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Abstract: In interval-valued three-way decision, the reflection of decision-makers’ preference under
the full consideration of interval-valued characteristics is particularly important. In this paper, we
propose an interval-valued three-way decision model based on the cumulative prospect theory. First,
by means of the interval distance measurement method, the loss function and the gain function
are constructed to reflect the differences of interval radius and expectation simultaneously. Second,
combined with the reference point, the prospect value function is utilized to reflect decision-makers’
different risk preferences for gains and losses. Third,the calculation method of cumulative prospect
value for taking action is given through the transformation of the prospect value function and
cumulative weight function. Then, the new decision rules are deduced based on the principle
of maximizing the cumulative prospect value. Finally, in order to verify the effectiveness and
feasibility of the algorithm, the prospect value for decision-making and threshold changes are
analyzed under different risk attitudes and different radii of the interval-valued decision model. In
addition, compared with the interval-valued decision rough set model, our method in this paper has
better decision prospects.

Keywords: three-way decisions; accumulative prospect theory; risk attitude; interval value; threshold
method
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1. Introduction

The three-way decision theory (TWD), proposed by Yao [1] in 2009, was applied to
address uncertain information based on the rough set theory. As an extension of two-way
decisions in acceptance or rejection, it took the boundary region as the third decision rule
on the basis of the positive region and the negative region, that is, to make decision of
non-commitment. In real life, people are often faced with a significant amount of decision-
making problems, and how to effectively evaluate decision risk for reducing decision loss
becomes an important research question. When information is insufficient or inadequate,
huge losses are produced if we reject a good decision or accept a bad one. Therefore,
increasing the non-commitment decision rules is can minimize the losses of decisions in
the three-way decision theory. In recent years, the three-way decision theory has gradually
become an important decision-making method, which has been widely applied in the fields
of information management, medical treatment, risk insurance investment, etc. [2–5].

In the decision-theoretic rough sets (DTRSs), with the aid of the loss function, the
expected loss under three different decision rules was calculated according to Bayesian
decision procedure, and then the threshold was obtained from the principle of minimum
expected loss [6]. Xu et al. [7] analyzed the characteristics of the loss function in DTRSs
and the logical relationship between the loss function and threshold, and then proposed
a threshold calculation method based on the logical relationship between decision loss
objective functions. Considering that the difference in equivalence classes will affect the

AppliedMath 2023, 3, 286–304. https://doi.org/10.3390/appliedmath3020016 https://www.mdpi.com/journal/appliedmath

https://doi.org/10.3390/appliedmath3020016
https://doi.org/10.3390/appliedmath3020016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com
https://doi.org/10.3390/appliedmath3020016
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com/article/10.3390/appliedmath3020016?type=check_update&version=1


AppliedMath 2023, 3 287

decision result, Xie et al. [8] proposed an adaptive threshold calculation method based on
similarity measure. Certain prior knowledge was used to presuppose the loss function,
which led to some limitations in the application of the three-way decision theory. Without
the loss function, Chen et al. [9] proposed an optimal threshold algorithm based on grid
search, aiming at minimizing the sum of decision losses. Jia et al. [10] proposed a simulated
annealing algorithm to address the optimal threshold problem, and verified the advantage
of the algorithm in running time. Two thresholds, α and β, which are calculated according
to the principle of minimum risk loss in decision-making, cannot reflect the subjective
initiative of decision-makers well. Zhang et al. [11] introduced the utility theory, by
replacing the loss function with the utility function and proposing a utility three-way
decision model (UTWD) in order to reflect the decision-maker’s attitude toward risk better.

The prospect theory (PT), established by Kahneman and Tversky in 1979 [12], reveals
the reason and essence of people’s decision-making behavior deviating from rationality
under uncertainty. It can better reflect the decision-making preferences of decision-makers,
supplement the deficiency of the expected utility theory, and has been widely applied
in multi-attribute decision-making [13–16]. The cumulative prospect theory (CPT) was
proposed in 1992 [17], considering that the PT cannot solve the stochastic dominance prob-
lem, and it has a wider application range compared with the PT [18,19]. Wang et al. [20]
thought that the utility theory, which relies on intuitive decision-making, can reduce the
complexity of decision-making, but cannot reflect the attitude toward the loss when facing
risks. Therefore, they introduced the PT into a three-way decision model and proposed
the prospect theory-based three-way decision model (PTWD). On the basis of the PTWD,
Wang et al. [21] introduced the CPT to linearize the weight function further and proposed
a three-way decision model based on the cumulative prospect theory (CPTWD).

The data involved in prospect theory are all in the form of single value, while the
complexity of the environment and the existence of irrational factors, such as decision-
makers’subjective preference, emotional thinking, etc, lead to the uncertainty of decision-
making risk. Therefore, it is closer to real life by describing the outcome function in prospect
theory with interval numbers characterized by multi-value. Yin et al. [22] transformed
the interval number into the form of the score function, and introduced the prospect
value function to describe the subjective feeling of decision-making. Hu et al. [23], firstly,
dispersed the interval number into different finite data, and described the distribution
law of the values in the interval value by using the normal distribution function, then
obtained the total decision prospect through the weighted average method. Xiong et al. [24]
reserved the features of interval value to directly calculate the interval-valued prospect,
and then derived the synthetic foreground value of each decision-making rule based on
the determination factor rule library. Fan et al. [25] treated the reference point as single
value according to the positional relationship between the reference point and the attribute
value, and calculated the loss value and the gain value on the basis of the prospect value
function. This method only considered the upper bound or the lower bound of the interval
in the treatment of the reference point. In addition, when the reference point is included
in the attribute value, the loss value and the gain value are both regarded as 0, but in
fact, the attribute values including the reference point are also different. Besides interval
numbers, Wang et al. [26] used Z-numbers to describe uncertainty in decision-making, and
proposed a three-way decision model combined with Z-numbers and the third-generation
prospect theory.

Inspired by the above observation, we use interval values to describe the cumulative
prospect theory. In order to address interval values, we adopt the interval-valued distance
measurement method [27] characterized by similarity to describe the loss value and the
gain value. The advantages of the proposed model are summarized as follows.

(1). Interpret the distance between the two interval values as the benefit of taking action.
Since the decision-makers have different attitudes toward loss and gain, the distance
between two interval values is studied from two angles, namely the gain distance and
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the loss distance. It can measure the prospect value more accurately when generated
by taking action.

(2). Combining the value function and interval-valued distance with similar characteristics
can better distinguish the difference between different interval values, especially when
the two interval values have the same expectation.

(3). On the basis of [21], using interval values to describe the outcome matrix is more in
line with the actual situation. At the same time, the model proposed in this paper can
also address the outcome matrix in the form of single values. Thus, it has a wider
range of application.

The remainder of this paper is detailed below. In Section 2, some basic concepts of
interval value, classical three-way decision model, and cumulative prospect theory are
presented. In Section 3, a new method of measuring the prospect value based on the interval
value is proposed, and then an interval-valued three-way decision model based on the
cumulative prospect theory is constructed. The thresholds and simplified decision rules are
further analyzed in Section 4. In Section 5, an example is given to illustrate the effectiveness
of our model in distinguishing different interval values; then, the proposed model is
compared with the interval number three-way decision model. The whole methods and
experiments’ results conclude in Section 6.

