A Note on Korn’s Inequality in an N-Dimensional Context and a Global Existence Result for a Non-Linear Plate Model

Fabio Silva Botelho

Department of Mathematics, Federal University of Santa Catarina, UFSC, Florianópolis 88040-900, Brazil; fabio.botelho@ufsc.br

Abstract: In the first part of this article, we present a new proof for Korn’s inequality in an n-dimensional context. The results are based on standard tools of real and functional analysis. For the final result, the standard Poincaré inequality plays a fundamental role. In the second text part, we develop a global existence result for a non-linear model of plates. We address a rather general type of boundary conditions and the novelty here is the more relaxed restrictions concerning the external load magnitude.

Keywords: Korn’s inequality; global existence result; non-linear plate model

MSC: 35Q74; 35J58

1. Introduction

In this article, we present a proof for Korn’s inequality in \mathbb{R}^n. The results are based on standard tools of functional analysis and on the Sobolev spaces theory.

We emphasize that such a proof is relatively simple and easy to follow since it is established in a very transparent and clear fashion.

About the references, we highlight that related results in a three-dimensional context may be found in [1]. Other important classical results on Korn’s inequality and concerning applications to models in elasticity may be found in [2–4].

Remark 1. Generically, throughout the text we denote

$$
\|u\|_{0,2,\Omega} = \left(\int_{\Omega} |u|^2 \, dx \right)^{1/2}, \quad \forall u \in L^2(\Omega),
$$

and

$$
\|u\|_{0,2,\Omega} = \left(\sum_{j=1}^{n} \|u_j\|_{0,2,\Omega}^2 \right)^{1/2}, \quad \forall u = (u_1, \ldots, u_n) \in L^2(\Omega; \mathbb{R}^n).
$$

Moreover,

$$
\|u\|_{1,2,\Omega} = \left(\|u\|_{0,2,\Omega}^2 + \sum_{j=1}^{n} \|u_j\|_{0,2,\Omega}^2 \right)^{1/2}, \quad \forall u \in W^{1,2}(\Omega),
$$

where we shall also refer throughout the text to the well-known corresponding analogous norm for $u \in W^{1,2}(\Omega; \mathbb{R}^n)$.

At this point, we first introduce the following definition.

Definition 1. Let $\Omega \subset \mathbb{R}^n$ be an open, bounded set. We say that $\partial \Omega$ is C^1 if such a manifold is oriented and for each $x_0 \in \partial \Omega$, denoting $\bar{x} = (x_1, \ldots, x_{n-1})$ for a local coordinate system compatible...
with the manifold $\partial \Omega$ orientation, there exist $r > 0$ and a function $f(x_1, \ldots, x_{n-1}) = f(\hat{x})$ such that
\[
W = \overline{\Omega} \cap B_r(x_0) = \{ x \in B_r(x_0) \mid x_n \leq f(x_1, \ldots, x_{n-1}) \}.
\]
Moreover, $f(\hat{x})$ is a Lipschitz continuous function, so that
\[
|f(\hat{x}) - f(\hat{y})| \leq C_1 |\hat{x} - \hat{y}|_2, \text{ on its domain,}
\]
for some $C_1 > 0$. Finally, we assume
\[
\left\{ \frac{\partial f(\hat{x})}{\partial x_k} \right\}_{k=1}^{n-1}
\]
is classically defined, almost everywhere also on its concerning domain, so that $f \in W^{1,2}$.

Remark 2. This mentioned set Ω is of a Lipschitzian type, so that we may refer to such a kind of sets as domains with a Lipschitzian boundary, or simply as Lipschitzian sets.

At this point, we recall the following result found in [5], at page 222 in its Chapter 11.

Theorem 1. Assume $\Omega \subset \mathbb{R}^n$ is an open bounded set, and that $\partial \Omega$ is \hat{C}^1. Let $1 \leq p < \infty$, and let V be a bounded open set such that $\Omega \subset\subset V$. Then there exists a bounded linear operator
\[
E : W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n),
\]
such that for each $u \in W^{1,p}(\Omega)$ we have:
1. $Eu = u$, a.e. in Ω;
2. Eu has support in V;
3. $\|Eu\|_{1,p,\mathbb{R}^n} \leq C\|u\|_{1,p,\Omega}$, where the constant depends only on p, Ω, and V.

