and percentage body weight difference).

Treatment Feed Intake
(g)

Fluid Intake
(mL)

Absolute
Testicular

Weight
(g)

Relative
Testicular

Weight
(%)

Body Weight (g)

Initial
Weight

Final
Weight

% Body wt
Difference

Control 164.75 ± 18.80 d 225.08 ± 58.95 d 3.18 ± 0.02 c 1.1 ± 0.06 b 175.0 ± 4.35 270.0 ± 13.73 54.29 a

HMM 78.78 ± 27.54 a 102.30 ± 20.03 a 3.06 ± 0.32 a 1.28 ± 0.39 a 158.0 ± 2.00 240.0 ± 16.63 51.90 a

HMM + PA
(500 mg/kg) 88.53 ± 20.90 b 148.10 ± 27.13 b 2.84 ± 0.38 bc 1.23 ± 0.08 b 151.0 ± 1.00 230.3 ± 14.57 52.54 a

HMM + PA
(1000 mg/kg) 130.03 ± 18.48 c 190.20 ± 56.50 c 2.26 ± 0.11 bc 1.06 ± 0.18 b 146.0 ± 1.00 213.0 ± 27.15 45.89 a

HMM + PA
(1500 mg/kg) 158.55 ± 18.40 d 218.31 ± 58.98 d 2.01 ± 0.44 b 0.96 ± 0.32 b 141.0 ± 1.73 208.3 ± 20.81 47.75 a

Values = Mean ± SD, N = 7. Values sharing the same letter notations (a, b, c, d) are not significantly different from
each other (p ≥ 0.05); HMM = heavy metal mixture; PA = Prosopis africana.

Furthermore, rats exposed to the HMM alone demonstrated a significant increase
in the relative testicular weight when compared to the control group. In contrast, those
exposed to a combination of the HMM and PA aqueous extracts at various concentrations
showed a significantly lower relative testicular mass than the group exposed solely to the
HMM, with values similar to those of the control group.

Regarding body weight, rats in the control group gained more weight than rats in
either of the treated groups, but the initial to final percent changes among the groups was
not significant.

3.4. Prosopis africana Effect on Male Albino Rat Semen Exposed to Heavy Metal Mixture (HMM)

The sperm from rats exposed to the HMM exhibited lower viability, a decrease in
normal sperm count, an increase in abnormal sperm count, and lower activity levels, with
a high proportion of sluggish sperm and a significantly reduced overall sperm count
compared to the control group (Table 2). In contrast, the sperm from rats exposed to a
combination of the HMM and PA aqueous extracts at various concentrations demonstrated
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sperm indices similar to the control group, particularly with the highest concentration of
the PA extract (1500 mg/kg).

Table 2. Effect of Prosopis africana on semen analysis of male albino rats exposed to heavy
metal mixture.

Treatment pH
Viable Cell

Count
(×106 cells/mL)

Viscosity
Sperm Morphology

(%)
Sperm Motility

(%) Sperm Count
(×106 cells/mL)

Normal Abnormal Active Sluggish Immotile

Control 8.5 ±
0.06 a

0.85 ±
0.05 a

Slightly
viscous 85 ± 5 a 15 ± 5 b 82 ± 4 a 8 ± 2 b 10 ± 1 d 716.7 ±

104.1 a

HMM 8.1 ±
0.03 a

0.61 ±
0.07 c

Non
viscous 68 ± 7 c 31 ± 7 a 58 ± 2 c 11 ± 2 a 30 ± 0 a 266.7 ±

115.5 d

HMM + PA
(500 mg/kg)

8.1 ±
0.09 a

0.70 ±
0.08 a

Non
viscous 73 ± 5 b 26 ± 5 a 70 ± 8 b 11 ± 2 a 18 ± 7 a 383.3 ±

76.4 c

HMM + PA
(1000 mg/kg)

8.3 ±
0.02 a

0.78 ±
0.02 b

Non
viscous 75 ± 10 b 25 ± 10 a 63 ± 5 c 10 ± 1 a 26 ± 5 a 600.0 ±

173.2 b

HMM + PA
(1500 mg/kg)

8.5 ±
0.04 a

0.85 ±
0.05 a

Non
viscous 83 ± 5 a 15 ± 5 b 85 ± 5 a 8 ± 5 b 8 ± 2 c 733.3 ±

57.8 a

Values = Mean ± SD, N = 7 Values sharing the same letter notations (a, b, c, d) are not significantly different from
each other (p ≥ 0.05); HMM = heavy metal mixture; PA = Prosopis africana.

