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Abstract: Stochastic eigenvalue problems are nonlinear and multiparametric. They require their own
solution methods and remain one of the challenge problems in computational mechanics. For the
simplest possible reference problems, the key is to have a cluster of at the low end of the spectrum.
If the inputs, domain or material, are perturbed, the cluster breaks and tracing of the eigenpairs
become difficult due to possible crossing of the modes. In this paper we have shown that the
eigenvalue crossing can occur within clusters not only by perturbations of the domain, but also of
material parameters. What is new is that in this setting, the crossing can be controlled; that is, the
effect of the perturbations can actually be predicted. Moreover, the basis of the subspace is shown
to be a well-defined concept and can be used for instance in low-rank approximation of solutions
of problems with static loading. In our industrial model problem, the reduction in solution times
is significant.

Keywords: elasticity; vibration; stochastic FEM; low-rank approximation

1. Introduction

Vibration problems with uncertain data are common in engineering. From the point of
view of applied mathematics, development of the solution methods for this class of prob-
lems remains one of the final frontiers. Various approaches for stochastic eigenproblems
have been proposed in relation to so-called stochastic finite element methods (SFEM). As
always with probabilistic problems, the baseline solution technique is the Monte Carlo
method [1]. The justification for the new approaches is that they have provably faster
convergence rates than the Monte Carlo. Broadly speaking, the methods can be divided
into invasive (e.g., Galerkin methods [2,3]) or non-invasive ones (for instance, stochas-
tic collocation [4]). Our discussion here applies to the problem of resolving the smallest
eigenmode when the design configuration has uncertainties.

Some applications of uncertainty quantification to investigate the static and dynamical
responses of beam, plates, and shells with random parameters are found in the literature.
We mention two papers that also have considered Young’s modulus as a random quantity.
Bahmyari et al. [5] provided a bending analysis of thick plates with elastically restrained
edges and resting on Pasternark elastic foundation, where the plate’s Young’s modulus
and stiffness of the boundary conditions and elastic foundation were assumed as random
variables. The free vibrations of orthotropic plates with uncertainties in the Young’s
modulus were investigated by Ernst et al. [6] who obtained good correlation between
experimental and numerical results.

In computational vibration or dynamic analysis of deterministic problems, the meth-
ods used in static loading problems can be applied directly. For the stochastic problem, this
useful connection between dynamic and static problems is broken. The uncertainties, such
as fluctuations in the material parameters, are random variables represented using series
with random coefficients that are the stochastic parameters. One immediate consequence is
that normalization of the eigenmodes has to be valid over the whole parameter space. This
global normalization constraint in fact makes the problem nonlinear as opposed to its
deterministic counterpart. Moreover, current mathematical analysis (see, e.g., [4,7]) is
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based on second-order model problems where it is guaranteed that the smallest mode is
well-isolated and hence the question of subspace convergence is still not resolved and is
the subject of current research.

Our interest is in static analysis with low-rank approximation which is enabled by
accurately resolving the correct eigenspaces. Identification of subdomains with high
variance in stress components, say, could be useful in sensor placement design for online
failure detection (For an exhaustive recent review, see [8]).

What distinguishes the vibration problems in mechanics from the classical model
problem in analysis is that the smallest mode can in fact be of higher multiplicity. This
follows directly from symmetries. For planar elasticity, our chosen setting, free vibration
on a symmetric domain, leads to double eigenvalues or clusters of dimension two. This
makes it the ideal model problem for stochastic eigenvalue problems.

Let us consider free vibration on a square plate (see Figure 1). The smallest eigenvalue
is a double one, and two modes have simply interchanged the respective profiles on the
vector fields u and v. However, if the domain is perturbed, for instance, extended in either
one of the coordinate directions, the cluster breaks apart and either one of the modes
becomes the true smallest one. If this phenomenon is described in terms of uncertain
domains, we see that the eigenpairs (κ1, u1) and (κ2, u2), say, depend on the random
variable ω, and crucially, if we trace the smallest eigenvalue κmin = min{κ1(ω), κ2(ω)},
the corresponding eigenmode may change, that is, the eigenmode is not consistent over the
whole parameter space and we say that the eigenvalues cross. Hence, to emphasize this
nontrivial dependence of the eigenmodes on ω, we call κmin = κmin(ω) the effective smallest
eigenvalue over the parameter space. We note that considering the corresponding eigenmode
is problematic in the sense that such an eigenmode would change discontinuously in the
proximity of the crossing.