Remark 3. Considering the proof of such a result, the constant $C > 0$ may be also such that
\[
\|e_{ij}(Eu)\|_{0,2,V} \leq C(\|e_{ij}(u)\|_{0,2,\Omega} + \|u\|_{0,2,\Omega}), \forall u \in W^{1,2}(\Omega; \mathbb{R}^n), \forall i, j \in \{1, \ldots, n\},
\]
for the operator $e : W^{1,2}(\Omega; \mathbb{R}^n) \to L^2(\Omega; \mathbb{R}^{n \times n})$ specified in the next theorem.

Finally, as the meaning is clear, we may simply denote $Eu = u$.

2. The Main Results, the Korn Inequalities

Our main result is summarized by the following theorem.

Theorem 2. Let $\Omega \subset \mathbb{R}^n$ be an open, bounded and connected set with a \hat{C}^1 (Lipschitzian) boundary $\partial \Omega$.

Define $e : W^{1,2}(\Omega; \mathbb{R}^n) \to L^2(\Omega; \mathbb{R}^{n \times n})$ by
\[
e(u) = \{e_{ij}(u)\}
\]
where
\[
e_{ij}(u) = \frac{1}{2}(u_{ij} + u_{ji}), \forall i, j \in \{1, \ldots, n\},
\]
and where generically, we denote
\[
u_{ij} = \frac{\partial u_i}{\partial x_j}, \forall i, j \in \{1, \cdots, n\}.
Define also,
\[\|e(u)\|_{0,2,\Omega} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \|e_{ij}(u)\|_{0,2,\Omega}^2 \right)^{1/2}. \]

Let \(L \in \mathbb{R}^+ \) be such \(V = [-L, L]^n \) is also such that \(\overline{\Omega} \subset V^0 \).

Under such hypotheses, there exists \(C(\Omega, L) \in \mathbb{R}^+ \) such that
\[\|u\|_{1,2,\Omega} \leq C(\Omega, L)(\|u\|_{0,2,\Omega} + \|e(u)\|_{0,2,\Omega}), \quad \forall u \in W^{1,2}(\Omega; \mathbb{R}^n). \quad (1) \]

Proof. Suppose, to obtain contradiction, that the concerning claim does not hold.

Thus, we are assuming that there is no positive real constant \(C = C(\Omega, L) \) such that (1) is valid.

In particular, \(k = 1 \in \mathbb{N} \) is not such a constant \(C \), so that there exists a function \(u_1 \in W^{1,2}(\Omega; \mathbb{R}^n) \) such that
\[\|u_1\|_{1,2,\Omega} \geq 1 (\|u_1\|_{0,2,\Omega} + \|e(u_1)\|_{0,2,\Omega}). \]

Similarly, \(k = 2 \in \mathbb{N} \) is not such a constant \(C \), so that there exists a function \(u_2 \in W^{1,2}(\Omega; \mathbb{R}^n) \) such that
\[\|u_2\|_{1,2,\Omega} \geq 2 (\|u_2\|_{0,2,\Omega} + \|e(u_2)\|_{0,2,\Omega}). \]

Hence, since no \(k \in \mathbb{N} \) is such a constant \(C \), reasoning inductively, for each \(k \in \mathbb{N} \) there exists a function \(u_k \in W^{1,2}(\Omega; \mathbb{R}^n) \) such that
\[\|u_k\|_{1,2,\Omega} \geq k (\|u_k\|_{0,2,\Omega} + \|e(u_k)\|_{0,2,\Omega}). \]

In particular, defining
\[v_k = \frac{u_k}{\|u_k\|_{1,2,\Omega}} \]
we obtain
\[\|v_k\|_{1,2,\Omega} = 1 > k (\|v_k\|_{0,2,\Omega} + \|e(v_k)\|_{0,2,\Omega}), \]
so that
\[(\|v_k\|_{0,2,\Omega} + \|e(v_k)\|_{0,2,\Omega}) < \frac{1}{k}, \quad \forall k \in \mathbb{N}. \]

From this we obtain
\[\|v_k\|_{0,2,\Omega} < \frac{1}{k}, \]
and
\[\|e_i(v_k)\|_{0,2,\Omega} < \frac{1}{k}, \quad \forall k \in \mathbb{N}, \]
so that
\[\|v_k\|_{0,2,\Omega} \to 0, \quad \text{as } k \to \infty, \]
and
\[\|e_i(v_k)\|_{0,2,\Omega} \to 0, \quad \text{as } k \to \infty. \]