2. Preliminaries
2.1. Basic Theory of Intervals

Definition 1 ([28]). Let R denote the set of real numbers. For ∀a+, a− ∈ R and a− ≤ a+, then
ã = [a−, a+] is called an interval value, where a− and a+ represent the lower and upper bounds
of the interval value, respectively. In particular, if a− = a+, the interval value degenerates to a
real number. Supposing b̃ = [b−, b+] is another interval value, if a− = b− and a+ = b+, we have
ã = b̃.

Definition 2 ([29]). Let ã = [a−, a+] is an interval value, then a−+a+
2 is called the expectation of

the interval value ã, denoted by m(ã). Furthermore, a+−a−
2 is called the radius of the interval value

ã, denoted by r(ã).

Evidently, ã = [m(ã)− r(ã), m(ã) + r(ã)], that is, the expected value and the radius of
the interval can exactly describe an interval value.

Definition 3 ([28]). Given two interval values ã = [a−, a+], b̃ = [b−, b+], and a real number k,
then define the operational relationship between them as follows:

(1). ã + b̃ = [a− + b−, a+ + b+];
(2). ã− b̃ = [a− − b+, a+ − b−];
(3). ãb̃ = [min(a−b−, a−b+, a+b−, a+b+), max(a−b−, a−b+, a+b−, a+b+)];
(4). ã/b̃ = [a−, a+]× [1/b+, 1/b−], where 0 /∈ [b−, b+];
(5). kã = [ka−, ka+], where k ∈ R and k ≥ 0.

2.2. Classical Three-Way Decision Model

Let Ω = {X,¬X} be a set of states, X and ¬X denote that the object belongs to and
does not belong to X, respectively. Furthermore, A= {aP, aB, aN} is a set of actions, where
aP, aB and aN denote three actions of accepting decision, delaying decision, and rejecting
decision, respectively. The data from the risk or cost generated by the three actions under
the two states are a matrix, as shown in Table 1. When the object belongs to X, λPP, λBP
and λNP represent the losses of aP, aB, and aN , respectively. Similarly, when the object does
not belong to X, λPN , λBN , and λNN represent the losses incurred for taking actions of aP,
aB, and aN , respectively. Pr(X|[o]) represents the conditional probability of the equivalence
class [o] belonging to X.
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Table 1. The loss function matrix.

X ¬X

aP λPP λPN
aB λBP λBN
aN λNP λNN

Therefore, the expected losses for each of the three actions are calculated as follows:

R(aP|[o]) = λPPPr(X|[o]) + λPN Pr(¬X|[o]),
R(aB|[o]) = λBPPr(X|[o]) + λBN Pr(¬X|[o]),
R(aN |[o]) = λNPPr(X|[o]) + λNN Pr(¬X|[o]).
According to the minimum expected loss rule, three decision rules are obtained as

follows [30]:

(P0) If R(aP|[o]) ≤ R(aB|[o]) and R(aP|[o]) ≤ R(aN |[o]), decide o ∈ POS(X),

(B0) If R(aB|[o]) ≤ R(aP|[o]) and R(aB|[o]) ≤ R(aN |[o]), decide o ∈ BND(X),

(N0) If R(aN |[o]) ≤ R(aP|[o]) and R(aN |[o]) ≤ R(aB|[o]), decide o ∈ NEG(X).

If (λPN − λBN)(λNP − λBP) > (λBP − λPP)(λBN − λNN), then the rule (P0)− (N0)
should be rewritten as follows:

(P1) If Pr(X|[o]) ≥ α1, decide o ∈ POS(X),

(B1) If β1 < Pr(X|[o]) < α1, decide o ∈ BND(X),

(N1) If Pr(X|[o]) ≤ β1, decide o ∈ NEG(X).

Otherwise, the rule (P0)− (N0) should be rewritten as follows:

(P1) If Pr(X|[o]) ≥ γ1, decide o ∈ POS(X),

(N1) If Pr(X|[o]) < γ1, decide o ∈ NEG(X).

Where, α1 = (λPN−λBN)
(λPN−λBN)+(λBP−λPP)

, β1 = (λBN−λNN)
(λBN−λNN)+(λNP−λPP)

, γ1 = (λPN−λNN )
(λPN−λNN )+(λNP−λPP)

.

2.3. Cumulative Prospect Theory

Based on bounded rationality, the cumulative prospect theory reflects the risk prefer-
ence of decision-makers through three parts: the reference point, the value function, and
the weight function.

Definition 4 ([12]). The value function is to convert the outcome presented by the surface value
into the outcome that people have in mind when making decisions, and its specific form is as follows:

ν(x) =

{
(x− x0)

µ, x ≥ x0,

− θ(x0 − x)υ, x < x0,
(1)

where x is the outcome and x0 is the reference point selected by decision-makers.

If x ≥ x0, the outcome is seen as a gain; otherwise, if x < x0, the outcome is viewed as
a loss. µ and υ ( 0 < µ, υ < 1) are risk attitude coefficients, the larger µ and υ are, the more
inclined decision-makers are to take risks. θ is the risk aversion coefficient, the larger θ is,
the more sensitive the decision-maker is to loss. Thus, the outcomes can be transformed
into decision prospect values, which is shown in Figure 1.
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Definition 5 ([12]). The weight function is to convert the probability of an event to a decision
weight, and its specific form is as follows:

v+ =
pσ

h

(pσ
h + (1− ph)σ)

1
σ

,

v− =
pδ

h

(pδ
h + (1− ph)δ)

1
δ

,
(2)

where ph is the conditional probability of an event occurring.

The weight function points out that the decision-maker’s subjective judgment is often
inconsistent with the probability axiom when people take some action according to the
probability of an event occurring. The weight function presents an inverted “S” curve, as
shown in Figure 2, which reflects that decision-makers tend to overestimate the probability
of occurrence in small probability events and underestimate the probability of occurrence
in large probability events when taking actions.

Figure 1. The value function.

Figure 2. The weight function.

In the cumulative prospect theory, the result of sorting the benefits generated by each
event in ascending order is x−m < · · · < x0 < · · · < xn, and the probability of occurrence
of the corresponding event is p = (p−m, . . . , pn). The corresponding cumulative weight
function is expressed as follows [17]:

ωh =

{
v+(ph + · · ·+ pn)−v+(ph+1 + · · ·+ pn), h > 0,

v−(p−m + · · ·+ ph)−v−(p−m + · · ·+ ph−1), h < 0,
(3)

where, −m ≤ h ≤ n.
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Therefore, by conversion of the value function and the weight function, the cumulative
prospect value is calculated as follows:

V=
n

∑
h=−m

ωhν(xh). (4)

3. Three-Way Decisions Based on Cumulative Prospect Theory with Interval Value
3.1. Calculation Method of the Value Function

Definition 6 ([31]). Given an interval value ã = [a−, a+]. f ã(x) = a− + (a+ − a−)x is used
to determine the position of a number in an interval value ã, called the location function, where
x ∈ [0, 1]. f ã(1) and f ã(0) denote the upper and lower bounds of the interval value, respectively. If
a− = a+, ã is a real number, i.e., the location function is a constant function . In addition, another
equivalent form of the location function is f ã(x) = a− + 2r(ã)x.