This paper has two objectives: First, we illustrate that the question of the effective
smallest eigenvalue can arise within planar elasticity, and second, despite the inherent
ambiguity of the eigenvalues within a subspace, a basis of the subspace can be used in low-
rank approximation of standard source problems. In the computational experiment, we
demonstrate the efficacy of the subspace construction in terms of computational complexity
in a problem with non-trivial geometry. Our model problem, an idealized 2D crankshaft
section with random Young’s modulus, was initially proposed as an initial step in a metal
fatigue problem related to ship engines.

The rest of the paper is structured as follows: First we cover preliminaries in Section 2,
including the Navier’s equations of elasticity, their stochastic formulation, and the colloca-
tion method used here. Subspace construction is given in Section 3. Eigenvalue crossing
is discussed in Section 4. Computational study of a 2D crankshaft model highlights the
low-rank solution method in Section 5. Finally, conclusions are drawn in the final section.
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Figure 1. Cont.
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Figure 1. Effect of the perturbation of the computational domain on the smallest eigenmode. In the
symmetric case, the components of the two modes of the cluster are interchanged reflections. Axial
perturbation of the domain selects predictably the single smallest mode. In all three cases, the two
modes are indicated as u1 = {u1, u2}, u2 = {v1, v2}. (a) Domain: [−1, 1]× [0, 2]; u1, v2; (b) v1, u2;
(c) Domain: [−1, 11/10]× [0, 2]; û1; (d) v̂1; (e) Domain: [−1, 1]× [0, 21/10]; ũ1; (f) ṽ1.

2. Preliminaries

In this section, we give a brief overview of the (stochastic) model of planar elasticity
and the collocation method used in the solution of stochastic problems.

2.1. Navier’s Equations of Elasticity

We use the Navier’s equations of elasticity to model the system of interest. Let D
be a domain representing a deformable medium subject to a body force f and a surface
traction g. The 2D model problem is then to find the displacement field u = (u1, u2), and
the symmetric stress tensor σ = (σij)

2
i,j=1, such that

σ = λ div(u)I + 2µε(u), in D

−div(σ) = f, in D

u = 0, on ∂DD

σ · n = g, on ∂DN

(1)

where ∂D = ∂DD ∪ ∂DN is a partitioned boundary of D. The Lamé constants are

λ =
E ν

(1 + ν)(1− 2ν)
, µ =

E
2(1 + ν)

, (2)

with E and ν being Young’s modulus and Poisson’s ratio, respectively. Further, I is the
identity tensor, n denotes the outward unit normal to ∂DN , and the strain tensor is

ε(u) =
1
2
(∇u +∇uT). (3)
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The vector-valued tensor divergence is

div(σ) =

(
2

∑
j=1

∂σij

∂xj

)2

i=1

. (4)

This formulation assumes a constitutive relation corresponding to linear isotropic
elasticity with stresses and strains related by Hooke’s generalized law

σv =

 σ11
σ22
σ12

 = D(λ, µ)

 ε11
ε22
ε12

 = D(λ, µ)εv. (5)

2.1.1. Weak Formulation

Let us introduce a function space VD = {v : v ∈ H1(D), v|∂DD = 0}, and state: Find
u ∈ VD ×VD such that

a(u, v) = L(u), ∀v ∈ VD ×VD, (6)

where the bilinear form
a(u, v) =

∫
D

σ(u) : ε(v) dx (7)

is the integrated tensor contraction

σ : ε =
2

∑
i,j=1

σijεij, (8)

and L(·) denotes the linear functional

L(v) = (f, v)D + (g, v)∂DN =
∫

D
f · v dx +

∫
∂DN

g · v ds. (9)