In particular,
\[\|(v_k)_{ij}\|_{0,2,\Omega} \to 0, \quad \forall j \in \{1, \ldots, n\}. \]

At this point, we recall the following identity in the distributional sense, found in [3], page 12:
\[\partial_j (\partial_i v) = \partial_j e_i(v) + \partial_i e_j(v) - \partial_i e_j(v), \quad \forall i, j, l \in \{1, \ldots, n\}. \quad (2) \]

Fix \(j \in \{1, \ldots, n\} \) and observe that
\[\|(v_k)_{ij}\|_{1,2,\Omega} \leq C(\|v_k\|_{1,2,\Omega})^{1/2}. \]
so that
\[
\frac{C}{\|v_k\|_{1,2,\Omega}} \geq \frac{1}{\|v_k\|_{1,2,\Omega}}, \quad \forall k \in \mathbb{N}.
\]

Hence,
\[
\|v_k\|_{1,2,\Omega} \leq \sup_{\varphi \in C^1(\Omega)} \left\{ \langle \nabla (v_k)_j, \nabla \varphi \rangle_{L^2(\Omega)} + \langle (v_k)_j, \varphi \rangle_{L^2(\Omega)} : \|\varphi\|_{1,2,\Omega} \leq 1 \right\}
\]
\[
= \sup_{\varphi \in C^1(\Omega)} \left\{ \langle \nabla (v_k)_j, \nabla \varphi \rangle_{L^2(\Omega)} + \langle (v_k)_j, \varphi \rangle_{L^2(V)} : \|\varphi\|_{1,2,\Omega} \leq 1 \right\}
\]
\[
\leq C \sup_{\varphi \in C^1(V)} \left\{ \langle \nabla (v_k)_j, \nabla \varphi \rangle_{L^2(V)} + \langle (v_k)_j, \varphi \rangle_{L^2(V)} : \|\varphi\|_{1,2,V} \leq 1 \right\}.
\]

Here, we recall that $C > 0$ is the constant concerning the extension Theorem 1. From such results and (2), we have that
\[
\sup_{\varphi \in C^1(\Omega)} \left\{ \langle \nabla (v_k)_j, \nabla \varphi \rangle_{L^2(\Omega)} + \langle (v_k)_j, \varphi \rangle_{L^2(\Omega)} : \|\varphi\|_{1,2,\Omega} \leq 1 \right\}
\]
\[
\leq C \sup_{\varphi \in C^1(V)} \left\{ \langle \nabla (v_k)_j, \nabla \varphi \rangle_{L^2(V)} + \langle (v_k)_j, \varphi \rangle_{L^2(V)} : \|\varphi\|_{1,2,V} \leq 1 \right\}
\]
\[
= C \sup_{\varphi \in C^1(V)} \left\{ \langle \epsilon_{\mu}(v_k), \varphi \rangle_{L^2(V)} + \langle \epsilon_{\mu}(v_k), \varphi \rangle_{L^2(V)} - \langle \epsilon_{\mu}(v_k), \varphi \rangle_{L^2(V)} + \langle (v_k)_j, \varphi \rangle_{L^2(V)} : \|\varphi\|_{1,2,V} \leq 1 \right\}.
\]

Therefore,
\[
\|v_k\|_{W^{1,2}(\Omega)} = \sup_{\varphi \in C^1(\Omega)} \left\{ \langle \nabla (v_k)_j, \nabla \varphi \rangle_{L^2(\Omega)} + \langle (v_k)_j, \varphi \rangle_{L^2(\Omega)} : \|\varphi\|_{1,2,\Omega} \leq 1 \right\}
\]
\[
\leq C \left(\sum_{j=1}^{n} \|\epsilon_{\mu}(v_k)\|_{0,2,V} + \|\epsilon_{\mu}(v_k)\|_{0,2,V} \right) + \|v_k\|_{0,2,V}
\]
\[
\leq C_1 \left(\sum_{j=1}^{n} \|\epsilon_{\mu}(v_k)\|_{0,2,\Omega} + \|\epsilon_{\mu}(v_k)\|_{0,2,\Omega} \right) + \|v_k\|_{0,2,\Omega}
\]
\[
< \frac{C_2}{k},
\]
for appropriate $C_1 > 0$ and $C_2 > 0$.