3.5. Prosopis africana Effect on Hormonal Profile of Male Albino Rats Exposed to HMM

Rats exposed to the HMM showed significantly decreased levels of follicle-stimulating
hormone (FSH), luteinizing hormone (LH), testosterone (T), and prolactin (PRL) in the
testicles when compared to the control group. Rats exposed to the HMM in combination
with PA aqueous extracts exhibited significantly higher levels compared to those exposed
to metals alone, showing a pronounced mitigation of the toxic metal effect. Regarding
the FSH value, rats exposed to the HMM exhibited significantly lower values than the
control. Notably, PA aqueous extracts at doses of 1000 mg/kg and 1500 mg/kg proved
to be the most effective, as their presence in combination with the HMM led to a more
substantial increase in FSH compared to exposure to metals alone (Figure 2A). Rats exposed
to the HMM exhibited significantly lower LH levels (Figure 2B) than the control group,
but in the presence of PA aqueous extracts at doses of 1000 mg/kg and 1500 mg/kg, rats
exhibited a significant increase in LH levels compared to both the control group and the
HMM only group. For testosterone, rats exposed to the HMM exhibited significantly lower
values than the control. Remarkably, when exposed to the HMM together with PA aqueous
extracts, the rats showed a significant increase in levels of testosterone compared to the
rats exposed to metals alone (Figure 2C). Regarding prolactin, rats exposed to the HMM
exhibited significantly higher values than the control. Interestingly, rats exposed to PA
aqueous extracts at doses of 1000 mg/kg and 1500 mg/kg appeared to undergo a more
pronounced effect in mitigating the toxic metal impact (Figure 2D).

3.6. Effect of Prosopis africana in Bioaccumulation of Heavy Metals in Rat Testis

Rats exposed to the HMM exhibited a significant accumulation of heavy metals in
the testicular tissue compared to the control group. However, there was a significant
reduction in heavy metal accumulation in the group exposed to HMM in combination
with PA aqueous extracts (Figure 3) Moreover, as shown in Figure 3, there was a trend of
decreasing bioaccumulation of lead, cadmium, and arsenic in a dose-dependent manner in
rats exposed to the HMM in combination with PA aqueous extracts.
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3.7. Effect of Prosopis africana on Oxidative Stress Markers of Male Albino Rat Testis Exposed
to HMM

The treatment of rats with the HMM significantly altered oxidative stress markers in
the testis compared to the control group (Figure 4). Specifically, SOD and CAT levels were
markedly reduced in the testis of rats exposed to the metal mixture. Simultaneous exposure
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to metals and PA aqueous extracts induced a dose-dependent increase in SOD levels,
peaking at 1500 mg/kg of PA. Similarly, CAT levels reached their maximum at the highest
concentration of 1500 mg/kg. GPx was significantly diminished in the testis of rats exposed
to the HMM, but co-exposure to PA aqueous extracts resulted in an increase in GPx levels.
Notably, the highest dose of 1500 mg/kg attained GPx levels similar to the control group.
Contrarily, exposure to the metal mixture alone did not alter glutathione (GSH) levels in
the rat testis. However, co-exposure with low (500 mg/kg) and medium (1000 mg/kg)
concentrations of PA aqueous extracts caused a decrease in GSH levels. Intriguingly, the
HMM with the highest PA dosage (1500 mg/kg) did not induce any changes in GSH levels.
Levels of malondialdehyde (MDA) and nitric oxide (NO) were significantly elevated in the
testicles of rats exposed to the heavy metal mixture. Conversely, the simultaneous exposure
to the HMM and PA aqueous extracts resulted in a decrease in these levels, showing a
dose-dependent trend and showing values similar to those of the control group.
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Figure 4. The impact of Prosopis africana (PA) on oxidative stress markers in male albino rats exposed
for 60 days to a heavy metal mixture (HMM). (A) The effect of PA on SOD. (B) The effect of PA on
CAT. (C) The effect of PA on GPx. (D) The effect of PA on GSH. (E) The effect of PA on MDA. (F) the
effect of PA on NO. Values are mean ± SD, N = 7. Bars sharing the same letter notations (a, b, c, d, e)
are not significantly different from each other (p ≥ 0.05).
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3.8. Effect of Prosopis africana on Expression of Pro-Inflammatory Factors and Apoptotic and
Transcriptional Factors in Male Albino Rat Testis Exposed to HMM