As usual, we define the kinematic relation

εv(u) =


∂

∂x1
0

0 ∂
∂x2

∂
∂x2

∂
∂x1

[ u1
u2

]
(10)

and specify the constitutive matrix

D(λ, µ) =

 λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ

 (11)

for the purpose of rewriting the bilinear form as

a(u, v) =
∫

D
εv(u)TD(λ, µ)εv(v) dx. (12)

2.1.2. Stochastic Formulation

We introduce a stochastic extension of Navier’s equations of elasticity, which we
will consider for the remainder of this paper. Letting (Ω, Γ, P) denote a probability space,
where Ω is a space of outcomes, Γ ⊂ 2Ω a sigma-algebra of events, and P : Ω → [0, 1]
a probability measure on Ω, respectively, we model the uncertainties in the domain and
material parameters of the physical problem (1) by assuming that there exists an explicit
dependence of these quantities on the stochastic variable ω ∈ Ω via a priori known
mappings ω 7→ Dω, ω 7→ Eω, ω 7→ fω, and ω 7→ gω.
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The stochastic problem can then be stated as: find the displacement field uω : Dω → R2

and stress tensor σω : Dω → R2×2 such that

σω = λω div(uω)I + 2µωε(uω), in Dω

−div(σω) = fω, in Dω

uω = 0, on ∂DDω

σω · n = gω, on ∂Dω
N

(13)

for P-almost every ω ∈ Ω. Here the stochastic dependence ω 7→ Eω is propagated also into
the Lamé constants λω and µω via the Equation (2).

Analogously to the deterministic case, the stochastic system (13) can also be expressed
in weak form. Let us define stochastic extensions for the forms (7) and (9) by setting

a(ω; u, v) =
∫

Dω
σω(u) : ε(v) dx (14)

and
L(ω; v) = (fω, v)Dω + (gω, v)∂Dω

N
. (15)

The weak form of the stochastic problem then reads: find uω ∈ VDω ×VDω such that

a(ω; uω, v) = L(ω; uω) ∀v ∈ VDω ×VDω (16)

for P-almost every ω ∈ Ω.
The spatial and stochastic dimensions of the system are decoupled: each individ-

ual realization of ω ∈ Ω fixes the measurement configuration—the geometry Dω and
the inputs Eω, fω and gω – and corresponds to one instance of the deterministic prob-
lem (1), which can be solved numerically using FEM. The stochastic problem can be solved
through stochastic collocation, which is tantamount to solving an ensemble of deterministic
problems corresponding to a list of collocation nodes (ω1, . . . , ωN) in Ω.

The solution of the stochastic problem can be used for determining the response
statistics of any quantity of interest defined for the solution pair (uω, σω) with respect to
any assumed uncertainties in the initial measurement setting. We consider the expectations
and variances of the norms of the stresses of the stochastic elasticity problem given by

E[ρ(σ)] =
∫

Ω
ρ(σω)dP(ω) (17)

Var[ρ(σ)] = E[ρ(σ)2]−E[ρ(σ)]2, (18)

where ρ stands in for the spatial L2 and H1 norms, respectively.

2.1.3. Stochastic Eigenproblem

The stochastic eigenproblem corresponding to the Navier’s equations given in (13) is
obtained by replacing the body force fω with a multiple of the displacement field uω itself.
The problem then reads: find the eigenvalue κω ∈ R, the eigenvector uω : Dω → R2, and
the stress tensor σω : Dω → R2×2 such that

σω = λω div(uω)I + 2µωε(uω), in Dω

−div(σω) = κωuω, in Dω

uω = 0, on ∂DDω

σω · n = gω, on ∂Dω
N

(19)

for P-almost every ω ∈ Ω. To make the eigenmodes physically meaningful, we also impose
that uω is normalized in L2(Dω) for P-almost every ω ∈ Ω.
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The weak form of the stochastic eigenproblem is: find the eigenvalue κω ∈ R and
eigenvector uω ∈ VDω ×VDω such that

a(ω; uω, v) = κω(uω, v)Dω ∀v ∈ VDω ×VDω (20)

for P-almost every ω ∈ Ω. For each fixed ω ∈ Ω, the eigenproblem (19) admits a count-
able number of eigenvalues that can be enumerated in increasing magnitude (counting
multiplicities)

κω
1 ≤ κω

2 ≤ κω
3 ≤ . . . (21)

and corresponding eigenvectors {uω
i }∞

i=1 that form a basis of L2(Dω). However, due to the
eigenvalue crossings mentioned in the introduction, this enumeration of the eigenmodes
becomes problematic when the eigenmodes are viewed as functions of ω. Instead, in
Section 3, we consider resolving a basis for the subspace corresponding to a finite set of the
eigenvalues and hence effectively avoid the question about the enumeration.

