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Daniel A. Griffith

School of Economic, Political, and Policy Science, University of Texas at Dallas, Richardson, TX 75080, USA;
dagriffith@utdallas.edu

Abstract: This paper describes various selected properties and features of negative binomial (NB)
random variables, with special reference to NB2 (i.e., p = 2), and some generalizations to NBp (i.e.,
p ≥ 2), specifications. It presents new results (e.g., the NBp moment-generating function) with
regard to the relationship between a sample mean and its accompanying variance, as well as spatial
statistical/econometric numerical and empirical examples, whose parameter estimators are maximum
likelihood or method of moment ones. Finally, it highlights the Moran eigenvector spatial filtering
methodology within the context of generalized linear modeling, demonstrating it in terms of spatial
negative binomial regression. Its overall conclusion is a bolstering of important findings the literature
already reports with a newly recognized empirical example of an NB3 phenomenon.

Keywords: eigenvector spatial filter; moment-generating function; negative binomial; population
density; Puerto Rico

1. Introduction

Many contemporary random variables (RVs) measure counts (with a zero to infinity
support), implying that they are Poisson variates, but without equi-dispersion (i.e., a
violation of the µ = σ2 property, most often such that µ < σ2), further implying that
their best distributional description is a Poisson variable with a gamma-distributed mean
(i.e., a gamma–Poisson mixture), which translates nicely into a negative binomial (NB)
RV. However, a standard NB does not always successfully account for this mean–variance
discrepancy in such circumstances. Cameron and Trivedi [1] introduce a generalized
version of the NB probability model now known as the NBp model, where p is a positive
integer, whose goal is to better capture under/over-dispersion; this variate differs from the
negative binomial process (NBP) model (e.g. [2]). The literature contains little discussion
about this former generalized model, with the exception of Cameron and Trivedi’s initial
treatment of it and papers by Greene [3] and by Di et al. [4]. Of note is that an R package
(version ≥ 3.00) exists for implementing this model [4]. The purpose of this paper is to
address this gap in the literature by (1) clarifying/correcting several misleading technical
details in part of Greene’s paper; (2) presenting new results; (3) illuminating selected
small and large sample properties on NB models; and (4) presenting new empirical spatial
statistics/econometrics instances involving spatial autocorrelation (SA).

A parametric mixture conceptualization—analogous to a Bayesian conjugate prior
formulation—is the context of this discussion: the NB specification describes a count’s
variable Y that is Poisson distributed, with its mean µ being gamma distributed rather than
constant. Accordingly, the gamma RV has parameters αµ2–p and µp–1/α, where µ denotes
its mean and 1/α denotes its dispersion parameter, yielding a global NBp model with
parameters r = αµ2–p and probability p = 1/(1 + µp–1/α) for some non-negative integer
p > 0; p = 1, 2 are standard NB specifications, with the former being the Poisson RV and the
latter being the popular NB2 variate.
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2. Materials and Methods: Clarifying Greene’s Presentation

Confusing equations appearing in Greene [1] include (2-13) and (2-14), particularly
when one contrasts them with his appendix equation (A-2) with regard to the p exponent.
In addition, this latter equation is missing a subscript i on the λ variable appearing in the
numerator of its third term on its right-hand side. Discussion pertaining to equations (2-4)
and (2-5) would be clearer if the posited gamma distribution is stated in its standard sym-
bology as Γ(θ, 1/θ). Greene’s equations (2-13)—in which he incorrectly states q = 1/1(1 + θ)
rather than q = 1/(1 + 1/θ)—and (2-14)—in which he states s = λ/(λ + θλ2–p) rather than
1/(1 + µp–2/α)—yield, for independent and identically distributed (iid) NBps, the following
probability mass function:

Γ
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, y = 0, 1, 2, . . . , (1)

where, adopting more typical literature-appearing notation (particularly for gamma–
Poisson specifications) in this paper, µ (denoting the mean) is equivalent to λ and α is
the same as θ in Greene’s paper, the subscripts i are not used in this version because it
represents a global equation, and the ratio of gamma functions term also can be rewritten
employing combinatorial binomial coefficients. The difference is that Greene’s equation
(2-14) has an exponent of (2–p) rather than (p–2). Equation (1) renders the revised results of

