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Abstract: Common beans are a vital source of protein, vitamins, and minerals. Increasing
common beans productivity is crucial for improving food security and farmers’ incomes
globally. This study evaluated the growth and yield responses of common beans to inte-
grated organic and inorganic fertilizers under field conditions at the Faculty of Agriculture,
Kabul University. The trial was repeated over two consecutive growing seasons in 2020 and
2021, using a randomized complete block design with 18 treatments and three replications.
The fertilizers used included urea (N) (0, 60, and 90 kg/ha), diammonium phosphate (D)
(0, 50, and 100 kg/ha), and farmyard manure (O) (0 and 5000 kg/ha). The results show
that integrated fertilizers, particularly O5000N60D50, O5000N60D100, O5000N90D50, and
O5000N90D100, significantly increased growth and yield parameters. In 2020, the grain
yield increased significantly (p < 0.05) by 75.6, 76.7, and 68.4% with the O5000N60D50,
O5000N60D100, and O5000N90D100 treatments, respectively. In 2021, O5000N60D50,
O5000N60D100, and O5000N90D50 showed significant yield increases of 94.7, 89.6, and
97.9%, respectively. The grain yield strongly correlated with the SPAD value (r = 0.84),
number of pods per plant (r = 0.71), and number of seeds per pod (r = 0.66) in 2020, and it
more strongly correlated with the SPAD value (r = 0.91), number of pods per plant (r = 0.77),
and number of seeds per pod (r = 0.76) in 2021. A principal component analysis highlighted
the effectiveness of organic–inorganic fertilizer combinations, particularly O5000N60D50,
in enhancing productivity while potentially reducing inorganic fertilizer application. This
study demonstrates that integrating organic and inorganic fertilizers enhances sustainable
crop productivity and reduces negative environmental impacts, particularly in regions
facing nutrient depletion and drought conditions.

Keywords: common bean; organic and inorganic fertilizers; yield; productivity; alkaline soil

1. Introduction
Common beans (Phaseolus vulgaris L.) are one of the world’s main staple crops [1],

which are widely cultivated and consumed [2–4] because of their high quality and nutri-
tional value. Common beans provide valuable nutritional food containing high-quality
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protein, fiber, and other essential components [4–7]. In addition to their nutritional value,
common beans are vital for income generation, boosting soil fertility, and animal feed-
ing [8]. Moreover, farmers prefer common bean cultivation because of its early maturity,
nutritional qualities, and better adaptation to various climates and soil conditions than
other legumes [9]. Common beans, as members of leguminous crops, can contribute to
soil fertility improvement through biological nitrogen fixation (BNF) by rhizobial micro-
symbiont in the plant root nodules [10–12]. BNF is a significant process in mitigating
synthetic nitrogen fertilizer pollution, in which nitrogen can easily leach and cause soil
degradation, soil acidification, depletion of organic matter, and global warming while
conserving a sustainable agroecosystem [13–15]. This process supplies 200 million tons
of N annually to aquatic and terrestrial ecosystem [16]. Incorporating legumes into cereal
rotation effectively promotes plant growth [17] through soil fertility improvement, allevi-
ating the effects of climate change, restoring soil organic matter, and mitigating pest and
disease problems [18,19].

The crop rotation of various beans has been revealed to be an effective way to improve
soil conditions and strengthen wheat crop rotation [14,20]. Cultivated beans increase soil
nutrient availability, improve soil productivity, and interrupt pest and disease cycles in crop
rotation systems. Thus, they provide a productive system for the next crop planting [21].

Organic fertilizer applications can increase water-holding capacity, enhance physical
and chemical properties, and improve soil structure, thereby improving soil health, fertility,
and sustainable crop productivity [15,22–25]. Furthermore, adding organic fertilizer to
soil provides a rich source of food for various microbial communities and influences their
composition compared to without application [26]. In addition, farmers have greater access
to organic materials than chemical fertilizers because of their low cost and local availability
in different regions. Incorporating chemical fertilizers with various organic fertilizers is
considered a practical approach to boosting soil fertility and increasing cereal crop yields in
crop rotation systems [10,27]. Previous studies have indicated that the combined application
of organic and inorganic fertilizers may have the potential to significantly enhance the
growth and yield of various crops, such as soybean [28], maize [29], tomato [30], and
maize–wheat, in a cropping system [31]. They highlight that the integration of chemical
fertilizers and manures is beneficial for sustainable yield productivity through improving
soil fertility.

