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Abstract: Food quality is a topic of utmost importance as more and more emphasis is placed on
quality rather than quantity of products. Previous studies have pointed out the interaction of quality
with the harvest year. In this study, 22 Pistacia vera (Greek ‘Aegina’ variety) samples (11 from 2017
and 11 from 2018) were differentiated using Fourier transform infrared spectroscopy (FTIR) and
(a) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and (b) KBr/sample disk
techniques. In both years, the pistachios trees’ growing followed standard cultivation methods
and similar agronomic conditions. Two chemometric models were developed using partial least
squares-discrimination analysis (PLS-DA). DRIFTS proved unable to statistically differentiate the
samples (R2 = 0.96266, Q2 = 0.63152). On the contrary, the disk technique completely differentiated the
pistachio samples (R2 = 0.99705, Q2 = 0.97719). The 1720–1800 cm−1 region mostly contributed to the
discrimination. The disk-FTIR chemometric model is fast, robust, economical, and environmentally
friendly for determining pistachio matrix quality.
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1. Introduction

Pistachios (Pistacia vera) are valued all over the world and have been described as
superfoods for their special organoleptic characteristics (color, intense aroma, and taste),
their ability to provide a multitude of beneficial ingredients in small quantities, and the
possibility of valorizing the nut as a whole. Pistachio kernels are consumed fresh and
dried in the sun or mechanically either as a snack, as a raw material to produce various
products, or as a confectionery industry ingredient [1,2]. Their composition is charac-
terized by low carbohydrate content, protein content above 20% w/w, and lipid content
around 50% w/w. They contain a significant number of bioactive antioxidants, such as
flavonoids, stilbenes, tocopherols, carotenoids, and chlorophylls [3,4]. In comparison to
other nuts, pistachios have higher levels of lutein, zeaxanthin, γ-tocopherol, vitamin K,
dietary fibers, phytosterols, and carotenoids [5,6]. Numerous studies prove the beneficial ef-
fect of pistachios to human health. They are known for their antioxidant, anti-inflammatory,
anti-cancer, and cardioprotective action. In addition, their antimicrobial, anti-ischemic, and
immunoregulatory properties have attracted the attention of many researchers [3,7].

In recent years, the pursuit of food quality has been a crucial goal for the food industry
and consumers [8]. Several instrumental analytical methodologies have been broadly
applied to address quality issues. The majority of these are not suitable for everyday or
extensive analyses since they require time-consuming sample preparation and specialized
laboratory staff. In recent years, researchers have focused on the application of meth-
ods that provide a whole molecular fingerprint of the food matrix, such as spectroscopic
(infrared (IR), Raman, nuclear magnetic resonance (NMR)) and chromatographic tech-
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niques (gas chromatography-mass spectrometry (GC-MS) and high performance liquid
chromatography-mass spectrometry (HPLC-MS)) [9].

In particular, Fourier transform infrared (FTIR) spectroscopy has emerged as a promis-
ing analytical tool both on industrial and research scales. Its high competitiveness lies in its
speed of analysis, low cost, and convenience of sample preparation [9]. FTIR spectroscopy
has been applied to nuts, flours, oils, cakes and flakes, meat, and spirit beverages [10]. The
IR spectrum includes information about functional groups of the chemical compounds
in the complex matrix of food matrices, such as pistachios. Diffuse reflectance infrared
Fourier transform spectroscopy (DRIFTS) and KBr/sample disk spectroscopy are two FTIR
sampling techniques that became very popular in a very short duration, since they offer a
short analysis time and minor sample preparation [11,12].

Typically, in the DRIFTS technique, the sample may be a powder or a rough surface
solid through which the radiation is scattered. Infrared light is directed to a sample cup
and can lead to a single reflection from the surface (specular reflection) or be reflected
multiple times causing diffuse scattered light over a large area. DRIFTS accessories are
designed to reject the radiation of specular reflection and to collect by a mirror as much as
possible from the diffuse scattered light, subsequently measured by the detector [11,13].
The KBr/sample disk technique involves dilution of the sample in KBr, transportation of a
mixture amount in a die, and the use of a hydraulic press to form a disk. By this technique,
the diffuse scattered light is increased as the incident light more deeply penetrates the
sample [14].