E(Y) = µ and E[(Y − µ)2] = µ(1 + µp-1/α). (2)

Greene’s equation (2-14) specification renders
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which is not his equation (2-15), even for the specific standard case of p = 2. His probability
mass function should be Equation (1), rather than
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which is neither the result for a Poisson parametric mixture probability defined by Prob(y)
= e−µµy/(y!) with µ ~ Γ(αµ2–p, µp–1/α), nor the outcome from Greene’s replacing α with
αµ2–p in this mixture, which renders E(Y) = µ and E[(Y − µ)2] = µ(1 + µp–3/α).

3. Results: Articulating NBp Variates

Both mathematical statistics analytical results and simulation experimental output
help establish an understanding of a generalization of NB1 and NB2 to NBp. This section
furnishes some of each.

3.1. The NBp Moment-Generating Function and Asymptotic Normality

Particularly because the method of moments is a useful estimation technique for
parameter α [5], knowing the moments of the NBp specification is desirable. The absence
of closed-form maximum likelihood estimators (MLEs, e.g., see [6–10]) makes this ensuing
invention even more appealing.

3.1.1. The NBp Moment-Generating Function (mgf)

The NBp mgf is ñ
1

1 +
(
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)
(1 − et)

ôαµ2−p

,
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with the first moment about the origin being

∂
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The second moment about the mean is µ(1 + µp–1/α).

3.1.2. Asymptotic Normality and an NBp RV

Matching moments is one way to establish equivalency between distributions [11].
Skewness and kurtosis involve the third and fourth moments about the mean, which are
derivable from Equation (3), such that for an NBp RV

skewness =
1 + 2 µp−1/α

√
µ
»

1 + µp−1/α
, and kurtosis = 3 +

6 µp−2

α
+

1
µ
(
1 + µp−1/α

) .

The Poisson skewness term, 1/
√

µ, is visible in this preceding first expression. Here,
skewness does not necessarily converge on zero, and kurtosis does not necessarily converge
on 3, unless the over-dispersion parameter, 1/α, as well as p exhibit certain behaviors
and/or properties. In other words, asymptotical normality for the NBp distribution is not
obvious. Bagui and Mehra [12] offer ways to prove this asymptotic feature, one of which
involves its mgf.

Meanwhile, a classical theorem states that if random samples are drawn from the
same normal distribution (i.e., iid), then their sample mean and variance statistics are
independent [because s2 is a function of (yi −

_
y); Figure 1a]. Figure 1 portrays scatterplots

of relationships between sample s2 and s2 from simulation experiment results for 10,000
replications of samples of size n = 100 (a well-known appropriate size to ensure that the
classical Central Limit Theorem is at work). For this experiment, the linear correlation
between

_
y and s2 for a standard normal RV (i.e., iid) is –0.014 (Figure 1a), whereas that for

an NBp RV with p = 2, µ = 1000, and α = 1000 (i.e., iid) is 0.027 (Figure 1b). An extension of
this conventional, well-known theorem is as follows:
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This result (see Figure 1c; r = 0.001) is in contrast to that for an NBp RV for which µ 
appears in its variance formula, introducing linear correlation between the two (Figure 
1d; r = 0.905). The formal postulation extension here is as follows: 

Figure 1. Selected simulated (10,000 replications, n = 100) relationships between
_
y and s2. Left (a):

iid normal RVs. Left middle (b): iid NB2 RVs. Right middle (c): i~id normal RVs. Right (d): i~id
NBp RVs.

Theorem 1. The linear correlation between
_
y and s2 for a mixture of independent and non-identically

distributed (i~id) normal RVs is zero.