Twenty years and frequent drought occurrences have adversely influenced food
security and agriculture in Afghanistan [32,33]. Livestock and legume products are primary
protein sources that enhance food security in Afghanistan [34]. Common bean is widely
cultivated in various regions of Afghanistan and accounts for about 16% of cultivated
legumes and 69,000 hectares of land in 2020 [35]. Common beans are extensively used
in the country as the cheapest and most available protein source and as a poor man’s
meat [36].

Therefore, increasing common bean productivity is necessary to provide adequate
protein for poor Afghan households, alleviate poverty in Afghanistan, and increase farmers’
incomes in rural areas. As primary inputs, inorganic fertilizers are applied to enhance
the growth and yield of common beans. However, the excessive application of chemical
compounds, including fertilizers, is a primary concern related to environmental pollution
in Afghanistan [37,38], especially river and groundwater contamination [39]. Furthermore,
the availability of chemical fertilizers is limited for some farmers due to their high costs [10]
and unstable markets [40]. Therefore, the combined use of organic and inorganic fertiliz-
ers might be suitable for reducing chemical fertilizer applications and moving toward a
sustainable and sound agroecosystem [30,31,41] in the country. This study is significant
as it explores the integration of organic and inorganic fertilizers to enhance common bean
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productivity in Afghanistan, where reliance on costly inorganic fertilizers poses a signifi-
cant environmental challenge [42,43]. The findings could provide sustainable, cost-effective
solutions for smallholder farmers, improving soil health, boosting yields, and reducing
environmental degradation. The research also has broader implications for regions facing
similar agricultural challenges, contributing to the development of sustainable farming
practices worldwide.

The objectives of this study were (1) to evaluate the impact of integrating organic
(farmyard manure) and inorganic (urea and diammonium phosphate (DAP)) fertilizers on
the growth and yield of common bean and (2) to find the most optimal integrated rates of
applied fertilizers for improving sustainable common bean productivity in Afghanistan.

2. Materials and Methods
2.1. Experimental Design and Site Description

A field trial was conducted over two consecutive years, with the first experiment in
2020 and the second in 2021. Both experiments were carried out in the research field of the
faculty of Agriculture at Kabul University, Kabul, Afghanistan (Figure 1). It was located
at coordinates N 34.517175 and E 69.139377, at an altitude of 1789 m above sea level, as
mentioned in our recently published study [28].
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Figure 1. Afghanistan map and research site location in Kabul province.

The climate in Kabul is arid and semi-arid, and cultivated crops frequently acquire
irrigation. The soil’s characteristics indicated a pH of 8.2, calcareous soil, low organic
matter, and a silty loam soil texture at a depth of 0–30 cm (Table 1).

The experiments were conducted from May 3 to August 30 in 2020, and from May 5 to
September 10, in 2021. The research was carried out using a Randomized Complete Block
Design (RCBD) consisting of eighteen treatments with various levels of fertilizers and three
replications. Each plot was 2 m × 2 m in size. The land was plowed and leveled using a
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240 Massey Ferguson tractor. The first irrigation was applied to specify the water border
and suitable placement of the seed in the plot.

Prior to cultivation, a seed germination test was conducted to assess seed germination
viability. A local common bean variety (Capsuli) was cultivated using an inter-row spacing
of 70 cm and 10 cm between the plants (intra-row spacing), with 180,000 plants per ha.
Well-decomposed organic fertilizer was added to the plot two weeks before the planting
and mixed with the soil surface.

Table 1. Physical and chemical characteristics of the field soil used for common bean cultivation.

Soil Characteristics Amount

pH 8.2
EC (dS/cm) 17.8

Organic matter (%) 0.7
Nitrogen (ppm) 8.9

Phosphorus (ppm) 8.7
Potassium (ppm) 73.2

Calcium carbonate (CaCO3, %) 15.1
Sulfur (ppm) 7.1

Magnesium (ppm) 11.2
Soil texture Silty loam

Eighteen treatment combinations were designed and implemented to optimize fer-
tilization practices for common bean production. These treatments involved varying the
amounts and combinations of chemical fertilizers to assess their impact on crop yield and
overall productivity. The urea fertilizer (N), containing 46% nitrogen, was applied at rates
of 0, 60, and 90 kg/ha, while DAP (used as ’D’ in the treatment combinations), containing
18% nitrogen and 46% phosphorus, was applied at rates of 0, 50, and 100 kg/ha. Farmyard
manure (O) was also used at 0 and 5000 kg/ha. Nitrogen fertilizer was applied twice during
the crop’s growth, as follows: 70% at the cultivation stage and 30% during the flowering
stage. All phosphorus fertilizer was applied during cultivation. Although common beans
are nitrogen-fixing legumes, additional nitrogen supplementation was required because
of the low organic matter content and alkaline nature of the soil in Kabul [28]. During the
growing season, weeds were regularly removed after two weeks using hand hoeing. The
cultivated plants were irrigated according to their water requirements. The integration of
various fertilizers in eighteen treatments is shown in Table 2.