Let ã = [a−, a+] and b̃ = [b−, b+] be two interval values whose location functions are
f ã and fb̃, respectively, where a− ≤ b−. As shown in Figure 3a, if a+ ≤ b+, the inequality
f ã(x) ≤ fb̃(x) always holds on [0, 1]. On the contrary, as shown in Figure 3b, if a+ > b+, the
inequality f ã(x) ≤ fb̃(x) is true when x ∈ [0, x0]. Furthermore, the inequality f ã(x) > fb̃(x)
is true when x ∈ (x0, 1].

Definition 7. Let an interval value ã = [a−, a+] denote the outcome interval of taking a certain
action, ẽk = [e−k , e+k ] is the reference point of the kth decision-maker. This means that taking the
action is in a state of gain when f ã(x) ≥ f ẽk (x). On the other hand, when f ã(x) < f ẽk (x), it is
in a state of loss. Assuming that ∀a ∈ ã and ∀ek ∈ ẽk are uniformly distributed, the loss (L) and
gain function (G) are defined as follows with reference to the interval-valued distance measurement
method in [27]:

L(ã, ẽk) = (
∫

ΩL

( f ã(x)− f ẽk (x))2dx)
1
2 , (5)

G(ã, ẽk) = (
∫

ΩG

( f ã(x)− f ẽk (x))2dx)
1
2 , (6)

where ΩL = {x ∈ [0, 1]| f ã(x) < f ẽk (x)}, ΩG = {x ∈ [0, 1]| f ã(x) ≥ f ẽk (x)}.

(a) a+ ≤ b+
(b) a+ > b+

Figure 3. The location function.

Example 1. Let ã = [2, 4], ẽk = [0, 7]. By Definition 6, we have f ã(x) = a−+ (a+− a−)x = 1+
(4− 1)x = 1+ 3x, f ẽk (x) = e−k +(e+k − e−k )x = 0+(7− 0)x = 7x, so f ã(x)− f ẽk (x) = 1− 4x.
Then, we get ΩL = {x ∈ [0, 1]| f ã(x) < f ẽk (x)} = {x ∈ [0, 1]|1 + 3x < 7x} = (0.25, 1], ΩG =
{x ∈ [0, 1]| f ã(x) ≥ f ẽk (x)} = {x ∈ [0, 1]|1 + 3x ≥ 7x} = [0, 0.25]. Based on Formula (5), we
can calculate that L(ã, ẽk) = (

∫
ΩL

( f ã(x)− f ẽk (x))2dx)
1
2 = (

∫
(0.25,1](1− 4x)2dx)

1
2 = 1.5000.
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Similarly, we can also calculate thatG(ã, ẽk) = (
∫

ΩG
( f ã(x) − f ẽk (x))2dx)

1
2 = (

∫
[0,0.25](1 −

4x)2dx)
1
2 ≈ 0.2887 based on Formula (6).

According to the coverage of the value between the outcome interval and the reference
point, the calculation methods of the loss function and gain function can be divided into
the following seven situations:

case1. If e−k = a− and e+k = a+, L(ã, ẽk) = 0, G(ã, ẽk) = 0.
case2. If e+k < a−, we have ΩL = ∅ (because of f ẽk (x) ≤ e+k < a− ≤ f ã(x)), ΩG =

[0, 1]. So L(ã, ẽk) = 0, G(ã, ẽk) = (
∫ 1

0 ( f ã(x)− f ẽk (x))2dx)
1
2 = ((m(ã)− m(ẽk))

2 +
1
3 (r(ã)− r(ẽk))

2)
1
2 .

case3. If a+ < e−k , L(ã, ẽk) = ((m(ã)−m(ẽk))
2 + 1

3 (r(ã)− r(ẽk))
2)

1
2 , G(ã, ẽk) = 0.

case4. If e−k < a− ≤ e+k < a+, let h(x) = f ã(x)− f ẽk (x) = (a−− e−k ) + [(a+− e+k )− (a−−
e−k )]x = (a− − e−k )(1− x) + (a+ − e+k ) > 0. So, f ẽk (x) < f ã(x). From case 2, we

have L(ã, ẽk) = 0, G(ã, ẽk) = ((m(ã)−m(ẽk))
2 + 1

3 (r(ã)− r(ẽk))
2)

1
2 .

case5. if a− < e−k ≤ a+ < e+k , L(ã, ẽk) = ((m(ã)−m(ẽk))
2 + 1

3 (r(ã)− r(ẽk))
2)

1
2 , G(ã, ẽk) =

0.
case6. If e−k ≤ a− ≤ a+ < e+k or e−k < a− ≤ a+ ≤ e+k , h

′
(x) = e−k − a− ≤ 0, so h(x)

is a monotonically decreasing function of x. Let h(x0) = 0, then, the inequal-
ity f ã(x) ≥ f ẽk (x) is true when x ∈ [0, x0]. When x ∈ (x0, 1], the inequality
f ã(x) < f ẽk (x) is true. Therefore, L(ã, ẽk) = (

∫ 1
x0
( f ã(x)− f ẽk (x))2dx)

1
2 = [(m(ã)−

m(ẽk))
2 + 1

3 (r(ã)− r(ẽk))
2− (a−−e−k )3

6(r(ẽk)−r(ã)) ]
1
2 , G(ã, ẽk) = (

∫ x0
0 ( f ã(x)− f ẽk (x))2dx)

1
2 =

(
(a−−e−k )3

6(r(ẽk)−r(ã)) )
1
2 .

case7. If a− ≤ e−k ≤ e+k < a+ or a− < e−k ≤ e+k ≤ a+, L(ã, ẽk) = (
(e−k −a−)3

6(r(ã)−r(ẽk))
)

1
2 , G(ã, ẽk) =

[(m(ã)−m(ẽk))
2 + 1

3 (r(ã)− r(ẽk))
2 − (e−k −a−)3

6(r(ã)−r(ẽk))
]

1
2 .

In all cases, the loss and the gain is summarized in Table 2.

Table 2. The situation of loss or gain.