Proof of Theorem 1. For a normal RV, µ can be any real value, and σ2 can be any positive
real number. Because these two sets of values can be paired in any of the infinite number of
possible ways that exist, each value of µ is paired with relatively large, intermediate, and
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small values of σ2, and each value of σ2 is paired with relatively large, intermediate, and
small values of µ. Consequently, the linear correlation between these two variates is zero.
□

This result (see Figure 1c; r = 0.001) is in contrast to that for an NBp RV for which µ

appears in its variance formula, introducing linear correlation between the two (Figure 1d;
r = 0.905). The formal postulation extension here is as follows:

Theorem 2. The linear correlation between
_
y and s2 for a mixture of i~id NBp RVs is

√
3(2p+1)
p+2 > 0,

p ≥ 1.

Proof of Theorem 2. The linear product moment correlation coefficient is
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lim
c→∞

ρc =

√
3(2p+1)
p+2 because p > 0. □

This new theorem indicates that if p = 1 (i.e., a Poisson RV), then ρ = 1, and for the standard
NB2 case of p = 2, ρ ≈ 0.968. The parameter p needs to be 20 before this linear correlation is
approximately 0.5. The dispersion parameter α does not affect this linear correlation. This
new theorem indicates that for the aforementioned NBp, the sample mean and variance,

_
y

and s2, are correlated (Figure 1d). In other words, the linear correlation between
_
y and s2

for a mixture of normal distributions is zero, whereas for a mixture of NBp distributions,
it is asymptotically zero as p → ∞. Although this linear correlation remains zero when
normal distributions are pooled, it can be as large as 1 for pooled NBp distributions.

Of note is that Theorem 1 holds even for a normal distribution restricted in such a
way that σ2 = µ(1 + µp–1/α), with suitable restrictions on both p and µ (e.g., p must be
even and the µ domain interval [–1, 0] must be removed from the range of σ2). Linear
correlation occurs for this particular normal distribution case by, for example, imposing a
constraint such as µ > 0, which then also allows p to be odd and linear correlation results to
be described by Theorem 2.

3.2. MLE and Method of Moments Estimation (MME) of the Dispersion Parameter α

Various estimation techniques exist, including MLE, MME (e.g., see [6,13]), and least
squares (see [14–16]). Frequently, these techniques yield exactly the same estimators. The
estimation of the dispersion parameter 1/α of an NBp often is by MLE and/or MME. A µ

closer to zero and a small sample size can create a situation in which an MLE and/or MME
is inaccurate and/or unstable. MME is the simpler of the two techniques for estimating
1/α [5]. An MLE is unable to produce a solution that is an estimator in closed form for this
NBp parameter (see Appendix A).

3.2.1. Estimation of Parameter Exponent p

Rather than setting p = 2, Equation (1) alludes to p as a parameter, albeit one restricted
to the positive integers (i.e., discrete, not continuous). As a third parameter, its MME
estimation requires, for example, adding the third moment about the mean, m3, to the set
of estimation equations. Accordingly,

µ̂ =
n

∑
i=1

yi/n =
_
y,
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α̂ = µ̂
µ̂p

µ̂ + ∑n
i=1

(
yi − µ̂)2/(n − 1)

, and

1 + 2 µ̂p−1/α̂√
µ̂
»

1 + µ̂p−1/α̂
=

∑n
i=1

(
yi − µ̂)3

n − 1
.

Solving this triplet of equations for p yields an equation that does not contain p, nor does
the one incorporating the fourth moment. Thus, MME cannot render an estimate of p.
Meanwhile, an MLE, which involves the difference calculus here because p is an integer,
fails to produce a closed-form solution.

The implication of this outcome is that generalizing the standard NB2 variance term
from µ(1 + µ/α) to the generalized NBp term µ(1 + µp–1/α) is similar to quasi-likelihood
estimation with regard to parameter p. Denote 1

α̂
with α̂−1; if α̂−1 seems too large, then a

kth multiple of µ̂ (i.e., µ̂k), where k is a positive integer, can be factored from it, effectively
setting p = 2 + k. This factorization is nonconstant across the values of µi, with subscript i
denoting an individual observation, when the mean varies from observation to observation
(this is the situation Greene [1] presents).

3.2.2. A Simple n = 3 Numerical Example

Consider a sample of size n = 3, with the number of counts per observation, Y, being
as follows: yi = {2, 5, 8}. Then

_
y = (2 + 5 + 8)/3 = 5 and s2 = 18/(3 − 1) = 9 = 5

[
1 + 5/

(
25/4

)]
.