Summarizing,
\[
\|v_k\|_{W^{1,2}(\Omega)} < \frac{C_2}{k}, \quad \forall k \in \mathbb{N}.
\]

From this we obtain
\[
\|v_k\|_{1,2,\Omega} \to 0, \quad \text{as} \ k \to \infty,
\]
which contradicts \(\|v_k\|_{1,2,\Omega} = 1, \forall k \in \mathbb{N}. \)

The proof is complete. \(\square \)

Corollary 1. Let \(\Omega \subset \mathbb{R}^n \) be an open, bounded and connected set with a \(\mathcal{C}^1 \) boundary \(\partial \Omega \). Define \(e : W^{1,2}(\Omega; \mathbb{R}^n) \to L^2(\Omega; \mathbb{R}^{n \times n}) \) by

\[
e(u) = \{e_{ij}(u)\}
\]

where

\[
e_{ij}(u) = \frac{1}{2}(u_{i,j} + u_{j,i}), \forall i, j \in \{1, \ldots, n\}.
\]

Define also,

\[
\|e(u)\|_{0,2,\Omega} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \|e_{ij}(u)\|^2_{0,2,\Omega} \right)^{1/2}.
\]

Let \(L \in \mathbb{R}^+ \) be such \(V = [-L, L]^n \) is also such that \(\overline{\Omega} \subset V^0 \).

Moreover, define

\[
\hat{H}_0 = \{ u \in W^{1,2}(\Omega; \mathbb{R}^n) : u = 0, \text{ on } \Gamma_0 \},
\]

where \(\Gamma_0 \subset \partial \Omega \) is a measurable set such that the Lebesgue measure \(m_{\mathbb{R}^{n-1}}(\Gamma_0) > 0 \).

Assume also \(\Gamma_0 \) is such that for each \(j \in \{1, \ldots, n\} \) and each \(x = (x_1, \ldots, x_n) \in \Omega \) there exists \(x_0 = ((x_0)_1, \ldots, (x_0)_n) \in \Gamma_0 \) such that

\[
(x_0)_l = x_l, \forall l \neq j, l \in \{1, \ldots, n\},
\]

and the line

\[
A_{x_0,x} \subset \overline{\Omega}
\]

where

\[
A_{x_0,x} = \{(x_1, \ldots, (1-t)(x_0)_j + tx_j, \ldots, x_n) : t \in [0,1]\}.
\]

Under such hypotheses, there exists \(C(\Omega, L) \in \mathbb{R}^+ \) such that

\[
\|u\|_{1,2,\Omega} \leq C(\Omega, L) \|e(u)\|_{0,2,\Omega}, \forall u \in \hat{H}_0.
\]

Proof. Suppose, to obtain contradiction, that the concerning claim does not hold. Hence, for each \(k \in \mathbb{N} \) there exists \(u_k \in \hat{H}_0 \) such that

\[
\|u_k\|_{1,2,\Omega} > k \|e(u_k)\|_{0,2,\Omega}.
\]

In particular, defining

\[
v_k = \frac{u_k}{\|u_k\|_{1,2,\Omega}}
\]

similarly to the proof of the last theorem, we may obtain

\[
\|(v_k)_{ij}\|_{0,2,\Omega} \to 0, \text{ as } k \to \infty, \forall j \in \{1, \ldots, n\}.
\]

From this, the hypotheses on \(\Gamma_0 \) and from the standard Poincaré inequality proof we obtain

\[
\|(v_k)_{ij}\|_{0,2,\Omega} \to 0, \text{ as } k \to \infty, \forall j \in \{1, \ldots, n\}.
\]

Thus, also similarly as in the proof of the last theorem, we may infer that

\[
\|v_k\|_{1,2,\Omega} \to 0, \text{ as } k \to \infty,
\]
which contradicts
\[\|v_k\|_{1,2,\Omega} = 1, \, \forall k \in \mathbb{N}. \]

The proof is complete. \(\square\)

3. An Existence Result for a Non-Linear Model of Plates

In the present section, as an application of the results on Korn’s inequalities presented in the previous sections, we develop a new global existence proof for a Kirchhoff–Love thin plate model. Previous results on the existence of mathematical elasticity and related models may be found in [2–4].

At this point we start to describe the primal formulation.

Let \(\Omega \subset \mathbb{R}^2 \) be an open, bounded, connected set which represents the middle surface of a plate of thickness \(h \). The boundary of \(\Omega \), which is assumed to be regular (Lipschitzian), is denoted by \(\partial \Omega \). The vectorial basis related to the cartesian system \(\{x_1, x_2, x_3\} \) is denoted by \(\{a_\alpha, a_3\} \), where \(\alpha = 1, 2 \) (in general, Greek indices stand for 1 or 2), and where \(a_3 \) is the vector normal to \(\Omega \), whereas \(a_1 \) and \(a_2 \) are orthogonal vectors parallel to \(\Omega \). Furthermore, \(n \) is the outward normal to the plate surface.