Type Relationship between ã and ẽk L(ã, ẽk) G(ã, ẽk)

case1 e−k = a−, e+k = a+ 0 0

case2 e+k < a− 0 gl(ã, ẽk)
1
2

case3 a+ < e−k (gl(ã, ẽk))
1
2 0

case4 e−k < a− ≤ e+k < a+ 0 (gl(ã, ẽk))
1
2

case5 a− < e−k ≤ a+ < e+k (gl(ã, ẽk))
1
2 0

case6
e−k ≤ a− ≤ a+ < e+k

or e−k < a− ≤ a+ ≤ e+k
[gl(ã, ẽk)−

(a−−e−k )3

6(r(ẽk)−r(ã)) ]
1
2 (

(a−−e−k )3

6(r(ẽk)−r(ã)) )
1
2

case7
a− ≤ e−k ≤ e+k < a+

or a− < e−k ≤ e+k ≤ a+ (
(e−k −a−)3

6(r(ã)−r(ẽk))
)

1
2 [gl(ã, ẽk)−

(e−k −a−)3

6(r(ã)−r(ẽk))
]

1
2

where, gl(ã, ẽk) = (m(ã)−m(ẽk))
2 + 1

3 (r(ã)− r(ẽk))
2.

If a− = a+ ≥ e−k = e+k , L(ã, ẽk) = 0, G(ã, ẽk) = |a− − e−k |. If a− = a+ < e−k = e+k ,
L(ã, ẽk) = |a− − e−k |, G(ã, ẽk) = 0, i.e., the gain or the loss is transformed into the Euclidean
distance when ã and ẽk are real numbers.

Proposition 1. Let ã1 = [a−1 , a+1 ], ã2 = [a−2 , a+2 ] be the two outcomes, ẽk = [e−k , e+k ] is the
reference point of the kth decision-maker. Then, if a−1 < a−2 and a+1 < a+2 , L(ã1, ẽk) > L(ã2, ẽk),
G(ã1, ẽk) < G(ã2, ẽk).

Proof. The following two cases are discussed:



AppliedMath 2023, 3 293

(1). If r(ã1) ≤ r(ã2), f ã1(x)− f ã2(x) = (a−1 − a−2 ) + [r(ã1)− r(ã2)]x < 0. Let ΩL1 = {x ∈
[0, 1]| f ã1(x) < f ẽk (x)}, ΩL2 = {x ∈ [0, 1]| f ã2(x) < f ẽk (x)}. Then, for ∀x0 ∈ ΩL2 , we
have f ã1(x0) < f ã2(x0) < f ẽk (x0). Therefore, x0 ∈ ΩL1 , so ΩL2 ⊆ ΩL1 . In addition,
for ∀x0 ∈ ΩL2 , we have f ã1(x0)− f ẽk (x0) < f ã2(x0)− f ẽk (x0) < 0. So, L2(ã1, ẽk) =∫

ΩL1
( f ã1(x) − f ẽk (x))2dx ≥

∫
ΩL2

( f ã1(x) − f ẽk (x))2dx >
∫

ΩL2
( f ã2(x) − f ẽk (x))2dx =

L2(ã2, ẽk).
So, L(ã1, ẽk) > L(ã2, ẽk).
As above, we can prove that G(ã1, ẽk) < G(ã2, ẽk).

(2). Let ã = [a+1 − 2r(ã2), a+1 ] if r(ã1) > r(ã2), then r(ã) = r(ã2) and a+1 − 2(r(ã2)) <
a+1 < a+2 . So L(ã, ẽk) > L(ã2, ẽk), G(ã, ẽk) < G(ã2, ẽk) according to case (1). Since
f ã1(x)− f ã(x) = (a−1 + 2r(ã1)x)− [(a+1 − 2r(ã2)) + 2r(ã2)x] = [2r(ã2)− (a+1 − a−1 )] +
2(r(ã1)− r(ã2))x = 2(r(ã2)− r(ã1))(1− x) ≤ 0, we can obtain L(ã1, ẽk) > L(ã, ẽk),
G(ã1, ẽk) < G(ã, ẽk). Therefore, L(ã1, ẽk) > L(ã, ẽk) > L(ã2, ẽk), G(ã1, ẽk) < G(ã, ẽk) <
G(ã2, ẽk).

In conclusion, we have L(ã1, ẽk) > L(ã2, ẽk), G(ã1, ẽk) < G(ã2, ẽk).

3.2. Three-Way Decisions Derived from Cumulative Prospect Theory

Let Ω = {X,¬X} be a set of states, A = {aP, aB, aN} is a set of actions, and x̃ij =

[x−ij , x+ij ](x−ij ≤ x+ij )(i = P, B, N, j = P, N) is the outcome in different states, where x−ij and

x+ij are the lower and upper bounds of the outcome of taking the action, respectively. For

example, as shown in Table 3, x̃PP = [x−PP, x+PP] represents the outcome for taking actions of
aP when an event belongs to X. It is worth noting that when [x−PP, x+PP] ∩ (−∞, 0) 6= ∅, i.e.,
the outcome appears negative, it means that the outcome of taking the action may be a loss.

In real life, when an object belongs to X, the benefit of taking the accepting decision is
not less than that of taking the delaying decision. Furthermore, both of them are greater
than that of taking the rejecting decision. Similarly, when an object belongs to ¬X, the
benefit of taking the rejecting decision is not less than the benefit of taking the delaying
decision, and both are greater than the benefit of taking the accepting decision. In addition,
as accepting action is taken, the benefit generated by the object belonging to X is always
greater than the benefit generated by the object belonging to ¬X. Meanwhile, in the case
of the rejecting decision, the benefit of the object belonging to X is always less than that
of the object belonging to ¬X. Therefore, there are x−NP < x−BP ≤ x−PP, x+NP < x+BP ≤ x+PP,
x−PN < x−BN ≤ x−NN , x+PN < x+BN ≤ x+NN , x−PN < x−PP, x+PN < x+PP, x−NP < x−NN , x+NP < x+NN .

Table 3. The outcome of matrix.

X ¬X

aP x̃PP = [x−PP, x+PP] x̃PN = [x−PN , x+PN ]
aB x̃BP = [x−BP, x+BP] x̃BN = [x−BN , x+BN ]
aN x̃NP = [x−NP, x+NP] x̃NN = [x−NN , x+NN ]

The cumulative prospect theory points out that decision-makers often consider the
loss and gain when making a decision. In real life, decision-makers tend to choose the
scheme with the largest cumulative prospect value as the best action plan. Thus, a new
three-way decision model can be obtained to reflect the risk attitude of decision-makers.
Taking ẽk as the reference point of the kth decision-maker, the prospect value function
corresponding to x̃ij in a certain state is given as follows:

ν(x̃ij, ẽk) = (G(x̃ij, ẽk))
µ + [−θ(L(x̃ij, ẽk))

υ], θ > 1. (7)

In particular, when x−ij = x+ij = xij, e−k = e+k = ek, the value function is transformed
into the following form:
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ν(x̃ij, ẽk) =

{
(xij − ek)

µ, xij ≥ ek,

− θ(ek − xij)
υ, xij < ek.

Let µ = υ referring [21]. For brevity, ν(x̃ij, ẽk) is abbreviated as νk
ij.

Proposition 2. Let x̃ij be the outcome in a state, ẽk is the reference point of the k decision-maker. If
m(x̃ij) = m(ẽk), we have νk

ij ≤ 0, and take equals if and only if x̃ij = ẽk.