The MLEs are
µ̂ = 5 and α̂−1 ≈ 0.0476.

The MMEs are
µ̂ = 5 and α̂−1 = 0.1600.

Table 1 summarizes results from a Monte Carlo simulation experiment with 10,000 replications
(to invoke the Law of Large Numbers), for NB2[5, 5(1 + 5/0.0476)] and NB2[5, 5(1 + 5/0.1600)].
Figure 2 portrays the collective MLE and MME estimates for these simulation results.

As expected, both estimation techniques yield a sound estimate of the population
mean, µ. The techniques furnish different estimates of the dispersion parameter, although
both are within the 95% confidence interval of the other’s estimate. The MLEs are zero
more often than MMEs are. Most of these zero MMEs actually are negative estimates
that have been replaced by zero via truncation (these zero values were employed when
calculating the summary statistics appearing in Table 1). These values should be considered
infeasible because α is the shape parameter of a gamma RV, and as such must be positive.
Figure 2 furnishes a visual box-and-whisker plot—the upper and lower edges of a box
denote the first and third quartiles, the internal box line denotes the median, and the
whisker tips denote 1.5 times the inter-quartile range (i.e., the third minus the first quartile
values)—comparison between the two estimators (i.e., the MLEs and MMEs), highlighting
that the MLEs have more outliers (denoted by asterisks). Excessive zeroes and frequency
of outlier estimates for MLEs, and negative estimates for MMEs, are among the reasons
these estimators are considered inaccurate and/or unstable. One general implication of
these results is that neither estimator is particularly good for small samples, but that MME
may well be preferable. This small sample case illustrates that an MLE and MME can yield
different estimates (also see [17]).
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Table 1. Summary Monte Carlo simulation experiment results for NB2[5, 5(1 + 5/0.0476)] and NB2[5,
5(1 + 5/0.1600)].

Parameter Estimate Standard
Deviation Range % 0 s % < 0

using MLEs as the population parameters
µ 4.984 1.410 0.7–11.7

1/αMLE 0.073 0.231 0.0–7.2 71.1
1/αMME 0.113 0.213 0.0–2.7 5.4 52.2

using MMEs as the population parameters
µ 5.003 1.714 0.3–14.3

1/αMLE 0.137 0.315 0.0–7.7 58.4
1/αMME 0.190 0.295 0.0–2.8 1.3 40.6

AppliedMath 2024, 4, FOR PEER REVIEW 6 
 

 

  
(a) (b) 

Figure 2. Monte Carlo simulation experiment boxplots (as usual, asterisks denote outliers). Left (a): 
NB2[5, 5(1 + 5/0.0476)]. Right (b): NB2[5, 5(1 + 5/0.1600)]. 

3.2.3. Moran Eigenvector Spatial Filtering: A Brief Overview 
The next section presents a simple example of interest, especially to criminologists, 

ecologists, entrepreneurs and marketers, environmental scientists, epidemiologists, geospa-
tial analysts, sociologists, urban planners and urbanists, and urban and regional economists, 
among others, namely, population density, perhaps one of the most commonly utilized co-
variates in the social and behavioral sciences; it serves as a preface to Section 4. Georefer-
enced data require spatial statistics/econometrics methodology in order to properly account 
for latent SA in those data. SA is the correlation among observations that arises because of 
their relative proximity in geographic space, because either they are affected by some com-
mon factor or they directly interact with each other over geographic space. It is analogous 
to, but more complex than, serial correlation in time series data (e.g., see [18]). 

Moran eigenvector spatial filtering (MESF) is a relatively novel methodology to han-
dle SA contained in data [19–21]. MESF uses a set of synthetic proxy variables, which are 
extracted as eigenvectors from a doubly centered n-by-n spatial weights matrix (SWM), 
say C, that often is binary (0–1) and that ties n geographic objects together in space (indi-
cating which are pairwise directly correlated by an entry of one), and then adds these 
vectors as control variables to a regression model specification; SWMs are analogous to 
undirected planar graph adjacency matrices. These control variables identify and isolate 
stochastic spatial dependencies among a set of georeferenced observations, filtering these 
dependencies out of a model’s residuals and adding them to the model’s mean response, 
thus allowing regression model building to proceed with georeferenced observations that 
mimic being independent. 