Studies with chemometrics data, such as FTIR, result in complex multivariate datasets,
so that multivariate data analysis is required to investigate these complex datasets [15].
FTIR spectroscopy associated with different chemometric tools has been frequently applied
to dairy products, honey, coffee, olive oil, and wine [9]. One of the most used methods for
development of multivariate discrimination models is partial least squares discriminant
analysis (PLS-DA) [16]. PLS-DA can identify which explanatory variables significantly con-
tribute to the construction of PLS components and, consequently, have a high explanatory
power on the response variable [17].

The food quality and, consequently, the chemical characteristics of food matrices can
be affected by the year of harvest [18]. In the present study, DRIFT and KBr disk spectra
of pistachio samples of the Greek ‘Aegina’ variety from two consecutive years of harvest
were acquired, aiming to: (a) accurately estimate whether pistachios could be classified in
two classes due to year-to-year variability and (b) compare which spectroscopic technique
gives the best obtained PLS-DA model ascertained through R2 and Q2 indicators.

2. Materials and Methods
2.1. Pistachio Samples

A total of 22 Pistacia vera samples of the ‘Aegina’ variety equally obtained from
2 consecutive years of harvest were provided directly from pistachio producers across
Greece (Aegina, Megara, Phthiotis, Trizina). The origin conditions (pistachio farmers, field
coordinates, cultivation care, post-harvest way of drying) of the 11 samples derived from
2017 harvest year were the same with those of the 11 samples from 2018 harvest year.
All samples were unshelled, and the kernels were subjected to pulverization with a food
processor equipped with metal cutting blade and stainless steel container (Izzy, Greece),
followed by particle size separation to obtain ground samples (pistachio kernel flours) of
500–800 µm. Prior to further analysis, the samples were stored in re-closable plastic bags
in the dark and refrigerated (−20 ◦C) conditions as a way of avoiding degradation and
improving oxidation stability.

2.2. Moisture Content Measurement

According to the AOAC Official Method 925.40, approximately 2 g from each pistachio
kernel flour was placed in a ceramic cup and dried in an oven (102 ◦C) until constant weight.
The moisture content was calculated based on the weight difference before and after drying.
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2.3. DRIFTS Sample Analysis

A randomly selected quantity from pistachio kernel flour was placed on a flat surface
where infrared radiation was directed to obtain DRIFT spectrum. For each sample, three
spectra were collected. Each spectrum of the triplet came from a different part of the same
sample (sub-sample). A Thermo Nicolet 6700 FTIR spectrophotometer (Thermo Electron
Corporation, Madison, WI, USA) was used, equipped with a deuterated triglycine sulfate
(DTGS) detector using a DRIFT Spectra Tech microcup accessory (Spectra-Tech Inc., Stam-
ford, CT, USA) (3 mm diameter, 2 mm height). The spectra were collected as absorbance
from 100 scans through the wavenumber region of 400–4000 cm−1. The speed of the
interferometer moving mirror was 0.3165 mm/s. A background spectrum was collected
using FTIR grade KBr as a non-absorbing matrix powder (Sigma-Aldrich, Steinhein, Ger-
many), prior to spectrum recording of each sample. After each measurement, microcup
was cleaned with acetone and dried.

2.4. KBr Disk Sample Analysis

A KBr disk sample preparation involved thorough mixing of 200 mg dried KBr pow-
der and 5 mg ground pistachio kernel flour. The mixture was transferred into a 13 mm die
and formed a clear disk when pressed under high pressure using a 2- to 8-ton bench top
hydraulic press. The spectra were recorded with the above spectrophotometer using an
accessory appropriate for disk measurements. Measurements’ conditions (scans, wavenum-
ber region, and mirror speed) were previously described. Background measurements were
made against pure KBr disk which had no absorptions over the entire absorbance range.
Triplicate KBr/sub-samples disks were made for each sample, and the spectrum of each
one was recorded.

2.5. FTIR Data Processing

The FTIR data were processed using the Omnic 8.2.0.387 software (Thermo Fisher
Scientific Inc., Madison, WI, USA). Both the DRIFT and disk spectra were smoothed using
the Savitsky-Golay algorithm (5-point moving second-degree polynomial), and the baseline
was corrected using the ‘automatic baseline correct function’ (second-degree polynomial,
20 iterations). Then, the average spectra of each sample were calculated and converted
into Kubelka-Munk units. The Kubelka-Munk conversion compensated for some of the
following undesirable effects: low intensity bands were increased relative to intense bands,
and strong intensity bands had broader, rounder peak shapes. Finally, spectra absorbance
scale was normalized.