Rats exposed to the HMM showed significantly increased testicular levels of pro-
inflammatory and apoptotic and transcriptional factors compared to the control group.
Rats exposed to HMM in combination with PA aqueous extracts exhibited significantly
lower levels compared to those exposed to metals alone, displaying a counteracting activity
in reducing the effects of the toxic metals (Figure 5). Regarding the pro-inflammatory
interleukine-6 (Il-6) and tumor necrotic factor-alfa (TNF-α), rats exposed to the HMM
exhibited significantly higher values than the control. Specifically, the addition of the PA
aqueous extract showed a dose-dependent trend in reducing their levels (Figure 5A,B).
Regarding the apoptotic marker caspase-3, rats exposed to the HMM exhibited significantly
higher values than the control. In the group with metal mixtures with PA aqueous extracts
administered at doses of 1000 mg/kg and 1500 mg/kg, a significant decrease was induced
compared to the HMM only group (Figure 5C). For the transcriptional factor NF-kappa B,
rats exposed to the HMM exhibited significantly higher values than the control. Notably,
when exposed to the HMM in conjunction with PA aqueous extracts, the rat testis showed
a significant decrease in NF-kappa B levels compared to the group exposed to metals alone,
with the lowest value observed at the dosage of 1500 mg/kg PA (Figure 5D). Regarding the
transcriptional factor Nrf2, rats exposed to the HMM exhibited significantly higher values
than the control. Interestingly, when rats were exposed to the HMM in combination with
PA aqueous extracts, there was a significant decrease in Nrf2 levels compared to the group
exposed to metals alone, indicating a suppressive activity, particularly at a PA dosage of
1500 mg/kg (Figure 5E).
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Figure 5. The impact of Prosopis africana (PA) on expression of pro-inflammatory factors and apoptotic
and transcriptional factors in male albino rats exposed to a heavy metal mixture (HMM) for 60 days.
(A) The effect of PA on interleukine-6 (IL-6). (B) The effect of PA on tumor necrotic factor alfa (TNF-α).
(C) The effect of PA on caspase-3. (D) The effect of PA on nuclear factor kappa B (NF-κB). (E) The
effect of PA on transcriptional factor Nrf2. Values are mean ± SD, N = 7. Bars sharing the same letter
notations (a, b, c, d, e) are not significantly different from each other (p ≥ 0.05).
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4. Discussion

The purpose of this study was to assess the potential protective effect of Anonychium
africanum (Prosopis africana, PA) against chronic testicular injury caused by intoxication from
the heavy metal mixture of Pb-Cd-Hg-As. The co-treatment of testis with the extract of this
plant appears to have significant effectiveness in mitigating the toxic effects of metals on
testis, plasma, and semen exposed to a heavy metal mixture.

4.1. Chemical Characteristics and Relevant Activity of Prosopis africana

Firstly, the chemical profile of PA was evaluated using gas chromatography–mass spec-
trometry (GC-MS), revealing a concentration of phlobatannins, flavonoids, polyphenols,
tannins, saponins, steroids, and alkaloids. Data from the experiments were already reported
in our parallel study conducted on the neural system in the same rats [24]. Compounds
such as flavonoids are organic chemicals present in a variety of plants, including PA [50–55],
which have been shown to protect against oxidative injury [55,56]. Phenolic acids such as
flavonoids possess antioxidant and anti-inflammatory activity [57–61]. Polyphenols [62,63],
including resveratrol, catechin, epicatechin, naringin, and proanthocyanin, exhibit antioxi-
dant and anti-inflammatory properties [64–68]. Alkaloids such as Sparteine and Ribalindine
are known to be bivalent chelators and exhibit reactive oxygen species (ROS) scavenging, re-
spectively, along with Ammodendrine and Aphyllidine [23,69–74]. PA is known to improve
the expression of SOD, CAT, GPx, and NO by amino acids such as Citrulline [62,63]. These
PA compounds appear to have played a decisive role in the biometric indices measuring
the general health status of rats (see below) and the morphological data assessing reproduc-
tive health (Supplementary Figure S1). Our data, although innovative and encouraging,
have shown limitations linked to the use of leaves, which have different phytochemical
properties depending on their state of growth, and which may have had internal variations;
a chemically tested product was not used, which, in the near future, will certainly allow for
a more precise estimation.