The Moran Coefficient (MC; [22]) SA index, one of several such indices that exist—e.g., 
the Geary Ratio (GR; [23])—furnishes the basis for MESF; its numerator contains the doubly 
centered SWM exploited by MESF. This index can be written in matrix form as follows: 

(n/1T C1)YT(I − 11T/n)C(I − 11T/n)Y/YT(I − 11T/n)Y, (4) 

where n is the number of, for example, polygons in a geographic information system 
shapefile; Y is an n-by-1 vector of attribute values; I is an n-by-n identity matrix; 1 is an n-
by-1 vector of ones; superscript T denotes matrix transpose and, here, C is a binary 0–1 
SWM for which 1 denotes that the row and column areal units (i.e., locations, e.g., shape-
file polygons) share a non-zero length common boundary, and 0 denotes that they do not 
(i.e., the rook adjacency definition, phraseology based upon chess game pieces and their 
moves). The eigenfunctions (i.e., the paired eigenvalues and eigenvectors) are extracted 
from the following matrix, which is doubly centered because matrix C is pre- and post-

Figure 2. Monte Carlo simulation experiment boxplots (as usual, asterisks denote outliers). Left (a):
NB2[5, 5(1 + 5/0.0476)]. Right (b): NB2[5, 5(1 + 5/0.1600)].

3.2.3. Moran Eigenvector Spatial Filtering: A Brief Overview

The next section presents a simple example of interest, especially to criminologists,
ecologists, entrepreneurs and marketers, environmental scientists, epidemiologists, geospa-
tial analysts, sociologists, urban planners and urbanists, and urban and regional economists,
among others, namely, population density, perhaps one of the most commonly utilized
covariates in the social and behavioral sciences; it serves as a preface to Section 4. Geo-
referenced data require spatial statistics/econometrics methodology in order to properly
account for latent SA in those data. SA is the correlation among observations that arises
because of their relative proximity in geographic space, because either they are affected by
some common factor or they directly interact with each other over geographic space. It is
analogous to, but more complex than, serial correlation in time series data (e.g., see [18]).

Moran eigenvector spatial filtering (MESF) is a relatively novel methodology to handle
SA contained in data [19–21]. MESF uses a set of synthetic proxy variables, which are
extracted as eigenvectors from a doubly centered n-by-n spatial weights matrix (SWM),
say C, that often is binary (0–1) and that ties n geographic objects together in space (in-
dicating which are pairwise directly correlated by an entry of one), and then adds these
vectors as control variables to a regression model specification; SWMs are analogous to
undirected planar graph adjacency matrices. These control variables identify and isolate
stochastic spatial dependencies among a set of georeferenced observations, filtering these
dependencies out of a model’s residuals and adding them to the model’s mean response,
thus allowing regression model building to proceed with georeferenced observations that
mimic being independent.
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The Moran Coefficient (MC; [22]) SA index, one of several such indices that exist—e.g.,
the Geary Ratio (GR; [23])—furnishes the basis for MESF; its numerator contains the doubly
centered SWM exploited by MESF. This index can be written in matrix form as follows:

(n/1T C1)YT(I − 11T/n)C(I − 11T/n)Y/YT(I − 11T/n)Y, (4)

where n is the number of, for example, polygons in a geographic information system
shapefile; Y is an n-by-1 vector of attribute values; I is an n-by-n identity matrix; 1 is an
n-by-1 vector of ones; superscript T denotes matrix transpose and, here, C is a binary 0–1
SWM for which 1 denotes that the row and column areal units (i.e., locations, e.g., shapefile
polygons) share a non-zero length common boundary, and 0 denotes that they do not (i.e.,
the rook adjacency definition, phraseology based upon chess game pieces and their moves).
The eigenfunctions (i.e., the paired eigenvalues and eigenvectors) are extracted from the
following matrix, which is doubly centered because matrix C is pre- and post-multiplied by
the projection matrix (I − 11T/n), appearing in the numerator of expression (4) as follows:

(I − 11T/n)C(I − 11T/n). (5)

When multiplied by (n/1TC1), an eigenvalue of matrix (5) is converted to the MC measuring
the SA in its associated eigenvector map pattern of real number elements [24,25]. The sign
of an eigenvalue indicates the nature of SA represented by its corresponding eigenvector,
whereas its magnitude indicates the degree of SA. The extreme eigenvalues of matrix
expression (4) determine the limits of MC, which are not necessarily ±1 [26].