2.6. Discriminant Analysis

Classification of the year of harvest was based on DRIFT and disk spectra of pistachio
kernel flours. The 650–4000 cm−1 spectral region was used. Before the development of the
discriminant analysis, the homogeneity of the covariance matrices was ensured since the
ratio of the two groups (2017, n = 11 and 2018, n = 11) was equal to or less than 1.5 [19]. Two
chemometric models were developed using the partial least square-discriminant analysis
(PLS-DA) statistical technique. One was based on the DRIFTS data and another on disk
spectra. Each chemometric model was examined using cross-validation and permutation
tests. According to Field (2009), the classification ability of the samples is assessed with
greater reliability through cross-validation [20]. The statistical analysis was performed
using MetaboAnalyst 5.0 software.

3. Results
3.1. Moisture Content Measurement

The pistachios were dried by the pistachio growers either in the sun or mechanically.
The moisture level was found to be between 5 and 7% wet basis (w.b.) for all samples.
Drying nuts at moisture levels below 11% w.b. is important for both safety and taste. A
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safe level of moisture is defined as a level that does not support the growth of fungi, and
for shelled pistachios, this ranges between 2.2 and 8.2% w.b. at 21 ◦C [21].

3.2. FTIR Analysis

Table 1 presents the most characteristic peaks of the pistachio kernel flours’ DRIFT
and disk spectra attributed to the respective modes of vibration. Figures 1 and 2 display
the representative spectra of pistachio kernel flours using the DRIFTS and disk technique,
respectively, from two harvest years. The peaks at 3006, 2928, and 2856 cm−1 and the defor-
mation vibrations in the range 1300–1500 cm−1 generally arose from lipid content [12,22].
It was observed that between the 2017 and 2018 harvests, the correlation of these peaks’
heights or areas changed. In a recent study, it was found that the oil content is associated
with the year of harvest. Therefore, the differences in the respective spectral region are
related to the different oil contents [23]. Accordingly, the spectrum range 1500–1700 cm−1

was defined as proteinic with peaks at 1660 and 1550 cm−1 attributed to the amide I and
amide II vibration modes, respectively. The region of amides I and II is associated with the
secondary structure of proteins and the protein content. The protein content depends on
the harvest period, the temperature, and the rain rate [24–26], a fact which is confirmed in
the present study. The spectral region from 1300 to 900 cm−1 was connected to oligo and
polysaccharides’ ring vibrations, while absorption bands between 900 and 600 cm−1 were
generally caused by aromatic ring vibrations [12,22].

Table 1. Peak interpretation of pistachio kernel flours’ (Pistacia vera, variety ‘Aegina’) diffuse re-
flectance infrared Fourier transform (DRIFT) and disk spectra [12,22].

Wavenumbers (cm−1) Functional Groups Abbreviations Vibration Modes

3200–3600
O-H v(O-H) stretching

N-H of the amide group v(N-H) stretching

3006 cis=C-H v(=C-H) stretching

2928 C-H of -CH2- vas(CH2) stretching
(asymmetric)

2856 C-H of -CH2- vs(CH2) stretching
(symmetric)

1750 C=O of esters v(C=O) stretching

1660 C=O, C-N of the amide I v(C=O), ν(C-N) stretching

1550
N-H, C-O of the amide II δ(N-H), δ(C-O) bending

C-C, C-N of the amide II ν(C-C), ν(C-N) stretching

1465 C-H of -CH2- δs(C-H) bending (scissoring)

1416 cis =C-H ρ(=C-H) bending (rocking)

1365 C-H of -CH3 δs(C-H) bending (symmetric)

1240
C-O of esters

of triglycerides vas(C-O) stretching
(asymmetric)

C-H of -CH3 δs(C-H) bending (symmetric)

1165
C-O vas(C-O) stretching

(asymmetric)

-CH2- δ(CH2) bending

1096 C-O v(C-O) stretching

725 aromatic ring - deformation
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comparability between the collected spectra from year to year, it was necessary to conduct 
multivariate statistical analysis to investigate whether samples differed in a statistically 
significant manner and could be classified according to the year of harvest. 