The displacements will be denoted by \(\hat{u} = \{\hat{u}_\alpha, \hat{u}_3\} = \hat{u}_\alpha a_\alpha + \hat{u}_3 a_3 \).

The Kirchhoff–Love relations are
\[\hat{u}_\alpha(x_1, x_2, x_3) = u_\alpha(x_1, x_2) - x_3 w(x_1, x_2), \]
\[\text{and} \quad \hat{u}_3(x_1, x_2, x_3) = w(x_1, x_2). \] (6)

Here, \(-h/2 \leq x_3 \leq h/2\) so that we have \(u = (u_\alpha, w) \in U \) where
\[U = \left\{ (u_\alpha, w) \in W^{1,2}(\Omega; \mathbb{R}^2) \times W^{2,2}(\Omega), \right. \]
\[u_\alpha = w = \frac{\partial w}{\partial n} = 0 \text{ on } \partial \Omega \}
\[= W^{1,2}_0(\Omega; \mathbb{R}^2) \times W^{2,2}_0(\Omega). \]

It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.

We define the operator \(\Lambda : U \to Y \times Y \), where \(Y = Y^* = L^2(\Omega; \mathbb{R}^{2 \times 2}) \), by
\[\Lambda(u) = \{\gamma(u), \kappa(u)\}, \]
\[\gamma_{\alpha\beta}(u) = \frac{u_{\alpha\beta} + u_{\beta\alpha}}{2} + \frac{w_\alpha w_\beta}{2}, \]
\[\kappa_{\alpha\beta}(u) = -w_{\alpha\beta}. \]

The constitutive relations are given by
\[N_{\alpha\beta}(u) = H_{\alpha\beta\lambda\mu} \gamma_{\lambda\mu}(u), \] (7)
\[M_{\alpha\beta}(u) = h_{\alpha\beta\lambda\mu} \kappa_{\lambda\mu}(u), \] (8)

where \(\{H_{\alpha\beta\lambda\mu}\} \) and \(\{h_{\alpha\beta\lambda\mu}\} = \frac{\partial^2}{\partial n^2} H_{\alpha\beta\lambda\mu} \}, \) are symmetric positive definite fourth-order tensors. From now on, we denote \(\{H^{-1}_{\alpha\beta\lambda\mu}\} \) and \(\{h^{-1}_{\alpha\beta\lambda\mu}\} = \{h_{\alpha\beta\lambda\mu}\}^{-1}. \)
Furthermore, \(\{N_{\alpha\beta}\} \) denote the membrane force tensor and \(\{M_{\alpha\beta}\} \) the moment one. The plate stored energy, represented by \((G \circ \Lambda) : U \to \mathbb{R}\), is expressed by
\[
(G \circ \Lambda)(u) = \frac{1}{2} \int_{\Omega} N_{\alpha\beta}(u) \gamma_{\alpha\beta}(u) \, dx + \frac{1}{2} \int_{\Omega} M_{\alpha\beta}(u) \kappa_{\alpha\beta}(u) \, dx
\]
and the external work, represented by \(F : U \to \mathbb{R} \), is given by
\[
F(u) = \langle w, P \rangle_{L^2(\Omega)} + \langle u_\alpha, P_\alpha \rangle_{L^2(\Omega)},
\]
where \(P, P_1, P_2 \in L^2(\Omega) \) are external loads in the directions \(a_3, a_1, \) and \(a_2 \), respectively. The potential energy, denoted by \(J : U \to \mathbb{R} \), is expressed by
\[
J(u) = (G \circ \Lambda)(u) - F(u)
\]
Finally, we also emphasize from now on, as their meaning are clear, we may denote \(L^2(\Omega) \) and \(L^2(\Omega; \mathbb{R}^2 \times 2) \) simply by \(L^2 \), and the respective norms by \(\| \cdot \|_2 \). Moreover, derivatives are always understood in the distributional sense, \(0 \) may denote the zero vector in appropriate Banach spaces, and the following and relating notations are used:
\[
w_{,\alpha} = \frac{\partial w}{\partial x_\alpha},
\]
\[
w_{,\alpha\beta} = \frac{\partial^2 w}{\partial x_\alpha \partial x_\beta},
\]
\[
u_{,\alpha\beta} = \frac{\partial u_\alpha}{\partial x_\beta},
\]
\[
N_{\alpha\beta,1} = \frac{\partial N_{\alpha\beta}}{\partial x_1},
\]
and
\[
N_{\alpha\beta,2} = \frac{\partial N_{\alpha\beta}}{\partial x_2}.
\]

4. On the Existence of a Global Minimizer
At this point, we present an existence result concerning the Kirchhoff–Love plate model. We start with the following two remarks.