Extracting the eigenfunctions from adjusted SWMs constitutes a spectral decomposi-
tion of those matrices. The extracted eigenvectors with associated eigenvalues relatively far
from zero, and hence representing other-than-negligible SA, may be viewed as portraying
global, regional, or local components of SA because of the particular map patterns they
depict when visualized [27,28]. In other words, SA manifests itself in terms of similar
(positive SA; PSA) or dissimilar (negative SA; NSA) values of variable Y clustering on
a map: hot spots (i.e., similar relatively high values clustering), cold spots (i.e., similar
relatively low values clustering), or contrasts (i.e., relatively dissimilar values clustering).

3.2.4. An Empirical 2010 Puerto Rico Population Density Toy Illustration

Puerto Rico is partitioned into five agricultural administrative regions, as a scheme
applied to it for a century or more, each focusing on one of the island’s major urban areas
(Figure 3). The 1899 geographic distribution of population density for this spatial resolution
displays excessive extra-Poisson variation (deviance = 1723, which is far greater than its
expected value of 1) and moderate PSA. The table in Figure 3b reports the adjusted SWM
eigenvector representing this PSA [MC = 0.221, with its maximum (MCmax) being 1.094,
and GR = 0.474]. This scenario acknowledges a well-recognized source of over-dispersion,
namely correlation among observations (i.e., dependent data, autocorrelation), which is
frequent in spatial statistics; for example, SA accounts for roughly half of any detected
over-dispersion (e.g., extra-Poisson variation).
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SWM, describes a spatially varying mean population density by region [i.e., 283.6 (SJ), 
278.6 (A), 295.7 (M), 271.6 (P), and 272.4 (C)] about a global mean of 280.3 and reduces the 
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Black lines denote municipio boundaries. Tertile choropleth map: black, gray, and white, respectively,
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AAR choropleth map. Right (b): the AAR spatial weights matrix and its relevant eigenvector.

An NB2 description of this geographic distribution of population density yields the
global MLE of µ̂ = e5.6361 ≈ 280.4 people per square mile, with a dispersion parameter MLE
of α̂−1 ≈ 0.0010 (i.e., nearly a Poisson RV). The eigenvector spatial filter (ESF) specification,
a linear combination of a subset of the eigenvectors extracted from the adjusted SWM,
describes a spatially varying mean population density by region [i.e., 283.6 (SJ), 278.6 (A),
295.7 (M), 271.6 (P), and 272.4 (C)] about a global mean of 280.3 and reduces the over-
dispersion parameter to 0.0006 (even more closely resembling a Poisson RV).

The global MME of µ̂ also is e5.6361 ≈ 280.4. However, the dispersion parameter MME
of α̂−1 is –0.0001, which would result in its being rounded to 0. Finally, the spatially varying
mean population density by region is as follows: 280.1 (SJ), 280.6 (A), 280.8 (M), 280.4 (P),
and 280.0 (C). These outcomes seem inferior to their preceding MLE counterparts.

4. Discussion: Two MESF Empirical Examples

The preceding examples in Sections 3.2.2 and 3.2.4 are only for exemplification pur-
poses. This section presents two empirical examples whose results furnish informative
substantive implications.