2.2. Stochastic Collocation

Standard stochastic finite element methods, in particular the stochastic collocation
method considered here, assume that the dependence on the abstract variable ω can be
parametrized using a countable set of mutually independent random variables. Such a
parametrization can sometimes be known a priori or it can be estimated statistically. For
the material parameters such as the Young’s modulus Eω, a representation of the form

Eω(x) = E0(x) +
∞

∑
m=1

fm(x)Ym(ω), (22)

is typically assumed. Here { fm}m≥0 are spatial stochastic fluctuations decaying in L∞-norm,
as m → ∞ and {Ym}m≥1 is a family of random variables assumed to be i.i.d. The series
(22) can be viewed as the Karhunen–Loevé expansion of the random underlying random
field, in which case the functions fm(x) are the eigenfunctions of some covariance function
C(x1, x2). In some simple geometric settings, these eigenfunctions are known explicitly, but
they can also be resolved numerically as eigenvectors of the sampled covariance matrix;
see, e.g., (Chapter 8) in [1,9] and [10]. For numerical computations, the series is truncated
after M terms.

In the following paragraphs, we consider an anisotropic Smolyak-type collocation
operator defined with respect to a finite multi-index set (see, e.g., [4,11–13]). In principle,
a simpler formulation would also suffice for the purpose of our numerical experiments.
However, we wish to keep the general form of the operator here, since it allows for efficient
computation even in high-dimensional parameter spaces.

For the sake of accuracy, it is standard practice to choose the collocation points to
be the abscissae of orthogonal polynomials; see [14]. Here we formulate the collocation
method using Legendre polynomials which are the optimal choice when the input random
variables are uniform. For example, in the case of Gaussian random variables, one should
use Hermite polynomials instead, but otherwise the collocation method remains the same.

Let Lp be the univariate Legendre polynomial of degree p. Denote by {χ(p)
k }

p
k=0 the

zeros of Lp+1 and by {w(p)
k }

p
k=0 the associated Gauss–Legendre quadrature weights. We

define the one-dimensional Lagrange interpolation operators I (m)
p via

(
I (m)

p v
)
(Ym) =

p

∑
k=0

v
(

χ
(p)
k

)
`
(p)
k (Ym), (23)
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where {`(p)
k }

p
k=0 are the related Lagrange basis polynomials of degree p. Observe that

∫ 1

−1

(
I (m)

p v
)
(Ym)

dYm

2
=

p

∑
k=0

v
(

χ
(p)
k

)
w(p)

k . (24)

Now let A ⊂ NM
0 be a finite set of multi-indices. For α, β ∈ A, we write α ≤ β if

αm ≤ βm for all m = 1, . . . , M. We assume that A is monotone in the following sense:

∃α ∈ A such that β ≤ α ⇒ β ∈ A. (25)

The sparse collocation operator is defined as

IA := ∑
α∈A

M⊗
m=1

(
I (m)

αm − I
(m)
αm−1

)
, (26)

where I (m)
−1 := 0. This may be rewritten in a computationally more convenient form

IA = ∑
α∈A

∑
β∈Gα

(−1)||α−β||1
M⊗

m=1

I (m)
βm

, (27)

where Gα := {β ∈ NM
0 | α− 1 ≤ β ≤ α}. The collocation points are of the form

χ
(α)
γ =

(
χ
(α1)
γ1 , . . . , χ

(αM)
γM

)
∈ Γ (28)

for some γ ∈ NM
0 such that γ ≤ α ∈ A. Similarly, we define the tensorized quadrature

weights w(α)
γ = w(α1)