Remark 4. Let \(\{P_\alpha\} \in L^\infty(\Omega; \mathbb{R}^2) \). We may easily obtain by appropriate Lebesgue integration \(\{\tilde{T}_{\alpha\beta}\} \) symmetric and such that
\[
\tilde{T}_{\alpha\beta,\beta} = -P_\alpha, \text{ in } \Omega.
\]
Indeed, extending \(\{P_\alpha\} \) to zero outside \(\Omega \) if necessary, we may set
\[
\tilde{T}_{11}(x, y) = -\int_0^x P_1(\xi, y) \, d\xi,
\]
\[
\tilde{T}_{22}(x, y) = -\int_0^y P_2(x, \xi) \, d\xi,
\]
and
\[
\tilde{T}_{12}(x, y) = \tilde{T}_{21}(x, y) = 0, \text{ in } \Omega.
\]
Thus, we may choose a \(C > 0 \) sufficiently big, such that
\[
\{T_{\alpha\beta}\} = \{T_{\alpha\beta} + C\delta_{\alpha\beta}\},
\]
is positive definite in \(\Omega \), so that
\[
T_{\alpha\beta,\beta} = \tilde{T}_{\alpha\beta,\beta} = -P_{\alpha},
\]
where
\[
\{\delta_{\alpha\beta}\}
\]
is the Kronecker delta.

Therefore, for the kind of boundary conditions of the next theorem, we do not have any restriction for the \(\{P_{\alpha}\} \) norm.

In summary, the next result is new and it is really a step forward concerning the previous one in Ciarlet [3]. We emphasize that this result and its proof through such a tensor \(\{T_{\alpha\beta}\} \) are new, even though the final part of the proof is established through a standard procedure in the calculus of variations.

Finally, more details on the Sobolev spaces involved may be found in [5–8]. Related duality principles are addressed in [5,7,9].

At this point, we present the main theorem in this section.

Theorem 3. Let \(\Omega \subset \mathbb{R}^2 \) be an open, bounded, connected set with a Lipschitzian boundary denoted by \(\partial\Omega = \Gamma \). Suppose \((G \circ \Lambda): U \to \mathbb{R} \) is defined by
\[
G(\Lambda u) = G_1(\gamma(u)) + G_2(\kappa(u)), \quad \forall u \in U,
\]
where
\[
G_1(\gamma u) = \frac{1}{2} \int_\Omega H_{\alpha\beta\lambda\mu}^\gamma_{\alpha\beta}(u) \gamma_{\lambda\mu}(u) \, dx,
\]
and
\[
G_2(\kappa u) = \frac{1}{2} \int_\Omega h_{\alpha\beta\lambda\mu}^\kappa_{\alpha\beta}(u) \kappa_{\lambda\mu}(u) \, dx,
\]
where
\[
\Lambda(u) = (\gamma(u), \kappa(u)) = (\{\gamma_{\alpha\beta}(u)\}, \{\kappa_{\alpha\beta}(u)\}),
\]
\[
\gamma_{\alpha\beta}(u) = \frac{u_{\alpha} + u_{\beta}}{2} + \frac{w_{\alpha} + w_{\beta}}{2},
\]
\[
\kappa_{\alpha\beta}(u) = -w_{\alpha\beta},
\]
and where
\[
J(u) = W(\gamma(u), \kappa(u)) - \langle P_{\alpha}, u_{\alpha} \rangle_{L^2(\Omega)} - \langle w, P \rangle_{L^2(\Omega)} - \langle P_{\alpha}, u_{\alpha} \rangle_{L^2(\Gamma_t)} - \langle P_t, w \rangle_{L^2(\Gamma_t)},
\]
(11)
where,
\[
U = \{u = (u_{\alpha}, w) = (u_1, u_2, w) \in W^{1,2}(\Omega; \mathbb{R}^2) \times W^{2,2}(\Omega) : u_{\alpha} = w = \frac{\partial w}{\partial n} = 0, \text{ on } \Gamma_0 \},
\]
(12)
where \(\partial\Omega = \Gamma_0 \cup \Gamma_t \) and the Lebesgue measures
\[
m_\Gamma(\Gamma_0 \cap \Gamma_t) = 0,
\]
and
\[
m_\Gamma(\Gamma_0) > 0.
\]
We also define
\[
F_1(u) = -\langle w, P \rangle_{L^2(\Omega)} - \langle u, P_a \rangle_{L^2(\Omega)} - \langle P_a^t, u \rangle_{L^2(\Gamma_i)} \\
- \langle P^t, w \rangle_{L^2(\Gamma_i)} + \langle \epsilon_a, u^2 \rangle_{L^2(\Gamma_i)} \\
\equiv -\langle u, f \rangle_{L^2} + \langle \epsilon_a, u^2 \rangle_{L^2(\Gamma_i)} \\
\equiv -\langle u, f_1 \rangle_{L^2} - \langle u, P_a \rangle_{L^2(\Omega)} + \langle \epsilon_a, u^2 \rangle_{L^2(\Gamma_i)},
\]
where
\[
\langle u, f_1 \rangle_{L^2} = \langle u, f \rangle_{L^2} - \langle u, P_a \rangle_{L^2(\Omega)},
\]
\[\epsilon_a > 0, \forall \alpha \in \{1, 2\}\] and
\[f = (P_a, P) \in L^\infty(\Omega; \mathbb{R}^3).\]