4.2. Effect of Prosopis africana on the Body Weight and Absolute and Relative Weight of Testis of
Male Albino Rats Exposed to Heavy Metal Mixture (HMM)

We observed that rats treated with a heavy metal mixture were characterized by
weight loss, as reported by Cobbina et al. [31]. Several studies have linked exposure to
chemicals to reductions in weight, water, and food intake [75], as well as the retardation of
enzymatic activities, increased degradation of lipids and proteins, and degeneration of vital
organs [76]. We also observed a significant increase in relative testicular mass compared
to the control group, consistent with findings by Su et al. [77]. They reported that the
coefficient of relative testicular weight in rats exposed to both individual metals and metal
mixtures was higher than that of the control group, indicating a possible inflammatory
response and edema induced in these organs. These observations were totally absent in
the treatment involving the co-administration of the heavy metal mixture with PA aqueous
extracts (Table 1) and with PA only. This last point is characterized by anti-inflammatory
molecules such as humulone and resveratrol. Humulone has demonstrated significant anti-
inflammatory activity by suppressing Cox-2 gene transcription in murine [57]. Resveratrol
has been shown to modulate steroidogenic enzyme expression and the hypothalamus–
pituitary–gonad axis, as well as alleviating oxidative stress in testicular tissues [78]. Both
of these compounds could explain the counteracting effects of PA on the biometric and
testicular indices due to metal exposure.

4.3. Effect of Prosopis africana in Bioaccumulation of HMM in Rat Testis

The administration of a quaternary metal mixture led to an increased accumulation
of these metals in the testes of animals compared to the control group. Each of the metals
used in our study mixture has been extensively evaluated for their detrimental effects on
rat testis. In particular, it is recognized that Pb, Cd, Hg, and As can negatively impact
sperm motility, while only Pb and Cd can negatively impact sperm viability and therefore
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total sperm count (see [6] for review). This accumulation, as suggested by previous stud-
ies [6,79,80], is assumed to originate from the intricate network of the heavy metal’s capacity
to harm the blood–testis barrier via p38 mitogen-activated protein kinase signaling. This
process involves the participation of heavy metal transporters and metallothioneins [81].
Our study shows that upon co-exposure with PA, there was a significant reduction in metal
accumulation in the testis. This could be due to the chemical properties of PA, which could
play a role in preventing or reducing heavy metal accumulation. Compounds such as chela-
tors, antioxidants, enhancers of detoxification pathways, inducers of metallothioneins, and
modulators of metal transporters protect or reduce metal bioaccumulation. Phytochelatins
found in plants bind to the HMM, forming stable complexes that are less likely to be ab-
sorbed by animal tissues [82]. Additionally, their compounds exhibit antioxidant properties,
scavenging free radicals to prevent cellular damage induced by the HMM [83]. Moreover,
these kinds of compounds stimulate the expression of detoxification enzymes, facilitating
the breakdown and elimination of the HMM from the body [84]. Lastly, the modulation
of metal transporters regulates the uptake and distribution of the HMM in animal tissues,
thereby decreasing their accumulation [85], as observed in our study.

4.4. Prosopis africana Affects Oxidative Stress Markers of Male Albino Rat Testis Exposed
to HMM

The daily oral administration of PA to adult male rats effected a significant increase in
the testicular expression of CAT, SOD, and GPx levels, along with a significant decrease in
MDA and NO concentration compared to the metal mixture-treated rats. This improvement
in the testicular antioxidative status of PA-treated rats may be the result of the high concen-
tration of active antioxidants shown in Figure 4. The antioxidative effects of PA could be
explained by the direct inhibition of lipid peroxidation and free-radical scavenging, or by
the indirect increased activity of SOD and CAT, as observed with other natural compounds
used to alleviate oxidative stress in male rats [86]. The present study shows that exposure
to a quaternary metal mixture induced testicular oxidative stress, evidenced by reduced
testicular CAT, SOD, and GPx levels, and elevated MDA and NO concentrations. These
findings may be attributed to the generation of ROS, which deplete CAT, SOD, and GPx,
ultimately leading to oxidative damage to the cell membrane, indicated by the increased
MDA and NO concentrations [11,87,88]. Our results are supported by a previous study
by Ozoani et al. [11], which showed that rats exposed to heavy metal compounds exhibit
elevated testicular lipid peroxidation and a significant decrease in the levels of glutathione,
CAT, SOD, and peroxidase. The testicular antioxidative status improvement by PA adminis-
tration was evidenced by an increase in CAT, SOD, and GPx expression activity, along with
the reduction in MDA and NO concentrations compared with the heavy metal mixture
group. This finding may be attributed to the potent antioxidant components of PA, shown
by Orisakwe et al. [24], that prevent cellular damage caused by oxidative stress in testis.
Thus, the oral administration of PA protects against heavy metal toxicity via the mitigation
of lipid peroxidation and decreased production of free-radical derivatives.