Proof. Since m(x̃ij) = m(ẽk), it can be known that x+ij − e+k = e−k − x−ij . So, r(x̃ij)− r(ẽk) =

[(x+ij −x−ij )−(e
+
k −e−k )]

2 =
[(x+ij −e+k )+(e−k x−ij )]

2 = e−k − x−ij . Furthermore, the positional relationship
between x̃ij and ẽk is case6 or case7 or case1 above.

(1). case6: e−k ≤ a− ≤ a+ < e+k or e−k < a− ≤ a+ ≤ e+k . For this case, G2(x̃ij, ẽk) =

(
(x−ij −e−k )3

6(r(ẽk)−r(x̃ij))
) =

(x−ij −e−k )2

6 , L2(x̃ij, ẽk) = [(m(x̃ij) − m(ẽk))
2 + 1

3 (r(x̃ij) − r(ẽk))
2 −

(x−ij −e−k )3

6(r(ẽk)−r(x̃ij))
] = 0 +

(x−ij −e−k )2

3 −
(x−ij −e−k )2

6 =
(x−ij −e−k )2

6 . So, L(x̃ij, ẽk) = G(x̃ij, ẽk). Further, we get νk
ij = (G(x̃ij, ẽk))

µ +

[−θ(L(x̃ij, ẽk))
υ] = (G(x̃ij, ẽk))

µ + [−θ(G(x̃ij, ẽk))
υ] = (1− θ)((G(x̃ij, ẽk))

µ) < 0.
(2). case7: a− ≤ e−k ≤ e+k < a+ or a− < e−k ≤ e+k ≤ a+. Similar to the proof in case 6, we

can prove that νk
ij < 0.

(3). case1: e−k = a−, e+k = a+. At this moment, we have L(x̃ij, ẽk) = 0, G(x̃ij, ẽk) = 0, so
νk

ij = 0. On the contrary, if νk
ij = 0, it is easy to prove that e−k = a−, e+k = a+.

In summary, there is νk
ij ≤ 0, which takes equal if and only if x̃ij = ẽk.

Proposition 2 states that when x̃ij and ẽk satisfy m(x̃ij) = m(ẽk) and x̃ij 6= ẽk, the
prospect value is negative because the decision-maker is more sensitive to loss. Otherwise,
if x̃ij = ẽk, it is regarded as neither gain nor loss because it just reaches the action goal of
the decision-maker.

Proposition 3. Let x̃ij be the outcome in a state. If x−NP < x−BP ≤ x−PP, x+NP < x+BP ≤ x+PP,
x−PN < x−BN ≤ x−NN , x+PN < x+BN ≤ x+NN , x−PN < x−PP, x+PN < x+PP, x−NP < x−NN , x+NP < x+NN ,
the value function νk

ij satisfies νk
NP < νk

BP ≤ νk
PP, νk

PN < νk
BN ≤ νk

NN , νk
PN < νk

PP, νk
NP < νk

NN .

Proof. According to Proposition 1, if x−NP < x−BP ≤ x−PP, x+NP < x+BP ≤ x+PP, we have
L(x̃NP, ẽk) > L(x̃BP, ẽk) ≥ L(x̃PP, ẽk), G(x̃NP, ẽk) < G(x̃BP, ẽk) ≤ G(x̃PP, ẽk). Therefore,
νk

NP < νk
BP ≤ νk

PP holds.
In the same way, νk

PN < νk
BN ≤ νk

NN , νk
PN < νk

PP and νk
NP < νk

NN also hold.

Example 2. Let x̃PP = [4.5, 7], x̃BP = [0.5, 1.5], x̃NP = [−5.5,−5], x̃PN = [−6,−4], x̃BN =
[0.5, 3.5], x̃NN = [3.5, 5.5]. Suppose that the reference point set by the first decision-maker is
ẽ1 = [1, 2.5]. The relationship between x̃PP and ẽ1 satisfies case2 in Table 2. Thus, L(x̃PP, ẽ1) = 0

and G(x̃PP, ẽ1) = ( (4.5+7)
2 − 1+2.5

2 )2 + 1
3 (

7−4.5
2 − 2.5−1

2 )2)
1
2 ≈ 4.0104. Based on Formula (7), we could

calculate ν1
PP = (4.0104)0.88 + [−2.25× 00.88] ≈ 3.3947. Similarly, we could also calculate ν1

BP ≈ −1.8562,
ν1

NP ≈ −12.4793, ν1
PN ≈ −12.0797, ν1

BN ≈ 0.0509 and ν1
NN ≈ 2.4386.

In the cumulative prospect theory, the weight function is divided into two different
cases based on the gain (νk

ij ≥ 0) or the loss (νk
ij < 0). Furthermore, the cumulative

weight function of each action is obtained according to the Formula (3) by sorting the
value function in ascending order. For example, if 0 ≤ νk

iP ≤ νk
iN , v+in the Formula (3) is

selected as the weight function to obtain ωk
i (Pr(X|[o])) = v+(Pr(X|[o])). In addition, since

Pr(X|[o]) + Pr(¬X|[o]) = 1, we can obtain the following conclusion: ωk
i (Pr(¬X|[o])) =

v+(Pr(X|[o]) + Pr(¬X|[o]))− v+(Pr(X|[o])) = 1− v+(Pr(X|[o]). Similarly, by sorting
νk

iP and νk
iN , the weight functions ωk

i (Pr(X|[o]) and ωk
i (Pr(¬X|[o])) (i = P, B, N) can be

calculated.



AppliedMath 2023, 3 295

Through the transformation of the prospect value function and cumulative weight
function, the cumulative prospect value Vk(ai|[o]) for taking three decision actions aP, aB,
and aN can be calculated as follows:

Vk(aP|[o]) = νk
PPωk

P(Pr(X|[o])) + νk
PNωk

P(Pr(¬X|[o])),
Vk(aB|[o]) = νk

BPωk
B(Pr(X|[o])) + νk

BNωk
B(Pr(¬X|[o])),

Vk(aN |[o]) = νk
NPωk

N(Pr(X|[o])) + νk
NNωk

N(Pr(¬X|[o])).
According to the maximum the cumulative prospect value rule, the decision rules are

obtained as follows:

(P2) If Vk(aP|[o]) ≤ Vk(aB|[o]) and Vk(aP|[o]) ≤ Vk(aN |[o]), decide o ∈ POS(X),

(B2) If Vk(aB|[o]) ≤ Vk(aP|[o]) and Vk(aB|[o]) ≤ Vk(aN |[o]), decide o ∈ BND(X),

(N2) If Vk(aN |[o]) ≤ Vk(aP|[o]) and Vk(aN |[o]) ≤ Vk(aB|[o]), decide o ∈ NEG(X).

4. The Analysis of Thresholds and Simplification of Decision Rules

In the three-way decision, the simplification of decision rules is very important. Due
to the fact that x−PN < x−PP, x+PN < x+PP, we know νk

PN < νk
PP from Proposition 3 . Therefore,

according to Formula (3), ωk
P(Pr(X|[o]) and ωk

i (Pr(¬X|[o])) are divided into the following
three cases by comparing νk

PP with νk
PN :

ωk
P(Pr(X|[o])) =


v+(Pr(X|[o])), 0 ≤ νk

PN < νk
PP,

v+(Pr(X|[o])), νk
PN < 0 ≤ νk

PP,

1−v−(Pr(¬X|[o])), νk
PN < νk

PP < 0.