Preprocessing steps of FTIR data followed to diminish the effect that unrelated fac-
tors had on the intensity of absorbance peaks [12]. A first filtering was based on the inter-
quartile range (IQR), which represented the 25th percentile and the 75th percentile of data 
distribution. Thus, 25% of the lowest and 25% of the highest data were not included in the 
model construction. Thereafter, as the number of independent variables (FTIR wave-
numbers) ranged between 500 and 1000, 25% of data that were unlikely to be of use when 
modeling the data were filtered [27]. The remaining 75% of the source data were normal-
ized to bring them all to the same baseline, so as to be able to compare data of different 
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Figure 2. Representative disk spectra of pistachio kernel flours from the same producer, but from
two harvest years.

From the large and complex FTIR datasets, important features of the samples and
relevant information for the creation of models could only be extracted with chemometric
analysis [9].

3.3. Multivariate Statistical Analysis

Using either DRIFTS or the disk technique, due to the impossibility of the optical
comparability between the collected spectra from year to year, it was necessary to conduct
multivariate statistical analysis to investigate whether samples differed in a statistically
significant manner and could be classified according to the year of harvest.

Preprocessing steps of FTIR data followed to diminish the effect that unrelated factors
had on the intensity of absorbance peaks [12]. A first filtering was based on the interquartile
range (IQR), which represented the 25th percentile and the 75th percentile of data distribu-
tion. Thus, 25% of the lowest and 25% of the highest data were not included in the model
construction. Thereafter, as the number of independent variables (FTIR wavenumbers)
ranged between 500 and 1000, 25% of data that were unlikely to be of use when modeling
the data were filtered [27]. The remaining 75% of the source data were normalized to
bring them all to the same baseline, so as to be able to compare data of different scales.
Additionally, normalization inconsistencies between data were smoothed out, improving
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the effectiveness and the performance of the algorithms. Hence, the cube root transfor-
mation was applied. Subsequently, data Pareto scaling was useful and necessary. The
data were mean centered and divided by the square root of the standard deviation of each
independent variable.

After data manipulation, PLS modeling was developed to transform the raw data into
a new set of data by extracting a set of latent variables (latent factors or principal compo-
nents) that had the optimal spectral information and thus the best predictive power. The
number of principal components was decided automatically when the predicted residual
error sum of squares (PRESS) values reached a minimum or levelled off. Adding more
factors resulted in over-fitted calibration models. The resulting variable importance in the
projection (VIP) scores of the developed PLS models indicated which wavenumbers were
more active for the discrimination, in other words mainly changing as intensity changed
between the consecutive years [12]. In accordance, t-tests proved to which independent
variables the statistically significant difference was mainly due.

PLS approaches were tested by using the ‘leave one out’ cross-validation method
to show how well the developed PLS models performed by quantifying each calibration
sample as if it were a validation one. In this way, a recalculation of the model was made.
This method is indicated in cases with a number of samples less than 100. The performance
of the final PLS models was compared in terms of the R2 parameter known as the ‘goodness
of fit’ or explained variation and the Q2 parameter termed as ‘goodness of prediction’ or
predicted variation. The R2 and Q2 values, which indicate the model fit and predictability,
respectively, range between 0 and 1. The R2 index is a measure of the explanatory power of
the main components of the model. A PLS-DA model with a high value of R2 is regarded as
providing a good fit to the data and proves that the selected number of main components is
sufficient for the explanatory power of the model. The Q2 index is calculated as a measure
of the correct validation of the model by expressing the cumulative contribution of the
selected principal components in the predictive quality of the model. A Q2 value from 0.5
to 0.9 indicates good predictability, stability, and reliability of the model, while one greater
than 0.9 is considered to indicate excellent predictability, stability, and reliability. A large
discrepancy between Q2 and R2 values indicates a non-objective model, dependent on the
presence of the specific dataset that created it [28,29]. Furthermore, model performance
was tested by conducting permutation tests. Permutation tests assumed that there was
no difference among the two groups that were formed based on the year of harvest, so
the labels of the samples were randomly permuted, and a new classification model was
calculated [30,31].