Additionally, the climate conditions, including precipitation, reference evapotran-
spiration (ETo), temperature and growing degree days (GDD), are shown in Figure 2.
The GDD for common bean was determined, as described by Aryan et al. [44], using the
following formula:

GDD = ∑((Tmax + Tmin)/2 − Tb)

The Tb (T base) value was used at 10 ◦C, as reported in previous studies [45,46] for
bean crops.
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Table 2. Description of treatments and the results of various organic and inorganic fertilizers’ effects on cultivated common bean growth attributes. Highlighted bold
numbers indicate effective treatment combinations of different fertilizers on growth attribute parameters.

Organic Manure
(kg/ha)

Urea
(kg/ha)

DAP
(kg/ha)

Plant Height (cm) Number of Leaves Number of Branches SPAD Value

2020 2021 2020 2021 2020 2021 2020 2021

0

0
0 39.2 ± 2.5 b† 42.7 ± 2.5 b 18.3 ± 2.6 b 19.3 ± 1.5 b 3.9 ± 1.3 b 3.5 ± 0.6 b 30.5 ± 1.7 d 29.7 ± 1.5 c

50 42.2 ± 3.1 ab 43.1 ± 3.9 b 20.3 ± 1.5 b 20.2 ± 1.3 b 4.7 ± 0.6 ab 3.8 ± 0.7 b 35.0 ± 2.6 bcd 37.3 ± 2.1 b
100 40.1 ± 2.6 ab 43.7 ± 5.1 ab 19.2 ± 2.1 b 20.7 ± 0.8 ab 4.8 ± 1.5 ab 3.7 ± 0.5 b 36.3 ± 1.9 abcd 37.6 ± 1.5 ab

60
0 40.0 ± 2.2 ab 43.6 ± 5.3 ab 19.8 ± 3.7 b 20.1 ± 1.8 b 4.7 ± 1.7 ab 4.4 ± 0.5 ab 36.2 ± 2.5 abcd 37.0 ± 0.6 b

50 43.5 ± 4.5 ab 44.6 ± 4.1 ab 20.2 ± 0.8 b 23.1 ± 2.3 ab 5.1 ± 1.8 ab 4.6 ± 1.1 ab 36.9 ± 2.6 abc 39.0 ± 1.1 ab
100 44.7 ± 4.6 ab 45.0 ± 1.5 ab 20.1 ± 0.9 b 22.3 ± 1.5 ab 5.4 ± 0.7 ab 4.9 ± 0.9 ab 38.0 ± 2.0 abc 39.3 ± 1.5 ab

90
0 42.7 ± 0.6 ab 43.7 ± 4.5 ab 20.0 ± 1.0 b 22.1 ± 1.7 ab 5.6 ± 1.8 ab 3.8 ± 1.1 b 38.3 ± 2.1 abc 39.2 ± 2.1 ab

50 42.1 ± 2.1 ab 43.2 ± 1.9 b 21.2 ± 1.5 b 21.7 ± 2.7 ab 5.3 ± 0.6 ab 4.3 ± 1.2 ab 39.1 ± 2.3 abc 40.3 ± 1.5 ab
100 43.3 ± 5.2 ab 45.2 ± 6.6 ab 21.2 ± 1.5 b 23.4 ± 1.2 ab 5.3 ± 0.6 ab 4.8 ± 0.5 ab 39.6 ± 2.5 abc 41.6 ± 1.0 ab

5000

0
0 41.5 ± 4.1 ab 43.6 ± 2.1 ab 21.1 ± 2.1 b 20.3 ± 1.1 ab 4.7 ± 0.8 ab 4.3 ± 0.9 ab 37.0 ± 1.2 abcd 37.7 ± 1.0 ab