ωk
P(Pr(¬X|[o])) =


1−v+(Pr(X|[o])), 0 ≤ νk

PN < νk
PP,

v−(Pr(¬X|[o])), νk
PN < 0 ≤ νk

PP,

v−(Pr(¬X|[o])), νk
PN < νk

PP < 0.
Therefore , the cumulative prospect value function V(aP|[o]) for taking action aP can

be calculated as follows:

Vk(aP|[o]) =


νk

PPv+(Pr(X|[o])) + νk
PN(1−v+(Pr(X|[o]))), 0 ≤ νk

PN < νk
PP,

νk
PPv+(Pr(X|[o])) + νk

PNv−(Pr(¬X|[o])), νk
PN < 0 ≤ νk

PP,

νk
PP(1−v−(Pr(¬X|[o]))) + νk

PNv−(Pr(¬X|[o])), νk
PN < νk

PP < 0.

(8)

Similarly, νk
NP < νk

NN can be inferred from x−NP < x−NN , x+NP < x+NN . Therefore, the
cumulative prospect value function V(aN |[o]) for taking action aN can be calculated as
follows:

Vk(aN |[o]) =


νk

NP(1−v+(Pr(¬X|[o]))) + νk
NNv+(Pr(¬X|[o]), 0 ≤ νk

NP < νk
NN ,

νk
NPv−(Pr(X|[o])) + νk

NNv+(Pr(¬X|[o])), νk
NP < 0 ≤ νk

NN ,

νk
NPv−(Pr(X|[o]))) + νk

NN(1−v−(Pr(X|[o]))), νk
NP < νk

NN < 0.

(9)

When action aB is taken , the cumulative prospect value function V(aB|[o]) is calcu-
lated as follows:

Vk(aB|[o]) =



νk
BPv+(Pr(X|[o])) + νk

BN(1−v+(Pr(X|[o]))), 0 ≤ νk
BN ≤ νk

BP,

νk
BP(1−v+(Pr(¬X|[o]))) + νk

BNv+(Pr(¬X|[o])), 0 ≤ νk
BP < νk

BN ,

νk
BPv+(Pr(X|[o])) + νk

BNv−(Pr(¬X|[o])), νk
BN < 0 ≤ νk

BP,

νk
BPv−(Pr(X|[o])) + νk

BNv+(Pr(¬X|[o])), νk
BP < 0 ≤ νk

BN ,

νk
BP(1−v−(Pr(¬X|[o]))) + νk

BNv−(Pr(¬X|[o])), νk
BN ≤ νk

BP < 0,

νk
BPv−(Pr(X|[o])) + νk

BN(1−v−(Pr(X|[o]))), νk
BP < νk

BN < 0.

(10)
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Let Vk
PB = Vk(aP|[o]) −Vk(aB|[o]), Vk

BN = Vk(aB|[o])− Vk(aN|[o]), Vk
PN = Vk(aP|[o])

−Vk(aN |[o]). Based on Proposition 3, we have: νk
NP < νk

BP ≤ νk
PP, νk

PN < νk
BN ≤ νk

NN ,
νk

PN < νk
PP, νk

NP < νk
NN . It can be seen that Vk

PB, Vk
BN , Vk

PN are a monotonically increasing
function of Pr(X|[o]) from the reference [21].

Proposition 4. Let Vk
PB, Vk

BN , and Vk
PN be the function of Pr(X|[o]). Then, Vk

PB, Vk
BN , and Vk

PN
all have unique zero which lies between 0 and 1.

Proof. If Pr(X|[o]) = 0, Pr(¬X|[o]) = 1, from the Formulas (8)–(10), we have Vk(aP)|[o]) =
νk

PN , Vk(aB|[o]) = νk
BN , Vk(aN |[o]) = νk

NN . Based on Proposition 3, νk
PN < νk

BN ≤ νk
NN , we

have Vk
PB = νk

PN − νk
BN < 0, Vk

BN = νk
BN − νk

NN ≤ 0, Vk
PN = νk

PN − νk
NN < 0.

Similarly, If Pr(X|[o]) = 1, then Vk(aP|[o]) = νk
PP, Vk(aB|[o]) = νk

BP, Vk(aN |[o]) =
νk

NP. From Proposition 3, νk
NP < νk

BP ≤ νk
PP, so Vk

PB = νk
PP− νk

BP ≥ 0, Vk
BN = νk

BP− νk
NP > 0,

Vk
PN = νk

PP − νk
BP > 0.

Since Vk
PB, Vk

BN , Vk
PN are monotonically increasing of Pr(X|[o]), we know that Vk

PB,
Vk

BN , and Vk
PN all have a unique zero, and the zero lies between 0 and 1.

Proposition 5. Let αk
2, βk

2, and γk
2 be the zeros of Vk

PB, Vk
BN , and Vk

PN , respectively; then, γk
2 is

between αk
2 and βk

2.

Proof. The proof of Proposition 5 is straightforward.

According to Proposition 4, αk
2, βk

2, and γk
2 exist and are unique, so the rule (P2)-(N2)

can be equivalently rewritten as follows:

(P3) If Pr(X|[o]) ≥ αk
2, Pr(X|[o]) ≥ γk

2, decide o ∈ POS(X),

(B3) If Pr(X|[o]) ≤ αk
2, Pr(X|[o]) ≥ βk

2, decide o ∈ BND(X),

(N3) If Pr(X|[o]) ≤ βk
2, Pr(X|[o]) ≤ γk

2, decide o ∈ NEG(X).

Based on Proposition 5, γk
2 is between αk

2 and βk
2, so the decision rule can be further

simplified by comparing the relationship between αk
2 and βk

2.

If αk
2 > βk

2, then the rule (P3)-(N3) can be rewritten as follows:

(P4) If Pr(X|[o]) ≥ αk
2, decide o ∈ POS(X),

(B4) If βk
2 < Pr(X|[o]) < αk

2, decide o ∈ BND(X),

(N4) If Pr(X|[o]) ≤ βk
2, decide o ∈ NEG(X).

Otherwise , if αk
2 ≤ βk

2, the rule (P3)-(N3) can be rewritten as follows:

(P4) If Pr(X|[o]) ≥ γk
2, decide o ∈ POS(X),

(N4) If Pr(X|[o]) < γk
2, decide o ∈ NEG(X).