4.5. Prosopis africana Effect on Expression of Pro-Inflammatory Factors and Apoptotic and
Transcriptional Factors in Male Albino Rat Testis Exposed to HMM

The consequences of induced oxidative stress through metal exposure are also ob-
served in the adaptive response, involving both innate and acquired mechanisms. This
leads to the activation of inflammatory and apoptotic pathways, along with damage to the
antioxidant system. ROS and NO can both trigger the activation of TNFα, a pleiotropic
cytokine capable of initiating various inflammatory and apoptotic pathways, such as NF-
kappa B, IL-6, caspase-3, and caspase-9 [89]. Our findings revealed that metal exposure sig-
nificantly increases the levels of TNFα, NF-kappa B, IL-6, caspase-3, and poly(ADP-ribose)
polymerases, consistent with the findings of Kasperczyk et al. [90], Mognetti et al. [91], and
Ozoani et al. [11].

As part of the adaptive cellular response, there appears to be an up-regulation of Nrf2,
potentially aimed at safeguarding the testis from oxidative stress. Indeed, we noted an
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increase in Nrf2 expression following exposure to the HMM, a finding supported by similar
studies [92]. However, these effects were absent upon co-exposure with PA. This finding
can be attributed to the potent antioxidant properties of PA, which includes compounds
such as resveratrol and catechin. The therapeutic effects of these components are associated
with the modulation of the Nrf2 signaling pathway, known for its anti-inflammatory, an-
tioxidant, hepatoprotective, neuroprotective, cardioprotective, renoprotective, anti-obesity,
anti-diabetic, and anti-cancer properties [93]. Further studies will clarify, in detail, the
mechanism of action of Prosopis Africana by Nrf2 which was particularly effective at a dose
of 1500 mg/kg of PA.

4.6. Effect of Prosopis africana on Hormonal Profile of the Male Albino Rat Exposed to HMM

The oral administration of a quaternary metal mixture to adult male rats caused a
marked decrease in the expression of FSH, LH, and testosterone (T) levels, along with
higher PRL levels compared to the control treatment. These results indicate that metals alter
the function of the anterior pituitary, affecting LH and FSH production, as well as Leydig
cells, which are involved in testosterone production. The reduced levels of LH and FSH may
be attributed to disturbances in the negative feedback control of the hypothalamic–pituitary
axis [86]. Furthermore, the impairment of pituitary function, such as LH secretion, may
result from the impairment of cell membrane-mediated signaling pathways responsible for
LH release [94]. The process of steroidogenesis in male rodents is induced by hypothalamic
gonadotropin-releasing hormone (GnRH), which triggers the production and release of
pituitary LH. LH then binds to the LH receptor (LHR) on the exterior of Leydig cells,
stimulating testosterone synthesis. Consequently, the decline in testosterone concentrations
is a rational outcome of the decrease in LH levels [95]. Thus, the reduction in circulating
testosterone is hypothesized to stem from the direct toxic effect of the HMM on Leydig
cells [96]. Similarly, Ozoani and colleagues [11] found that the quaternary metal treatment of
adults significantly decreased FSH, LH, and testosterone levels compared with the control
treatment [11]. Previous studies involving the simultaneous administration of sexual
hormone effectors and natural compounds to adult males have shown improved pituitary
and Leydig cell function and sex steroid receptor binding [86,97–99]. This improvement was
reflected by increases in FSH, LH, and testosterone levels compared to the administration of
sexual hormone effectors alone [86]. These effects were explained by the presence of many
endogenous antioxidants in the natural compound, which reduce oxidative stress and
ameliorate pathological changes in the testis [100]. Additionally, Farag and colleagues [101]
reported that Spirulina administration to cadmium-intoxicated rats significantly increased
testosterone levels compared with a cadmium treatment alone, highlighting the pivotal
role of antioxidant molecules [101]. Thus, similarly, a protective effect of plasmatic sex
hormones due to the co-administration of metals with PA aqueous extracts can be attributed
to the antioxidant properties of the molecules contained in the PA extracts mentioned above,
which counteract oxidative stress.