50 41.3 ± 2.0 ab 45.7 ± 3.8 ab 21.3 ± 2.1 b 21.3 ± 1.2 ab 4.8 ± 1.1 ab 4.2 ± 0.6 ab 33.7 ± 1.0 cd 37.3 ± 2.3 b
100 43.6 ± 2.1 ab 44.1 ± 5.4 ab 21.2 ± 2.6 b 22.3 ± 1.2 ab 5.1 ± 0.2 ab 4.9 ± 0.7 ab 37.0 ± 1.6 abcd 38.6 ± 1.0 ab

60
0 42.4 ± 3.2 ab 44.3 ± 4.6 ab 21.3 ± 3.5 b 21.7 ± 1.5 ab 5.4 ± 1.4 ab 4.5 ± 1.1 ab 40.1 ± 2.5 abc 39.0 ± 2.6 ab

50 46.6 ± 2.5‡ a 45.5 ± 3.2 ab 22.3 ± 1.5 ab 23.3 ± 1.1 ab 6.4 ± 1.3 a 5.3 ± 0.5 a 40.9 ± 2.6 abc 42.1 ± 2.5 ab
100 44.7 ± 1.4 a 45.1 ± 5.1 ab 21.9 ± 1.1 ab 21.3 ± 1.2 ab 5.4 ± 0.8 ab 4.6 ± 0.6 ab 41.2 ± 1.5 ab 41.3 ± 2.1 ab

90
0 45.2 ± 9.1 ab 44.4 ± 3.5 ab 21.2 ± 2.6 b 22.7 ± 2.5 ab 5.1 ± 1.9 ab 4.8 ± 0.8 ab 40.9 ± 1.5 abc 41.3 ± 1.5 ab

50 44.7 ± 4.9 ab 47.1 ± 2.2 a 23.8 ± 1.4 a 25.1 ± 2.0 a 6.1 ± 1.2 a 5.5 ± 0.6 a 41.3 ± 2.1 ab 42.6 ± 0.6 a
100 44.7 ± 4.6 ab 45.3 ± 4.7 ab 22.3 ± 1.1 ab 23.3 ± 2.6 ab 5.3 ± 1.7 ab 4.7 ± 0.6 ab 41.9 ± 1.5 a 42.0 ± 1.7 ab

† The letters show differences among treatments according to Tukey’s HSD at a 5% level. ‡ Highlighted bold numbers indicate effective treatment combinations of different fertilizers on
growth attribute parameters of the common bean crop.
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2.2. Data Collection

Fifteen plants per treatment were selected to measure various growth and yield
parameters. The growth attributes, including plant height (cm), the number of leaves,
and branches per plant, were recorded 60 days after cultivation. The soil plant analysis
development (SPAD) value was measured with a SPAD value meter (SPAD—502 Plus;
Spectrum Technologies, Aurora, IL, USA) on the third trifoliate leaf before the flowering
stage to evaluate the chlorophyll content of the crops’ leaves. The yield components, such
as the number of pods per plant, the number of seeds per pod, the 100-seed weight, and
grain yield, were measured after the maturation of pods and were gradually recorded until
the end of the harvest.

2.3. Statistical Analysis

The data for various growth and yield parameters were statistically analyzed using
a two-way analysis of variance (ANOVA), a correlation matrix, and principal component
analysis (PCA) in the R language (version 3.6.1). A Tukey post hoc test was performed at a
5% significance level to compare treatment means and identify the most effective treatments
for future field applications.

3. Results
3.1. Impact of Combined Fertilizers on Growth Attributes

Generally, the fertilizers’ application significantly (p < 0.05) improved the growth
response parameters like plant height, the number of leaves and branches, and SPAD
value. In 2020, the plant height ranged from 39.2 to 44.7 cm, and maximum significant
differences of 18.8% and 14.0% were observed through the applications of three integrated
types of fertilizer treatments (O5000N60D50 and O5000N60D100) compared with the non-
fertilized treatment (O0N0D0) (Table 2). In 2021, the treatment of O5000N90D50 exhibited
a considerable plant height increase of 10.3% among the treatments, with a variation of 42.7
to 47.1 cm (Table 2).
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The applications of the O5000N90D50 treatment resulted in a significant increase in
leaf number, by 30.0% compared with the negative control for two years (2020–2021). In
both years, the variation in leaf numbers between the integrated organic and inorganic
fertilizer treatments was higher than for a single inorganic fertilizer combination (Table 2).

The number of branches significantly increased through the application of different
fertilizer treatments. The highest branch number values were obtained in 2020, with appli-
cations of O5000N60D50 and O5000N90D50 treatments at 64.1% and 56.4%, respectively.
Moreover, in 2021, the same trend of significant results related to the O5000N60D50 and
O5000N90D50 treatments was observed at 35.8% and 41.0%, respectively.