Through the above analysis, the specific algorithm of the three-way decision model
with interval values based on the cumulative prospect theory is described in Algorithm 1:
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Algorithm 1: Three-way decision method with interval values based on CPT.
Input: The outcome of matrix
Output: The three-way decision rules for each o ∈ U of every decision-maker

1 foreach k ∈ [1, m] do
2 selecting a reference point ẽk according to the decision objective of the kth decision maker;
3 Calculate the loss L(x̃ij, ẽk)and the gain G(x̃ij, ẽk)of taking corresponding actions according to the

formulas (5) and (6), respectively;
4 Calculating the prospect value νk

ij of the action x̃ij according to the formula (7);

5 Compare the prospect values of νk
iPand νk

iN to give the decision prospect function Vk(ai |[o]) for
taking each action;

6 Calculating zero points αk
2, βk

2 and γk
2 of Vk

PB, Vk
BNand Vk

PN ;
7 if αk

2 > βk
2 then foreach o ∈ U do

8 if Pr(X|[o]) ≥ αk
2 then o ∈ POS(X)

9 if βk
2 < Pr(X|[o]) < αk

2 then o ∈ BNG(X)
10 else
11 o ∈ NEG(X)
12 end
13 end
14 end
15 end
16

17 else
18 if Pr(X|[o]) ≥ γk

2 then o ∈ POS(X)
19 else
20 o ∈ NEG(X)
21 end
22 end
23 end
24 end
25 end

5. Ilustrative Example and Comparative Analysis

In order to obtain the threshold pair (α, β) in the three-way decision model, Yao et al. [1]
and Liu [32] et al. propose the interval-valued decision-theoretic rough sets (IVDTRSs)
according to the principle of minimizing the loss of taking decisions. With the help of the
utility theory, Zhang et al. [11] proposed the UTWD model of utility maximization by
taking action. In the light of the prospect theory and cumulative prospect theory, respec-
tively, Wang et al. [20,21] proposed the PTWD and CPTWD models successively according
to the principle of maximizing the cumulative prospect value rather than the principle
of minimum loss or maximum utility. However, in real life, due to the uncertainty of
decision environments, the outcome matrix in PTWD and CPTWD is not a real number
but an interval value with uncertainty and fuzziness. At present, most scholars usually
address the difference between two interval values by two different methods. The first
method is using a location coefficient θ to convert the interval value into a single value
by comparison [31,33,34]. However, this method ignores the importance of the interval
radius. The second method is to covert the difference between intervals into distance
measure [35,36], although this method can only measure the difference but cannot distin-
guish the superior and inferior relationship when facing two interval values with inclusion
relation. To solve the above deficiencies, we measured the difference between two interval
values from the perspective of the loss and the gain. The attitude of decision-makers
toward two results is described with the aid of the value function. Furthermore, a new
three-way decision method with interval values based on the cumulative prospect theory
is established. An example is given to illustrate the effectiveness and feasibility of the
proposed algorithm.

5.1. An Illustrative Example

A venture capital firm makes decisions A= {aP, aB, aN} through the assessment of
result Ω = {X,¬X} by an expert, as shown in Table 4. The reference point ẽk represents
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the ideal return that the investment company wants to obtain. The expected return of nine
different decision-makers is shown in Table 5.

Table 4. The outcome of the matrix.

X ¬X

aP [6.69, 9.31] [−10.18,−7.64]
aB [−1.59,−0.65] [−3.32,−2.40]
aN [−10.35,−7.87] [5.92, 8.24]

Table 5. The reference point expectations of the decision-maker.

The Reference Point d1 d2 d3 d4 d5 d6 d7 d8 d9

m(ẽk) −11 −9 −7 −5 −3 −1 1 3 5

From Table 4, we can see that 0.46 ≤ r(x̃ij) ≤ 1.27 (i = P, B, N, j = P, N). In order to
analyze the relationship between the expectation (i.e., risk attitude) of different decision-
makers and the value function in Algorithm 1, the interval radius of nine decision makers
is assumed to be r(ẽk) = 0.8 (k = 1, 2, . . . , 9). Figure 4 represents the decision prospect
obtained by nine decision-makers taking decision actions under states x̃ij, and Figure 5
represents the threshold values α, β, and γ obtained by nine decision-makers. It can be seen
from Figure 4 that when the expectation value of the reference point of the decision-maker
increases gradually, the decision prospect of adopting various decision actions decreases
gradually, and νk

NP < νk
BP ≤ νk

PP, νk
PN < νk

BN ≤ νk
NN . When νij < 0, the decline trend of the

decision prospect is faster, which indicates that the decision-maker is more sensitive to the
decision in the loss state in the decision process. As shown in Figure 5, α increases first
and then decreases, β decreases first and then increases, γ has no obvious change trend,
and α, β and γ satisfy Proposition 5. When the reference point of the decision-maker is
d7, d8, or d9, we have α < β, so the three-way decision is reduced to a two-way decision.
In other words, when decision-makers have different ideal returns on investment results,
investment companies have different requirements on the probability of investment success
when choosing whether to invest funds according to decision-makers’ preferences.

(a) νiP (b) νiN

Figure 4. The trend of the value function.
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Figure 5. The trend of threshold change.

5.2. Comparative Analysis

In order to reflect the influence of the interval value radius, we take m(ẽ5) as an
example. Nine reference points with different radii were selected, in which the radii of the
interval values were set as 0 initially, 0.4 step and 3.2 maximum value (i.e., r(ẽ5) = {0.4s|s =
0, 1, 2, . . . , 8}). Then, the change in the prospect value function and threshold (α, β) were
analyzed. When x̃ij and ẽk are precise real numbers (i.e., ẽ5 = e−5 = e+5 ,x̃ij = x−ij = x+ij ),
the model proposed in this paper is reduced to the CPTWD model in Wang’s model [21].
In order to compare with Wang’s model, the location function in Definition 6 is used
to convert the interval value in Table 4 into a real number, where x = 0.5, for example,
x̃PP = f ã(0.5) = x−PP + (x+PP − x−PP)x = 8.

When the reference point radius changes, the corresponding prospect value function is
obtained by the fifth decision-maker who takes decision action under the state x̃ij is shown
in Figure 6. It can be seen from Figure 6 that νij in Wang’s model is not affected by the radius
of the reference point r(ẽ5). Since r(x̃PP) = 1.31, |r(x̃PP)− r(ẽ5)| reaches the minimum
value when r(ẽ5) = 1.2. As shown in Figure 6a, the difference in the prospect value
function between our model and Wang’s model is minimal when r(ẽ5) = 1.2. This indicates
that when the radius difference between x̃PP and ẽ5 is the smallest, their prospect value
function is the closest. Similarly, the analysis shows that Figure 6b–f have the same results
as Figure 6a. Due to the fact that e+5 = m(ẽ5) + r(ẽ5) = −3 + r(ẽ5) ≤ −3 + 0.4× 8 = 0.2,
e−5 = m(ẽ5)− r(ẽ5) = −3− r(ẽ5) ≤ −3− 0.4× 8 = −0.62, we have x−PP = 6.91 > 0.2 > e+5 ,
x+NP = −7.87 < −6.2 < e−5 , x+PN = −7.64 < −6.2 < e−5 , x−NN = 5.92 > 0.2 > e+5 .
Therefore, the relationship between x̃PP, x̃NP, x̃PN , x̃NN , and ẽ5 is not always inclusive
when r(ẽ5) = {0.4s|s = 0, 1, 2, . . . , 8}. As shown in Figure 6a,c,d,f, when |r(x̃ij)− r(ẽ5)|
is larger, the difference between the prospect value function of our model and Wang’s
model is larger. In other words, the difference in the prospect value function of our model
and Wang’s model is positively correlated with the difference in radius of x̃ij and ẽ5 if the
relationship between x̃ij and ẽ5 is not inclusive.