3.3.1. DRIFTS Discriminant Analysis

Applying the PLS-DA on the entire DRIFT spectrum of samples indicated that pis-
tachio kernel flours could not be completely separated between the two years of harvest
(p-value > 0.05) (Figure 3). As shown in Figure 4, five principal components resulted in
higher values of R2 and Q2, described in detail in Table 2.
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Table 2. PLS-DA model performance according to the year of harvest for DRIFT spectra (MetaboAnalyst).

Measure 1 PC 2 PC 3 PC 4 PC 5 PC

Accuracy 0.72727 0.77273 0.86364 0.95455 0.90909

R2 0.31949 0.62254 0.87641 0.94666 0.96266

Q2 0.085499 0.38841 0.42874 0.60433 0.63152

To give a measure of the classification’s statistical significance (p-value), permutation
tests were conducted [32]. The observed p-value of Figure 5 was higher than 0.05, reinforc-
ing the conclusion of Figure 3 that there was no statistically significant difference between
DRIFT spectra from year to year.
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3.3.2. Disks Discriminant Analysis

PLS-DA analysis of the total wavenumber range proved a clear sample distinction
according to the year of harvest (Figure 6). Five principal components were the optimal
number for classification, accounting for as much of the variation explained as possible,
while high R2 and Q2 values were already given by the three principal components (Figure 7
and Table 3).
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Figure 7. PLS-DA cross-validation for the discrimination model of disk spectra according to the year
of harvest (MetaboAnalyst). In this Figure, the optimal Q2 value is highlighted with the use of a
red asterisk.

Table 3. PLS-DA model performance according to the year of harvest for disks spectra (MetaboAnalyst).

Measure 1 PC 2 PC 3 PC 4 PC 5 PC

Accuracy 0.86364 0.95455 1.0 1.0 1.0

R2 0.70340 0.97518 0.97764 0.99418 0.99705

Q2 0.64544 0.87179 0.95853 0.96901 0.97719

The statistical significance of the obtained PLS-DA model was evaluated with permu-
tation testing (Figure 8). A separation between the two groups significant from a statistical
point of view (p-value < 0.05) was evident when the indicator with the red mark was
completely to the right [33].
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PLS-DA ranked the independent variables using the VIP scores at p = 0.05 (Figure 9).
For evaluation of year-to-year variability, data from the two consecutive harvests were
compared using a t-test (Figure 10), which showed that almost the entire spectrum played
an important role in the identification of differences between the two classes. Statistically
significant wavenumbers to the discrimination are shown with a pink color. The absorbance
range of 1720–1800 cm−1, with the peak at 1750 cm−1 included, had the most contributory
VIP variables in the discrimination having the highest VIP scores. The colored boxes on the
right of Figure 9 indicate the relative intensity of the corresponding wavenumber in each
group under study.

AppliedChem 2021, 1, FOR PEER REVIEW  10 
 

 

compared using a t-test (Figure 10), which showed that almost the entire spectrum played 
an important role in the identification of differences between the two classes. Statistically 
significant wavenumbers to the discrimination are shown with a pink color. The absorb-
ance range of 1720–1800 cm−1, with the peak at 1750 cm−1 included, had the most contrib-
utory VIP variables in the discrimination having the highest VIP scores. The colored boxes 
on the right of Figure 9 indicate the relative intensity of the corresponding wavenumber 
in each group under study. 

 
Figure 9. PLS-DA importance features of disk spectra according to the year of harvest (MetaboAn-
alyst). 

 
Figure 10. T-test of disk spectra according to the year of harvest (MetaboAnalyst). 

4. Discussion 
Food quality is an issue of increasingly high concern to society and to all stakeholders 

involved in food production. In this sense, one of the products in which quality labels are 
mostly useful are pistachios. Food quality is inextricably linked to the chemical profile of 
food, which can be affected by several factors including the year of harvest [18]. A recent 
study related to pistachio oils identified statistically significant differences in terms of 
quality and nutritional value between crops of two consecutive years of harvest. This year-

Figure 9. PLS-DA importance features of disk spectra according to the year of harvest (MetaboAnalyst).

AppliedChem 2021, 1, FOR PEER REVIEW  10 
 

 

compared using a t-test (Figure 10), which showed that almost the entire spectrum played 
an important role in the identification of differences between the two classes. Statistically 
significant wavenumbers to the discrimination are shown with a pink color. The absorb-
ance range of 1720–1800 cm−1, with the peak at 1750 cm−1 included, had the most contrib-
utory VIP variables in the discrimination having the highest VIP scores. The colored boxes 
on the right of Figure 9 indicate the relative intensity of the corresponding wavenumber 
in each group under study. 