The SPAD values in 2020 varied among the treatments from 30.5 to 41.9, while in 2021,
they ranged from 29.7 to 42.6. A gradual increase in SPAD values was observed with the
increasing amounts of various combinations of organic and inorganic fertilizers during the
two consecutive years (2020–2021) (Table 2). Among the treatments, the highest SPAD value
in 2020 was recorded in the treatment O5000N90D100 at 37.4%, followed by O5000N90D50
at 35.4% and O5000N60D100 at 35.0%. In 2021, the treatment O5000N90D50 showed the
highest value (39.7%). Notably, adding organic fertilizer significantly improved common
bean growth parameters over the two growth seasons.

3.2. Effect of Integrated Fertilizers on Yield and Yield Components

The number of pods per plant over two years significantly varied through applying
different fertilizers, ranging from 55.6 to 87.0 in 2020. The maximum values (56.4%, 41.9%)
were observed in the O5000N60D50 and O5000N90D50 treatments compared to the negative
control (Table 3). In 2021, numerous treatments of organic and inorganic fertilizers exhibited
considerable enhancement in the number of pods per plant. The O5000N90D100 treatment
displayed the maximum number of pods per plant (54.9%) among the four treatments with
the highest number.

In 2020, the number of seeds per pod significantly increased with the application of
O5000N60D100, reaching a value of 46.6% compared to the unfertilized treatment. Like-
wise, in 2021, the treatments O5000N60D50 and O5000N60D100 showed a considerable
increase of 42.4% and 39.3% in the number of seeds per pod, respectively. In addition, sub-
stantial increases of 33.3% and 36.3 were observed with O5000N90D50 and O5000N90D100
treatments compared to the control (Table 3).

In both years, the weight of 100 seeds varied from 45.8–51.5 g in 2020 and 44.1–51.3 g
in 2021. Significant increases in the weight of 100 seeds were observed in many treatments
(Table 3), with maximum values of 13.7% and 16.3% noted with the O5000N90D50 treatment
in 2020 and 2021, respectively.

The yields over two years (2020 and 2021) significantly (p < 0.05) varied among the
treatments (Figure 3). In 2020, the application of inorganic fertilizers, such as O0N60D50,
O0N60D100, and O0N90D100, resulted in significant increases of 47.5%, 58.3%, and
58.5%, respectively.

Of the organic combination, the O5000N60D50, O5000N60D100, and O5000N90D100
treatments recorded the highest significant increases of 75.6%, 76.7%, and 65.9%, respectively.

Of the inorganic fertilizer combinations (except O0N60D100), the other treatments
showed considerable increases in yield parameters. The highest results (79.9% and 80.4%)
were observed with the O0N90D50 and O0N90D100 treatments, respectively (Figure 3). For
the integrated organic and inorganic fertilizer treatments, O5000N60D50, O5000N60D100,
and O5000N90D50 showed significant results at 96.1%, 89.6% and 97.9%, respectively. The
statistical analysis revealed significant differences among treatments, with O5000N60D50
consistently showing superior results in growth and yield parameters.



Appl. Biosci. 2025, 4, 22 8 of 17

Table 3. Description of the treatments and the results of various organic and inorganic fertilizers’ effects on the yield parameters. Highlighted bold numbers
demonstrate the effective treatment of different fertilizers in relation to enhancing yield parameters.

Organic Manure
(kg/ha) Urea (kg/ha) DAP (kg/ha)

Number of Pods/Plants Number of Seeds/Pods 100-Seeds Weight (g)

2020 2021 2020 2021 2020 2021

0

0
0 55.6 ± 5.1 c 44.6 ± 5.2 c 3.0 ± 0.1 b 3.3 ± 0.4 b 45.8 ± 1.9 b 44.1 ± 2.6 b

50 59.7 ± 3.5 abc 46.8 ± 6.8 bc 3.5 ± 0.3 ab 3.4 ± 0.4 b 47.1 ± 1.5 ab 46.1 ± 1.5 ab
100 63.3 ± 9.8 abc 57.7 ± 2.7 abc 3.6 ± 0.4 ab 3.7 ± 0.2 ab 47.7 ± 2.3 ab 46.0 ± 1.2 ab

60
0 59.1 ± 1.5 bc 52.8 ± 10.5 abc 3.3 ± 0.9 ab 4.3 ± 0.9 ab 48.1 ± 3.2 ab 46.4 ± 2.5 ab