γ1 · · ·w
(αM)
γM . Statistics, such as the expected value and variance, for the

collocated solution may now be computed by applying the quadrature rule

E
[

M⊗
m=1

I (m)
αm v

]
= ∑

γ≤α

v
(

χ
(α)
γ

)
w(α)

γ (29)

on the terms in Equation (27).
The accuracy of the collocated approximation is ultimately determined by the smooth-

ness of the solution as well as the choice of the multi-index set A ⊂ NM
0 . We refer to [4,12]

for a detailed analysis. In this paper, we use tensor product grids defined by

A = {α ∈ NM
0 | αm ≤ p, m = 1, . . . , M}, p ∈ N0 (30)

as well as multi-index sets of the form

A =

{
α ∈ NM

0

∣∣∣∣∣ M

∏
m=1

ηαm
m > ε

}
, ε > 0, (31)

where {ηm}M
m=1 is a (typically decreasing) sequence of numbers in the interval (0, 1). Multi-

index sets of the latter form have previously been employed in, for instance, [15,16].

3. Subspace Reduction

Given a finite set of indices J = {j1, . . . jS} ⊂ N, let us denote by Uω
J = span{uω

j }j∈J

the subspace associated to the eigenvalues {κω
j }j∈J of the problem (19). To avoid problems

with possible eigenvalue crossings, we define a canonical basis for the subspace Uω
J by setting

ûω
i = ∑

j∈J
uω

j (vi, uω
j )Dω , i = 1, . . . , S, (32)
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i.e., each canonical basis vector ûω
i is just the projection of some constant reference vector

vi onto the subspace Uω
J . The reference vectors {vi}S

i=1 can for instance be chosen as the
eigenvectors {uω

i }i∈J evaluated at some fixed value of ω ∈ Ω. Note that as long as the Gram
matrix Gω := {(vi, uω

j )}S
i,j=1 is non-singular, the vectors {ûω

i }S
i=1 in fact form a basis of Uω

J .
Moreover, each ûω

i is now independent of the enumeration of the eigenmodes (κω
j , uω

j ). In

the numerical experiments of Section 5, we choose {vi}S
i=1 to be the eigenvectors evaluated

at Ym = 0 for all m in the series (22). Finally, observe that we can apply the Gram–Schmidt
process to orthogonalize the basis {ûω

i }S
i=1 at each ω ∈ Ω.

Denote by A(ω) ∈ RN×N and M(ω) ∈ RN×N the stochastic stiffness and mass
matrices obtained from a finite element discretization of the Equation (20). Suppose that
Û(ω) ∈ RN×S is a matrix representation of the subspace Uω

J , more precisely, Û(ω) has as
its columns the discrete approximations of the normalized canonical basis vectors {ûω

i }i∈J .
Then a low rank approximation of A(ω) is obtained from

Â(ω) = M(ω)Û(ω)ÛT(ω)A(ω)Û(ω)ÛT(ω)M(ω), (33)

where ÛT(ω)A(ω)Û(ω) is now a matrix of size S× S.
Instead of the generalized eigenproblem implied by Equation (20), one may also

consider the standard eigenproblem of the matrix A(ω) with eigenvectors normalized in
RN . If we again collect the discrete approximations of the resulting normalized canonical
basis vectors into a matrix Q̂(ω) ∈ RN×S, then an alternative low-rank approximation for
A(ω) is obtained simply from

Â(ω) = Q̂(ω)Q̂T(ω)A(ω)Q̂(ω)Q̂T(ω). (34)

4. Eigenvalue Crossing

As we have already seen in the introduction, perturbations in the domain break the
lowest mode cluster. Now we demonstrate that perturbations in the material parameters
can have the same effect. The two eigenpairs of the cluster are said to cross, that is, the
mode associated with the smallest eigenvalue can change within the parameter space.