4.1. An Empirical 2010 Puerto Rico Urban Population Density Case Study

Figure 4a portrays the 2010 geographic distribution of urban population density (peo-
ple per square mile) across the main island of Puerto Rico. The map pattern characterizing
this geographic distribution has an MC of 0.487 and a GR of 0.541, implying moderate
PSA. From the MLEs for an NB2 model specification, the global density is e7.0549 ≈ 1158.5,
with a dispersion parameter of 0.6707 (i.e., sizeable extra-Poisson variation). Historically,
the population has been concentrated on the coastal lowlands of the island, the preferred
locations of the initial Spanish settlers because of convenience and accessibility, furnishing
a rationale for including mean elevation as a covariate in an NB2 regression. Primarily
because of the way urban areas expand (e.g., the establishment of infrastructure at the
rural–urban fringe), this variable should contain PSA. In this case, executing NB2 stepwise
regression estimation results in the selection of five PSA and no NSA eigenvectors from
the candidate set extracted from the adjusted SWM for which MCj/MCmax ≥ 0.25, with
subscript j denoting the jth eigenvalue. Table 2 summarizes the MLE results. It reveals
that SA accounts for roughly 60% of the over-dispersion in these data, and the single
covariate coupled with the constructed ESF accounts for more than three-fourths of the
spatial variation in urban population density across the main island of Puerto Rico. With
a final α̂−1 < 0.2, a dramatic shrinkage from nearly 0.7, p = 2 seems adequate for the NB
model specification.
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Figure 4. Municipio geographic resolution 2010 population density (i.e., people per square mile)
across the main island of Puerto Rico; green, yellow, and red, respectively, denote relatively low,
intermediate, and high density values. Left (a): urban population (extra-Poisson variation is 41,183
>> 1). Right (b): rural population (extra-Poisson variation is 1427 >> 1).

Table 2. Summary of model estimation results.

Model
Specification

NB2 Urban Population Density Rural Population Density
NB2 NB3

α̂ −1 Pseudo–R2 α̂ −1 Pseudo–R2 α̂ −1 Pseudo–R2

Intercept only 0.6707 0 1.8760 0 1.8285 0
Single covariate 0.4848 0.18 1.3964 0.48 1.1847 0.48
Covariate + ESF 0.2021 0.79 1.0399 0.52 1.0065 0.65

NOTE: pseudo—R2 (analogous to Efron’s) denotes the R2 from a bivariate linear regression of the observed on the
NBp-predicted population density (e.g. [29–32]).

4.2. An Empirical 2010 Puerto Rico Rural Population Density Illustration

Figure 4b portrays the 2010 geographic distribution of rural population density across
the main island of Puerto Rico. The map pattern characterizing this geographic distribution
has an MC of 0.496 and a GR of 0.511, implying moderate PSA. From the MLEs for an NB2
model specification, the global density is e4.1298 ≈ 62.2, with a dispersion parameter of
1.8760. Rural and urban land are mutually exclusive, furnishing a rationale for including the
density of rural land as a covariate. Because rural land tends to concentrate outside of urban
areas, suggesting it contains PSA, and primarily because the expansion of urban land means
the contraction of rural land, particularly along the rural–urban fringe, with this spatial
competition suggesting it contains NSA, this variable should contain a PSA-NSA mixture.
In this case, the stepwise NB2 estimation results in the selection of five eigenvectors, four
with PSA and one with NSA (i.e., a mixture). Table 2 summarizes the MLE results. It
reveals that SA accounts for roughly 26% of the over-dispersion in these data, and the
single covariate coupled with the constructed ESF accounts for more than half of the spatial
variation in rural population density across the main island of Puerto Rico. With a final α̂−1 >
1, p = 2 may seem inadequate for the NB model specification. Setting p = 3—with estimation
executed via SAS PROC NLMIXED (see Appendix B), in which the NB3 probability density
log-likelihood function was written expressing the modified NB as a general distribution
[see https://stats.oarc.ucla.edu/sas/faq/how-can-i-compute-negative-binomial-models-
with-random-intercepts-and-slopes-using-nlmixed/ (last accessed on 20 March 2024)],
alters α̂−1, which remains greater than one, while increasing the pseudo-R2 values when
an ESF is present; these latter values decrease when p = 4, implying that p = 3 is the
adequate value.