50 66.1 ± 11.9 abc 61.2 ± 5.7 abc 3.5 ± 0.2 ab 4.3 ± 0.5 ab 49.0 ± 3.2 ab 47.2 ± 3.2 ab
100 64.7 ± 11.1 abc 64.3 ± 4.5 abc 3.5 ± 0.2 ab 3.9 ± 0.3 ab 48.9 ± 3.1 ab 46.4 ± 2.1 ab

90
0 65.1 ± 10.5 abc 65.1 ± 11.3 abc 3.5 ± 0.3 ab 4.2 ± 0.2 ab 49.2 ± 4.3 ab 46.3 ± 3.1 ab

50 65.0 ± 7.6 abc 68.3 ± 7.2 a 3.6 ± 0.3 ab 3.8 ± 0.2 ab 49.3 ± 6.1 ab 45.6 ± 1.5 ab
100 64.4 ± 3.7 abc 68.1 ± 3.3 a 4.0 ± 0.8 ab 4.3 ± 0.1 ab 48.6 ± 3.3 ab 45.3 ± 2.1 ab

5000

0
0 68.3 ± 15.3 abc 62.6 ± 4.6 abc 3.1 ± 0.3 b 3.5 ± 0.9 b 48.2 ± 2.1 ab 48.2 ± 2.1 ab

50 63.7 ± 8.1 abc 55.4 ± 4.9 abc 3.5 ± 0.1 ab 3.9 ± 0.6 b 49.2 ± 1.2 ab 46.7 ± 2.5 ab
100 72.5 ± 5.5 abc 60.6 ± 8.3 abc 3.8 ± 0.1 ab 4.0 ± 0.2 ab 49.3 ± 0.7 ab 48.3 ± 2.5 ab

60
0 66.4 ± 7.2 abc 55.4 ± 4.9 abc 4.1 ± 0.3 ab 4.4 ± 0.8 ab 48.2 ± 3.1 ab 46.7 ± 3.5 ab

50 87.0 ± 2.6 a 66.3 ± 5.5 ab 4.1 ± 0.2 ab 4.7 ± 0.4 a 51.1 ± 1.4 a 51.2 ± 1.4 ab
100 76.7 ± 5.7 abc 62.7 ± 5.5 abc 4.4 ± 0.1 a 4.6 ± 0.3 a 50.8 ± 1.1 a 51.3 ± 1.0 a

90
0 69.1 ± 5.8 abc 61.6 ± 6.6 abc 4.0 ± 1.0 ab 4.3 ± 0.2 ab 50.1 ± 5.3 ab 46.6 ± 1.5 ab

50 78.9 ± 6.6 ab 68.8 ± 10.1 a 3.9 ± 0.2 ab 4.4 ± 0.3 ab 52.1 ± 1.7 a 51.3 ± 1.9 a
100 77.2 ± 9.3 abc 69.1 ± 5.0 a 4.2 ± 0.3 ab 4.5 ± 0.7 ab 51.5 ± 2.1 a 51.3 ± 1.5 a

† The letters show differences among treatments according to Tukey’s HSD at a 5% level. ‡ Highlighted bold numbers indicate effective treatment combinations of different fertilizers on
growth attribute parameters of the common bean crop.
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3.3. Correlations of Growth and Yield Parameters

The growth and yield parameters showed a great correlation among the increased
parameters (Figure 4). In 2020, the number of leaves revealed a positive correlation (r = 0.65)
with the number of branches. Similarly, the number of branches showed close correlations
with the number of pods (r = 0.77) and 100 seed weight (r = 0.78). Moreover, the SPAD
value correlated highly with plant height (r = 0.80) and grain yield (r = 0.84). In 2021, the
number of leaves indicated a strong relationship with the number of branches (r = 0.78),
SPAD value (r = 0.80), and number of pods per plant (r = 0.78). Likewise, the grain yield
had a positive correlation with the number of leaves (r = 0.75), SPAD value (r = 0.91),
number of pods per plant (r = 0.77), and number of seeds per pod (r = 0.76).