 
Figure 9. PLS-DA importance features of disk spectra according to the year of harvest (MetaboAn-
alyst). 

 
Figure 10. T-test of disk spectra according to the year of harvest (MetaboAnalyst). 

4. Discussion 
Food quality is an issue of increasingly high concern to society and to all stakeholders 

involved in food production. In this sense, one of the products in which quality labels are 
mostly useful are pistachios. Food quality is inextricably linked to the chemical profile of 
food, which can be affected by several factors including the year of harvest [18]. A recent 
study related to pistachio oils identified statistically significant differences in terms of 
quality and nutritional value between crops of two consecutive years of harvest. This year-

Figure 10. t-test of disk spectra according to the year of harvest (MetaboAnalyst).

4. Discussion

Food quality is an issue of increasingly high concern to society and to all stakeholders
involved in food production. In this sense, one of the products in which quality labels are
mostly useful are pistachios. Food quality is inextricably linked to the chemical profile
of food, which can be affected by several factors including the year of harvest [18]. A
recent study related to pistachio oils identified statistically significant differences in terms
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of quality and nutritional value between crops of two consecutive years of harvest. This
year-to-year differentiation of pistachio oils was possibly attributed to environmental
factors [23].

In light of these results, a further investigation was carried out, not for pistachio oils
but for pistachio samples of the Greek ‘Aegina’ variety collected from four different Greek
regions. It was difficult to obtain standard results for pistachios cultivated in different
locations and with different agricultural practices [18]. To overcome this problem, each
sample of the 2017 harvest year (11 samples in total) was derived from the same farmer
and the same field with each corresponding sample of the 2018 harvest season (11 samples
in total).

FTIR spectroscopy is quick, environmentally friendly, and not complex and can be
applied in routine analysis and official pistachio quality control [9,10]. FTIR spectra were
obtained for each sample in triplicate using DRIFTS and the disks technique. The perfor-
mance assessment of PLS-DA models obtained with two different types of FTIR analysis
(DRIFTS and disks) was achieved with coefficients R2 and Q2 as a statistical measure of
the model fitting. The disk acquired spectra in combination with the use of chemometric
tools such as PLS-DA showed a clear tendency of discrimination (p-value < 0.05) between
pistachios from the two different years with R2 = 0.99705 and Q2 = 0.97719. From the
results of this model, it could be stated that the 1720–1800 cm−1 region had the highest
contribution to this classification. However, the constructed PLS-DA model using the
DRIFT spectra could not predict the year of harvest from the set of independent variables
(p-value > 0.05) with R2 = 0.96266 and Q2 = 0.63152.

The DRIFTS quantitative spectral analysis is difficult, as the intensity of the light scat-
tered is strongly dependent on the refractive index, particle size, density, and homogeneity
of the sample [34]. In order to obtain a high-quality DRIFT spectrum, the sample must be
well homogenized, its particle size must be small and uniform so that a spectrum with nar-
rower bandwidths and more accurate zones of intensity is received, and the placement of
the sample on a flat surface for measurement must not be excessively compact to maximize
IR beam penetration [35].

On the other hand, in the disk technique, the sample was diluted with KBr, which
enhances the contribution of the scattered light and minimizes the specular reflection.
The specular reflection causes changes in band intensity, shape, and, in some cases, band
inversions (Restrahlen bands). The KBr/sample mixture minimizes the negative effects of
specular reflection. Generally, KBr is very hygroscopic, and if it is not well dried, it may
result in bands at 3440 (OH stretch), 1630 (OH bend), and 560 cm−1 (OH wag) that affect
the ability to interpret these spectral regions. During disk construction, excessive pressure
along with the presence of water can change the hydration state and crystallinity [11]. In
the current study, the complete drying of KBr was achieved, which made it possible to
cope with this issue.

5. Conclusions

In conclusion, the disk-FTIR is a highly sensitive spectroscopic technique that al-
lowed the collection of spectra from pulverized pistachio samples with minimal sample
preparation. Results showed a complete discrimination between pistachios from the two
different years of harvest. The proposed disk-FTIR spectroscopic chemometric model is
fast, accurate, economical, and environmentally friendly.
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