4.3. An Empirical 2010 Puerto Rico Rural Population Den

The two population density geographic distributions have markedly different island-
wide averages and extra-Poisson variation. Although they have very similar SA index
values, their ESFs indicate that they have very different latent map patterns (e.g., one
is characterized by PSA, whereas the other is characterized by a mixture of PSA and

https://stats.oarc.ucla.edu/sas/faq/how-can-i-compute-negative-binomial-models-with-random-intercepts-and-slopes-using-nlmixed/
https://stats.oarc.ucla.edu/sas/faq/how-can-i-compute-negative-binomial-models-with-random-intercepts-and-slopes-using-nlmixed/
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NSA). A population classified as urban is not rural, and vice versa, which implies a
negative relationship between these two geographic distributions. The bivariate Poisson
RV correlation between them is –0.62 (see [33]). Finally, urban population density seems to
be well described by an NB2 model, whereas rural population density may benefit from
being described by an NB3 model.

5. Concluding Comments and Implications

This paper contributes to the academic literature in a number of different ways. First,
it clarifies/corrects several inaccurate technical details in Greene’s earlier paper. Second,
it presents new results that include the mgf for the NBp model, two new theorems, and
original empirical spatial statistical/econometric applications. Third, it exemplifies selected
small and large sample properties on NBp models. Finally, yet again, it demonstrates the
power of MESF.

One prominent implication is that quantitative analysts, and especially applied spatial
statisticians, studying Poisson and/or NB variables need to expand their toolbox to include
NBp specifications for which p > 2. Another is the need for a wider appreciation and adop-
tion of MESF-type methodology for correlated data, including for traditional dependent
datasets, time series, and contemporary social network projects. A third repercussion of this
paper is a recognition that the NBp random variable needs a Wikipedia page paralleling the
existing one for the NB (https://en.wikipedia.org/wiki/Negative_binomial_distribution;
last accessed on 15 May 2024).

Perhaps the most serious NBp limitation is its lack of closed-form MLEs. Although
this variable drawback is not new to statistics, it does constitute an impediment to how
the utilization of a variable flourishes. This certainly is a theme that should motivate
subsequent research about the NBp. Another of its limitations is its newness, which means
establishing strengths and weaknesses of employing it vis à vis alternative RVs is yet to
be determined.
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Appendix A. Estimation of iid NBp Parameters
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algebraically formulating closed-form solutions. In addition, the relationship among α, µ,
and p determines whether or not an MLE exists.

MME (using the unbiased variance estimator)
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∑n
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Appendix B. SAS PROC NLMIXED Code

The following SAS code tricks its procedure into estimating a BN3 specification by
not including a random effects term. The following input dataset (STEP3) contains the
needed adjusted SWM eigenvectors, the response (i.e., population counts) and offset (i.e.,
log-area) variables, and the covariate (i.e., the logarithm of rural land area percentage; to
avoid undefined terms for zero rural land, zero was replaced with one, which is trivial
because the smallest non-zero measure is 9703):

PROC NLMIXED DATA = STEP3;
PARMS B0 = 0 B1 = 0 B2 = 0 B3 = 0 B4 = 0 B5 = 0 B6 = 0 A = 1.4;
P = 3;
*XB = B0 + OFFSET;
*XB = B0 + B1*PCTRL + OFFSET;
XB = B0 + B1*PCTRL + B2*COL10 + B3*COL12 + B4*COL15 + B5*COL20
+B6*COL44 + OFFSET;
MU = EXP(XB);
M = 1/A;
LL = LGAMMA(Y + M) − LGAMMA(Y + 1) - LGAMMA(M)
+Y*LOG(A*MU**(P - 1)) - (Y + M)*LOG(1 + A*MU**(P - 1));
MODEL Y ~ GENERAL(LL);
PREDICT MU OUT = MU;
RUN;

XB differentiates between a constant mean, a bivariate regression with the rural area
percentage covariate, and an MESF regression that includes this preceding covariate. P =
3 allows the estimation of NB3; setting P to 2 estimates NB2, and setting it to 1 estimates
NB1 (i.e., a Poisson). Finally, the temporary SAS file WORK.MU stores predicted counts
for post-processing. The NB1 and NB2 options support comparative output checks with
other software modules.
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