The principal component analysis was conducted to evaluate the relationship among
the treatments, growth and grain yield parameters (Figure 5). In 2020, it was found that
adding organic fertilizer with inorganic fertilizer highly influenced the growth and yield
parameters and grouping of the treatments. The effects were more visible in the leaf num-
bers, SPAD, 100-seed weight, number of pods per plant, and number of seeds per pod
(Figure 5) under organic fertilization. The increasing growth and yield parameters were
effectively influenced by applying the O5000N60D50, O5000N60D100, O5000N90D50, and
O5000N90D100 treatments. In 2021, similar results for the organic fertilizer effects were
observed in the correlation of treatments and parameters, as well as effective treatments
(Figure 5). The O5000N60D50 treatment contains low nitrogen and phosphorus rates com-
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pared to other effective treatments, showing the same effect on the growth and yield
parameters. However, the effects on growth and yield parameters varied over two consec-
utive growth seasons. A strong positive correlation was observed between SPAD values
and grain yield (e.g., r = 0.84–0.91), highlighting the importance of nitrogen availability in
improving productivity.
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Figure 5. Principal component analysis of two years of experiments concerning the applied fer-
tilizers’ treatments, growth, and yield parameters. The letters of treatments in organic conditions
present T1:O5000N0D0, T2:O5000N0D50, T3:O5000N0D100, T4:O5000N60D0, T5:O5000N60D50,
T6:O5000N60D100, T7:O5000N90D0, T8:O5000N90D50, and T9:O5000N90D100. The growth at-
tributes parameters are abbreviated as PH: plant height (cm), LN: leaf number, BN: branch number,
SPADv: soil and plant analyzer development value, NPP: number of pods/plant, NSP: number of
seeds/pod, 100SW: 100 seeds weight (g), GY: grain yield (Kg/ha).

4. Discussion
Plants require essential nutrients for optimal growth and yield, with nitrogen and

phosphorus being major elements that play crucial roles in plant growth development.
Furthermore, organic materials provide various crop nutrients and help maintain soil
health [48]. Therefore, we evaluated the influence of integrated organic and inorganic
fertilizers on common bean growth and yield. Our results show that the combined use of
organic and inorganic fertilizers significantly affected growth and yield parameters, which
might be due to the availability of both macro- and micronutrients for the plants. In 2020 and
2021, the maximum plant heights, leaf numbers per plant, and branch numbers per plant
were observed in the mixed treatments of organic and inorganic fertilizers (O5000N60D50,
O5000N60D100, and O5000N90D50). A similar positive influence of organic and inorganic
fertilizers on plant height and branch numbers per plant in common beans was reported
by Mohamed et al. [49], who found that the tallest plant, highest branch numbers per plant,
and the heaviest fresh and dry weights in T4 (100% M-RDN) and salicylic acid at 150 ppm
treatment over two growth seasons. Likewise, the highest plant height (38.9 cm) was
reported in the combined treatment of organic and inorganic fertilizers (CM2 + NP1) [50].
The increase in common bean growth parameters could be attributed to the synergistic
effects of combined organic and inorganic fertilizers.

The SPAD value increased across the treatments, ranging from 29.7 to 42.6 when or-
ganic and inorganic fertilizers were used over two consecutive years (2020–2021). Previous
studies have reported similar trends in SPAD value increments for beans [51] and other
crops [52,53] when mixed organic and inorganic fertilizers were applied. However, the
chlorophyll contents of different common bean genotypes varied depending on the specific
treatment of organic and inorganic fertilizers [51]. The increase in SPAD value could be
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due to the increased availability of nutrients, particularly nitrogen [54], in the soil, which is
crucial for plant health and can enhance leaf chlorophyll content.

The application of organic and inorganic fertilizers improved the yield and yield
parameters. In 2020 and 2021, the O5000N60D50, O5000N60D100, and O5000N90D50
treatments showed a significantly higher number of pods per plant, seed per pod, and
100-seeds weight. These results are consistent with previous studies [49,50], and Mohamed
et al. [49] reported that in both years (2020 and 2021), treatments T4 (100% M-RDN) and T3
(75% of M-RDN +25% O-RDN) with 150 ppm salicylic acid (SA) showed the highest 100-
seed weight. Similarly, Ref. [50] found that the number of pods per plant was considerably
increased in mixed treatments of organic manure and chemical fertilizers (CM1 + NP3).
Moreover, Ref. [55] indicated a significant increase in pods per plant (40.83) when organic
and inorganic fertilizers treatment (100% NPK + PM @ 5 t ha−1) were combined. Integrating
organic fertilizers with inorganic fertilizers for common bean yield components appears to
be very effective and may influence plant growth in various ways [56–58]. Furthermore,
organic fertilizers are not only crucial for sustainable crop productivity, but they also
serve as a viable alternative for restoring degraded soil [59], improving soil physical and
chemical properties [60,61], preserving diverse soil organisms [62], and mitigating the need
for inorganic fertilizer application [63–65].