In the context of our study, we model the Young’s modulus as random and represent
it formally as a truncated Karhunen–Loève expansion in the spirit of (22):

Eω(x) = E0(x) +
M

∑
m=1

fm(x)Ym(ω). (35)

Without loss of generality, we can assume that the distribution involved is uniform
and after possible rescaling Ym ∼ U(−1, 1) for all m = 1, . . . , M, hence making it possible
to employ the collocation scheme outlined above. We set E0(x) = 1000 (constant) and
fm(x) = 1√

λm
sin(a1 m x + a2), where ai are coefficients depending on the geometry, and

λm is a decaying sequence with a known rate of decay λm ∼ m−2ς.
In the interest of reproducibility, as in one of the examples of [16], the functions

fm(x) have been chosen independent of any covariance function. For examples of analytic
variants in simple geometric setting, or discretized approximations over general domains,
see (Chapter 8) in [1,17,18].

We choose ς = 3, a1 = π, a2 = 0, and ε = 1/1000 in (31), resulting in stochastic
dimension M = 21. Crossing can then be demonstrated by taking all Ym = ci, ci ∈ [−1, 1];
that is, every Ym has the same constant value. This is shown in Figure 2. The modes cross
at Ym = 0, since at that point the smallest mode is the cluster of dimension = 2. Notice
that the actual parameter space has dimension = 21 in this case. In order to trace the true
smallest eigenpair for all realizations, the computational complexity would be roughly
equal to integration problem of the same dimension; in other words, it would be very
expensive indeed.
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Figure 2. Effect of the perturbation of the Young’s modulus on the smallest eigenvalue. The x-axis is
the constant value given to all random variables Ym. The solid line traces the smallest or effective
smallest eigenvalue, the dashed line the second smallest one.

In Figure 3, it is verified that the (essentially) same two modes appear as before.
The practical implication of this phenomenon is that if we sample many manufactured
specimens, the variation in observed quantities of interest can actually fall within the
uncertainties of the inputs rather than deficiencies in the manufacturing process.
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Figure 3. Effect of the perturbation of the Young’s modulus on the smallest eigenmode. Ym = −1:
{u1, u2}; Ym = 1: {û1, û2}. (a) u1; (b) u2; (c) û1; (d) û2 .

5. Low-Rank Solution: Crankshaft Model

Even though the question of the effective eigenvalues is complicated, the subspace
associated to a cluster of eigenvalues is indeed typically well defined and smooth over the
whole parameter space. More precisely, it follows from classical perturbation theory that if
the eigenvalues in the cluster are separated from the rest of the spectrum for all parameter
values and the underlying solution operator depends analytically on the parameters,
then the associated subspace also depends analytically on the parameters; see chapter
VII (especially Theorem 1.7) in [19]. Therefore, such a subspace can be used in low-
rank approximation. Our numerical experiment concerns a 2D configuration which is an
idealized crankshaft model with a double fillet (Figure 4). This problem was originally
proposed as an example of industrial uncertain domains by Prof. J. Könnö (formerly
Wärtsilä, now University of Oulu) and studied in a master’s thesis [20]. In manufacturing,
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the errors arise from geometric imperfections and variation in material properties. In the
spirit of our discussion, we study only the effects of the material parameters.
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Figure 4. Double fillet configuration. L-shaped domain within a unit square, vertical drop d ∈
[1/20, 1/10], double filleting with r1 ∈ [3/25, 6/25] and r2 ∈ [3/20, 1/4]. The boundary AD at x1 = 0
is clamped. Loading is unit traction acting on u2 in the negative y-direction along the horizontal
segment BC at x2 = 0.5. (a) Configuration; (b) Chosen realization.

Since the material parameters (input) are uncertain or random, the quantities of interest
are naturally statistical. Under fixed loading— a unit traction applied to a segment of the
domain (see Figure 4)—we are interested in the expected values of the potential and stress
components of the solution field components, and more importantly, the variance of these
quantities and their distribution over the elastic body, here a 2D domain.

The computational domain S of the crankshaft model is formally formed by subtracting
from an L-shaped domain L = [0, 1]2 \ [1/2, 1]2, two circles C1(r1, d) = D(c1(d), r1) and
C2(r2, d) = D(c2(d), r2), with radii ri, i = 1, 2, r2 > r1, respectively, whose centres ci,
i = 1, 2, are uniquely defined by a condition that the tangents of the two circles coincide at
a point with an x2-coordinate of 1/2− d, where the “drop” d is a given parameter. Thus,
every parameterized realization has the form S(r1, r2, d) = L \ (C1(r1, d) ∪ C2(r2, d)).