Since x̃BP = [−1.59,−0.65], we have x̃BP ⊂ ẽ5 when r(ẽ5) = 2.4 or r(ẽ5) = 2.8 or
r(ẽ5) = 3.2. As shown in Figure 6, when r(ẽ5) = 2.4 or r(ẽ5) = 2.8, the prospect value
function of our model is greater than that of Wang’s model. When r(ẽ5) = 3.2, the prospect
value function of our model is less than that of Wang’s model. Since x̃BN = [−3.32,−2.40],
we have the following: if r(ẽ5) = 0, ẽ5 ⊂ x̃BN ; if r(ẽ5) = 0.4 or r(ẽ5) = 0.8, the relationship
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between x̃BN and ẽ5 is not inclusive; if r(ẽ5) ≥ 1.2, x̃BN ⊂ ẽ5. The difference in prospect
value function of the two models is also positively correlated with the difference in radius
of x̃BN and ẽ5. Combining Figure 6b,e, we find that the change in prospect value function
is complex, if the relationship between x̃ij and ẽ5 is inclusive.

The thresholds α and β are obtained under the difference radius of the reference point
as shown in Figure 7, where α1 and β1 represent the threshold obtained in this paper, and α2
and β2 represent the threshold obtained in Wang’s. Ordinarily, the larger the interval radius,
the larges the fluctuation range of the expected returns is. When r(ẽ5) = 0.4, the difference
in thresholds between our model and Wang’s model is minimal. When r(ẽ5) > 0.4, α1
gradually decreases and β1 gradually increases, while Wang’s is not affected.

Compared with Wang’s model, the proposed model has the following advantages:

(1). While reflecting the preference of decision-makers, it fully considers the uncertainty
of decision information in real life.

(2). On the decision-making process, the fluctuation range of reference points is fully
considered, that is, the acceptable range of decision-makers when they bear risk losses.
The larger the interval radius is, the larger the fluctuation range of expected returns is.
However, because the data used by Wang’s model are precise, they cannot reflect the
influence of the interval radius of reference points on decision-making behavior.

(3). This method can accurately judge the loss and gain state after taking the decision
when there is an inclusion relation between the reference point and the outcome.

(a) νPP (b) νBP (c) νNP

(d) νPN (e) νBN (f) νNN

Figure 6. Comparison of value functions of different interval radii.
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(a) α (b) β

Figure 7. Comparison of threshold values of different interval radii.

For the treatment of interval value, reference [33] deduces a three-way decision model
based on IVDTRS with a certain ranking method (hereinafter referred to as Liang’s model).
In this model, Liang first gives the transformation formula of mθ(λ̃) = (1− θ)λ− + θλ+

(θ ∈ [0, 1]) and converts the loss function regarding the risk or cost of actions in the different
states in IVDTRS into a real number. Then, the risk loss assessment is carried out on three
different decision actions with the help of the Bayesian decision theory, and finally the
decision action with the least expected loss as the final decision rule is selected. However,
Wang’s model fails to reflect the attitudes of decision-makers toward the gain, while the
method proposed in this paper could reflect the decision-makers’ preference. In order to
show the superiority of our model in the decision prospect, we compare our model with
Liang’s model. First, in Liang’s model, since risks are measured by the loss functions, the
outcome matrix in Table 4 needs to be transformed into the loss function matrix. If x−ij ≥ 0,

the decision is in the gain state, so the loss function is set as λ̃ij = 0. If x+ij ≤ 0, the decision

is in a loss state, the loss function is set as λ̃ij = [−x+ij ,−x−ij ]. For the selection of θ in mθ(λ̃),
we set the initial value of θ to 0, the step size to 0.125, and the maximum to 1. Therefore,
nine sets of α, β, and γ can be obtained by Liang’s model. The conditional probability
Pr(X|[o]) takes 99 events from 0.01 to 0.99 with the step length of 0.01. Thus, nine different
decision rules can be obtained, respectively. Furthermore, the decision prospect value of
each event can be calculated based on the decision rule, and then the total prospect value
of all events can be obtained.

In order to illustrate the effectiveness, the largest decision prospect group among
the nine groups of decision rules of Liang’s model is selected to be compared with the
algorithm in this paper, as shown in Figure 8. Figure 6a represents the change in decision
prospect values under the different radii of the reference point when m(ẽ1) = −11, and the
other eight sub-graphs are similar. It can be seen from Figure 8 that the decision prospect
value of our model is always higher than that of Liang’s model. In addition, when the
expectation of the reference point is the same, the decision prospect value under different
radii of the reference point always changes.

Compared with Liang’s model, the proposed model has the following advantages:

(1). Our model retains the uncertainty characteristic of the outcome matrix and discusses
the risk attitude from the point of reference of decision-makers.
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(2). Decision-makers’ risk preference from the perspectives of loss and gain is reflected as
risk aversion toward gains and risk-seeking toward losses.

(3). The decision rules of Liang’s model are deduced based on the decision risk minimiza-
tion principle, and only consider the losses in the decision-making process. According
to the cumulative prospect value maximization, our model rules consider not only
the loss but the gain.

(a) m(ẽ1) = −11 (b) m(ẽ2) = −9 (c) m(ẽ3) = −7

(d) m(ẽ4) = −5 (e) m(ẽ5) = −3 (f) m(ẽ6) = −1

(g) m(ẽ7) = 1 (h) m(ẽ8) = 3 (i) m(ẽ9) = 5

Figure 8. Comparison of decision prospect values of different risk attitudes.

6. Conclusions

In this paper, the cumulative prospect theory is introduced into the interval value
three-way decision method, and a new three-way decision model is constructed. With the
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help of the distance measure between the two interval values, the loss function and gain
function are analyzed under the uniform distribution state. Then, the effects of different
reference points and decision-makers’ risk preference on the gains and losses is described
in the light of the prospect theory. The probability weight is transformed into two weight
functions about the gain and the loss. The existence and uniqueness of the threshold in
our model are proved, and the decision rules are further simplified. Finally, the change
in the prospect value and threshold value in different reference points is analyzed in the
experiments. Furthermore, the traditional interval value processing method is compared
with the algorithm in our paper, which shows that the algorithm in our paper can better
reflect the preference of decision-makers. Comparing with IVDTRS, this shows that the
proposed algorithm has better decision prospects. The proposed algorithm can effectively
reflect the decision behavior of decision-makers. It is a useful extension of the interval-
valued three-way decision model. However, there are still some deficiencies in our model.
For example, in the construction of the loss function and the gain function, we assume that
any value of the interval value is uniformly distributed. In fact, the uniformly distributed
interval number is rare. Therefore, how to reasonably integrate the calculation methods of
probability distribution function and prospect value function is the next research focus.
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