The grain yield significantly increased with the application of combined organic
and inorganic fertilizer treatments. In 2020, the highest results were observed with
the O5000N60D50, O5000N60D100, and O5000N90D100 treatments, while in 2021,
the O5000N90D100 was replaced by the O5000N90D50 treatment. Interestingly, the
O5000N60D50 treatment in both experiments (2020 and 2021), which contained lower
nitrogen and phosphorus levels compared to the other effective treatments, resulted in
the same grain yield. This may be attributed to the nutrient balance in this treatment,
as excessive nitrogen disrupts microbial activity and suppresses nodulation in common
bean [66,67], while increasing phosphorus does not mitigate the inhibitory effect of nitro-
gen on nodule formation [68]. Additionally, previous studies stated that organic fertilizers
improve the efficiency of inorganic fertilizers by providing nutrients and improving soil
quality, leading to better plant growth and yield [69,70].

Plants cannot utilize all applied nitrogen in the field, eventually leading to runoff and
groundwater contamination [71,72] and environmental pollution [73,74].

Combining organic and inorganic fertilizers effectively boosts grain yield and reduces
inorganic fertilizer usage. Mohamed et al. [49] reported similar findings, stating that
organic treatment T3 (75% M-RDN+ 25% M-RDN) + 150 ppm SA improved common
bean productivity by enhancing soil physical conditions, root aeration, water drainage,
and nutrient exchange. Likewise, Tunc et al. [50] reported that a maximum grain yield
(2742.1 kg ha−1) was found in combined organic and inorganic fertilizers (CM1 + NP3).
Furthermore, Ref. [75] indicated the highest economic value of 69,460 and 63,250 ETB from
applying organic (compost) and inorganic (Triple Superphosphate) fertilizers.

The correlation matrix resulted in a positive correlation between grain yield and other
growth and yield parameters, including plant height, SPAD value, and number of pods
per plant in 2020, while in 2021, the correlation efficiency was found to be stronger with
the number of leaves, SPAD value, number of pods per plant, and number of seeds per
pods. Previous studies have confirmed the positive correlation between grain yield and
several growth and yield parameters [76,77]. Moreover, SPAD values exhibited a strong,
significant relationship with grain yield in both experiments (2020 and 2021), ranging
from 0.84 to 0.91. This suggests that enhancing the SPAD value increases crop yield, as it
reflects the nitrogen status of the crop through chlorophyll content in the leaves [78–81].
A similar trend of increasing SPAD value with various nitrogen levels has been observed
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in numerous crops and previous studies [52,69,82]. Furthermore, it has been reported
that organic fertilizers increase leaf chlorophyll content [83], leaf area, and the number
of branches, all of which commonly result in positive yield outcomes [51]. The positive
outcomes observed in the growth and yield of common beans through the combined
use of organic and inorganic fertilizers demonstrate the effectiveness of these treatments
and underscore their transformative potential for sustainable agriculture. These findings
align with global fertilizer policies by increasing organic matter application, efficiently
using inorganic fertilizers, and reducing reliance on mineral fertilizers [42,84]. They also
provide a valuable framework for developing agricultural policies for improving soil health,
enhancing productivity, and addressing environmental challenges such as nutrient runoff
and groundwater contamination.

5. Conclusions
In this study, various organic and inorganic fertilizers were integrated and applied to

determine the most effective treatments for enhancing common bean productivity. Over
two years of evaluation, treatments such as O5000N60D50, O5000N60D100, O5000N90D50,
and O5000N90D100 significantly improved growth attributes and yield components. No-
tably, the O5000N60D50 treatment, with lower nitrogen and phosphorus levels, led to a
remarkable 75.6% increase in grain yield in 2020 and 96.1% in 2021, demonstrating its
potential for enhancing productivity while reducing dependency on inorganic fertilizer.
The findings suggest that integrating organic and inorganic fertilizers can be a practical
approach for improving crop yield, particularly in drought-prone and nutrient-depleted
regions, and could cooperate to reduce costs, improve soil health, and mitigate environ-
mental impacts. These practices offer a pathway to more sustainable and climate-resilient
agriculture, especially for smallholder farmers facing high fertilizer costs and ecological
challenges. Further research is required to explore the mechanisms of the synergistic effects
of organic and inorganic fertilizers on common beans growth and yield using different soil
types under various climatic conditions.
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