In the numerical experiments, the three geometry parameters could be modeled as
random variables with uniform distributions: r1 ∼ U(3/25, 6/25), r2 ∼ U(3/20, 1/4), and
d ∼ U(1/20, 1/10). Here we fix the values to their respective expected ones:

r1 = 3/40, r2 = 1/5, d = 9/50.

We set the Young’s modulus as the random variable as above with decay rate ς = 3
and tolerance ε = 1/100 in (31), leading to M = 6 and |A| = 8.

The finite element solution was carried out using second-order elements with a fine
mesh resulting in each linear system with 45,772 degrees of freedom. This overrefinement
was an attempt to ensure that the timing comparisons below were not affected by implemen-
tation details. The stochastic subspace has been constructed using the first 100 eigenmodes.
With this choice, the average of the relative error of the low-rank approximation in the
squared energy norm is less than 1%. The collocation step was carried out using a tensor
product grid with 729 nodes (30).

On an iMac Pro (2017) with 18 cores and 128GB RAM, using Mathematica 12.3.1 [21], the
subspace construction and a single solution set using (34) combined took 300 + 50 = 350 s
as opposed to more than 540 s for a full solution. It should be noted that the subspace
construction implementation is a proof of concept, whereas the full solution used highly
optimized solvers. It is clear that the potential benefits only increase with higher dimensional
problems where the number of collocation points is significantly higher.

In the absense of real measurement data, any verification of the convergence of the
proposed method has to be done numerically. In probabilistic setting, the Monte Carlo
method always serves as the gold standard, since its expected rate of convergence in any
aggregate quantity of interest is known. In Figure 5, the convergence in energy is observed
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to be as expected: the reference result is taken to be an overkill solution with a combination
of a strongly refined mesh and high-order collocation rule.
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E
rr
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Energy: MC Error

Figure 5. Monte Carlo error of the low-rank solution in energy. The dashed line is the expected
convergence rate ∼ 1/

√
n. The reference result is obtained with very high collocation rule.

The potentials and two stress components are shown in Figures 6 and 7. What sets
these figures apart from the normal exposition is the inclusion of the variance plots. In
particular, the information gained from the location of maximal variance is highly useful
and in this case coincides with what one would expect in such a configuration. In particular,
the variance in stresses is concentrated in the area where the moment due to loading
is acting. This gives us high confidence in our results and the efficacy of the approach
proposed here.
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Figure 6. Potential field. Contour plots of the expectation and variance of the solution. (a) Expected
value of the u1-component; (b) Expected value of the u2-component; (c) Variance of the u1-component;
(d) Variance of the u2-component.
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Figure 7. Stress field. Contour plots of the expectation and variance of σ11 and σ22. (a) Expected
value of σ11; (b) Expected value of σ22; (c) Variance of σ11; (d) Variance of σ22.

Of course, the proposed method only provides an approximation. In the current
setting, the qualitative results obtained are accurate in the sense that visual comparison
of the contour plots obtained with the two methods are indistinguishable. However, the
errors in energy must translate to errors in norms of derived quantities.

6. Conclusions

Stochastic eigenvalue problems are nonlinear and multiparametric. They require
their own solution methods and remain one of the challenge problems in computational
mechanics. It turns out that planar elasticity on symmetric domains is the ideal setting for
simplest possible reference problems, where the key is to have a cluster of eigenmodes at
the low end of the spectrum.

In this paper, we have shown that the eigenvalue crossing can occur within clusters
not only by perturbations of the domain, but also of material parameters. What is new is
that in this setting, the crossing can be controlled; that is, the effect of the perturbations can
actually be predicted.

Even though eigenvalue crossing means that identifying the smallest eigenpair is a
difficult problem in multiparametric problems, the basis of the subspace is a well-defined
concept and can be used for instance in low-rank approximation of solutions of problems
with static loading. In our example, already with a relatively small number of collocation
points, the reduction in solution times is significant.
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