Let \(J : U \rightarrow \mathbb{R}\) be defined by
\[
J(u) = G(\Lambda u) + F_1(u), \forall u \in U.
\]

Assume there exists \(\{c_{\alpha \beta}\} \in \mathbb{R}^{2 \times 2}\) such that \(c_{\alpha \beta} > 0, \forall \alpha, \beta \in \{1, 2\}\) and
\[
G_2(\alpha(u)) \geq c_{\alpha \beta} \|w_{\alpha \beta}\|^2, \forall u \in U.
\]

Under such hypotheses, there exists \(u_0 \in U\) such that
\[
J(u_0) = \min_{u \in U} J(u).
\]

Proof. Observe that we may find \(T_\alpha = \{(T_\alpha)_{\beta}\}\) such that
\[
div T_\alpha = T_\alpha \beta, = -P_a,
\]
and also such that \(\{T_\alpha \beta\}\) is positive, definite, and symmetric (please see Remark 4).

Thus, defining
\[
v_{\alpha \beta}(u) = \frac{u_{\alpha \beta} + u_{\beta \alpha}}{2} + \frac{1}{2} w_{\alpha \beta},
\]
we obtain
\[
J(u) = G_1(\{v_{\alpha \beta}(u)\}) + G_2(\alpha(u)) - \langle u, f \rangle_{L^2} + \langle \epsilon_a, u^2 \rangle_{L^2(\Gamma_i)} \\
= G_1(\{v_{\alpha \beta}(u)\}) + G_2(\alpha(u)) - \langle T_\alpha \beta, \frac{u_{\alpha \beta} + u_{\beta \alpha}}{2} \rangle_{L^2(\Omega)} \\
+ \langle T_\alpha \beta \cdot w_{\alpha \beta}, u \rangle_{L^2(\Gamma_i)} - \langle u, f_1 \rangle_{L^2} + \langle \epsilon_a, u^2 \rangle_{L^2(\Gamma_i)} \\
= G_1(\{v_{\alpha \beta}(u)\}) + G_2(\alpha(u)) - \langle T_\alpha \beta, v_{\alpha \beta}(u) - \frac{1}{2} w_{\alpha \beta} \rangle_{L^2(\Omega)} \\
+ \langle T_\alpha \beta \cdot w_{\alpha \beta}, u \rangle_{L^2(\Gamma_i)} \\
\geq c_{\alpha \beta} \|w_{\alpha \beta}\|^2 + \frac{1}{2} \langle T_\alpha \beta, w_{\alpha \beta} \rangle_{L^2(\Omega)} - \langle u, f_1 \rangle_{L^2} + \langle \epsilon_a, u^2 \rangle_{L^2(\Gamma_i)} + G_1(\{v_{\alpha \beta}(u)\}) \\
- \langle T_\alpha \beta, v_{\alpha \beta}(u) \rangle_{L^2(\Omega)} + \langle T_\alpha \beta \cdot w_{\alpha \beta}, u \rangle_{L^2(\Gamma_i)}.\]

From this, since \(\{T_\alpha \beta\}\) is positive definite, clearly \(J\) is bounded below.