4.7. Correlation Analysis of Biochemical Parameters in HMM-Exposed Male Albino Rat Testis

This study investigates the interactive effects between antioxidant markers and ox-
idant, pro-inflammatory, transcriptional, and apoptotic biomarkers in the testes of rats
exposed to the HMM and PA. Statistical analyses reveal a positive relationship between
MDA and NF-kappa B, TNFα, and IL-6, suggesting an interaction associated with a pro-
tective effect on fecundity, consistent with the findings of Ozoani et al. [11]. Additionally,
a positive correlation with GPx, CAT, and SOD, but a negative correlation with MDA,
indicates evidence that the antioxidant system neutralizes ROS generated by the HMM
in the testes and hinders inflammation and apoptosis. Taken together, these data unveil a
nuanced response pattern induced by the administration of the HMM and PA [11].
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4.8. Effect of Prosopis africana on Semen Analysis of Male Albino Rat Exposed to HMM

Metal treatments have been proven to affect the sperm quality in rats. In accordance
with Ezejiofor and Orisakwe [102] and Adelakun and colleagues [103], we found a sig-
nificantly lower sperm viability, a decrease in normal sperm count, and a significantly
reduced overall sperm count in the HMM-treated group when compared to the control
group. According to Barros and colleagues [104], oxidants appear to disrupt regular sperm
activity by causing unsaturated fatty acid peroxidation in the sperm plasma membrane.
Polyunsaturated fatty acids (PUFA), which are very vulnerable to oxidative damage from
free radicals (ROS), cover mammalian spermatozoa. It is believed that the primary cause of
ROS-induced sperm damage, which results in the loss of motility, aberrant morphology,
decreased ability for sperm oocyte penetration, and infertility, is the lipid peroxidation
(LPO) pathway [102]. In the treatment where a combination of the heavy metal mixture
and PA aqueous extracts were administered, these observations were entirely lacking. This
could be attributed to one of its main organic compounds, flavonoids, which are known to
protect against oxidative injury by neutralizing oxygen radicals, preventing lipid peroxida-
tion, and sequestering metal ions. Ultimately, this protects the sperm membrane, ensuring
good quality sperm [56]. Recently, our histopathological studies on the architecture of
the testis using a standard staining procedure (hematoxylin and eosin) [105] defined the
grade of severity of oxidative damage of the HMM on spermatogenesis, confirming the
gonado-protective role of Prosopis africana (see morphological evidence in Supplementary
Materials Figure S1).

5. Conclusions

Taken together, this study highlighted the phytoconstituents detected in the Nigerian
medicinal plant Anonychium africanum (Prosopis africana, PA) and their relevant activities.
Experimental evidence indicates for the first time that the co-administration of the HMM
with PA decreases oxido-inflammatory marker expression via the Nrf2 pathway, mitigating
the deleterious gonadal effects of a heavy metal mixture and promoting male albino rat
reproductive health. Therefore, our data on testicular oxidative stress, the expression of
pro-inflammatory factors, and apoptotic and transcriptional factors demonstrate how the
protective properties of PA are effective in alleviating testicular injuries induced by heavy
metal mixture exposure, as evidenced by plasma reproductive hormone patterns and semen
analysis. Studies incorporating a broader range of animal models (fish, amphibians, and
reptiles) of both sexes to strengthen biodiversity sustainability are in progress; these include
a large range of doses to provide a more comprehensive understanding of the treatment’s
efficacy and safety over time. Further, mechanistic studies are currently underway to
provide deeper insights into the molecular mechanisms of PA action.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antiox13091028/s1, Figure S1: Effect of heavy metal mix-
ture (HMM) and co-administration of aqueous extract of the Nigerian medicinal plant Anonychium
africanum (Prosopis africana, PA—1500 mg/kg) on albino rat testicular histoarchitecture.
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