Let \(\{u_n\} \in U\) be a minimizing sequence for \(J\). Thus, there exists \(\alpha_1 \in \mathbb{R}\) such that
\[
\lim_{n \rightarrow \infty} J(u_n) = \inf_{u \in U} J(u) = \alpha_1.
\]
From (15), there exists $K_1 > 0$ such that
\[\|(w_n)_{\alpha\beta}\|_2 < K_1, \forall \alpha, \beta \in \{1, 2\}, \; n \in \mathbb{N}. \]
Therefore, there exists $w_0 \in W^{2,2}(\Omega)$ such that, up to a subsequence not relabeled,
\[(w_n)_{\alpha\beta} \rightharpoonup (w_0)_{\alpha\beta}, \text{ weakly in } L^2, \]
$\forall \alpha, \beta \in \{1, 2\}$, as $n \to \infty$.

Moreover, also up to a subsequence not relabeled,
\[(w_n)_{\alpha} \to (w_0)_{\alpha}, \text{ strongly in } L^2 \text{ and } L^4, \quad (16) \]
$\forall \alpha \in \{1, 2\}$, as $n \to \infty$.

Furthermore, from (15), there exists $K_2 > 0$ such that,
\[\|(v_n)_{\alpha\beta}(u)\|_2 < K_2, \forall \alpha, \beta \in \{1, 2\}, \; n \in \mathbb{N}, \]
and thus, from this, (14) and (16), we may infer that there exists $K_3 > 0$ such that
\[\|(u_n)_{\alpha,\beta} + (u_n)_{\beta,\alpha}\|_2 < K_3, \forall \alpha, \beta \in \{1, 2\}, \; n \in \mathbb{N}. \]

From this and Korn’s inequality, there exists $K_4 > 0$ such that
\[\|u_n\|_{W^{1,2}(\Omega; \mathbb{R}^2)} \leq K_4, \; \forall n \in \mathbb{N}. \]
Therefore, up to a subsequence not relabeled, there exists $(u_0)_{\alpha} \in W^{1,2}(\Omega, \mathbb{R}^2)$, such that
\[(u_n)_{\alpha,\beta} + (u_n)_{\beta,\alpha} \rightharpoonup (u_0)_{\alpha,\beta} + (u_0)_{\beta,\alpha}, \text{ weakly in } L^2, \]
$\forall \alpha, \beta \in \{1, 2\}$, as $n \to \infty$, and
\[(u_n)_{\alpha} \to (u_0)_{\alpha}, \text{ strongly in } L^2, \]
$\forall \alpha \in \{1, 2\}$, as $n \to \infty$.

Moreover, the boundary conditions satisfied by the subsequences are also satisfied for
w_0 and u_0 in a trace sense, so that
\[u_0 = ((u_0)_{\alpha}, w_0) \in U. \]

From this, up to a subsequence not relabeled, we obtain
\[\gamma_{\alpha\beta}(u_n) \rightharpoonup \gamma_{\alpha\beta}(u_0), \text{ weakly in } L^2, \]
$\forall \alpha, \beta \in \{1, 2\}$, and
\[\kappa_{\alpha\beta}(u_n) \rightharpoonup \kappa_{\alpha\beta}(u_0), \text{ weakly in } L^2, \]
$\forall \alpha, \beta \in \{1, 2\}$.

Therefore, from the convexity of G_1 in γ and G_2 in κ, we obtain
\[\inf_{u \in U} J(u) = a_1 = \liminf_{n \to \infty} J(u_n) \geq J(u_0). \quad (17) \]

Thus,
\[J(u_0) = \min_{u \in U} J(u). \]
The proof is complete.

5. Conclusions

In this article, we have developed a new proof for Korn's inequality in a specific n-dimensional context. In the second text part, we present a global existence result for a non-linear model of plates. Both results represent some new advances concerning the present literature. In particular, the results for Korn's inequality known so far are for a three-dimensional context such as in [1], for example, whereas we have here addressed a more general n-dimensional case.

In a future research, we intend to address more general models, including the corresponding results for manifolds in \mathbb{R}^n.

Funding: This research received no external funding

Conflicts of Interest: The author declares no conflict of interest.

References

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.