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Abstract: Equalisation is one of the most commonly-used tools in sound production, allowing users
to control the gains of different frequency components in an audio signal. In this paper we present a
model for mapping a set of equalisation parameters to a reduced dimensionality space. The purpose
of this approach is to allow a user to interact with the system in an intuitive way through both
the reduction of the number of parameters and the elimination of technical knowledge required to
creatively equalise the input audio. The proposed model represents 13 equaliser parameters on a
two-dimensional plane, which is trained with data extracted from a semantic equalisation plug-in,
using the timbral adjectives warm and bright. We also include a parameter weighting stage in order
to scale the input parameters to spectral features of the audio signal, making the system adaptive. To
maximise the efficacy of the model, we evaluate a variety of dimensionality reduction and regression
techniques, assessing the performance of both parameter reconstruction and structural preservation
in low-dimensional space. After selecting an appropriate model based on the evaluation criteria, we
conclude by subjectively evaluating the system using listening tests.

Keywords: equalisation; adaptive audio effects; semantics; dimensionality reduction; intelligent
music production

1. Introduction

Equalisation, as described in [1], is an integral part of the music production workflow, with
applications in live sound engineering, recording, music production, and mastering, in which
multiple frequency dependent gains are imposed upon an audio signal. Generally, the process of
equalisation can be categorised under one of the following headings as described in [2], corrective
equalisation: in which problematic frequencies are often attenuated in order to prevent issues such
as acoustic feedback, and creative equalisation: in which the audio spectrum is modified to achieve a
desired timbral aesthetic. Whilst the former is primarily based on adapting the effect parameters
to the changes in the audio signal, the latter often involves a process of translation between a
perceived timbral adjective such as bright, flat, or sibilant and an audio effect input space, by which
a music producer must reappropriate a perceptual representation of a timbral transformation as a
configuration of multiple parameters in an audio processing module. As music production is an
inherently technical process, this mapping procedure is not necessarily trivial, and is made more
complex by the source-dependent nature of the task.
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2. Background

2.1. Semantically-Controlled Audio Effects

Engineers and producers generally use a wide variety of timbral adjectives to describe sound,
each with varying levels of agreement. By modelling these adjectives, we are able to provide
perceptually meaningful abstractions, which lead to a deeper understanding of musical timbre and
systems that facilitate the process of audio manipulation. The extent to which timbral adjectives can
be accurately modelled is defined by the level of exhibited agreement, a concept investigated in [3], in
which terms such as bright, resonant, and harsh all exhibit strong agreement scores, and terms such as
open, hard, and heavy all show low subjective agreement scores. It is common for timbral descriptors
to be represented in low-dimensional space; brightness, for example, is shown to exhibit a strong
correlation with spectral centroid [4,5] and has further dependency on the fundamental frequency
of the signal [6]. Similarly, studies such as [7,8] demonstrate the ability to reduce complex data to
lower-dimensional spaces using dimensionality reduction.

Recent studies have also focused on modification of the audio signal using specific
timbral adjectives, where techniques such as spectral morphing [9] and additive synthesis [10]
have been applied. For the purposes of equalisation, timbral modification has also been
implemented via psychoacoustic measurements such as loudness [11], spectral masking [12], and
semantically-meaningful controls and intuitive parameter spaces. SocialEQ [13], for example, collects
timbral adjective data via a web interface and approximates the configuration of a graphic equaliser
curve using multiple linear regression. Similarly, subjEQt [14] provides a two-dimensional interface,
created using a Self-Organising Map, in which users can navigate between presets such as boomy,
warm, and edgy using natural neighbour interpolation. This is a similar model to 2DEQ [15], in which
timbral descriptors are projected onto a two-dimensional space using Principal Component Analysis
(PCA). The Semantic Audio Feature Extraction (SAFE) project provides a similar non-parametric
interface for semantically controlling a suite of audio plug-ins, in which semantics data is collected
within a given Digital Audio Workstation (DAW). Adaptive presets can then be selectively derived
based on audio features, parameter data, and music production metadata.

2.2. Aims

In this study, we propose a system that projects the controls of a parametric equaliser comprising
five biquad filters, as detailed in [16], arranged in series onto an editable two-dimensional space,
allowing the user to manipulate the timbre of an audio signal using an intuitive interface. Whilst
the axes of the two-dimensional space are somewhat arbitrary, underlying timbral characteristics are
projected onto the space via a training stage using two-term musical semantics data. In addition to
this, we propose a signal processing method of adapting the parameter modulation process to the
incoming audio data based on feature extraction applied to the long-term average spectrum (LTAS),
as detailed in [17–19], capable of running in near-real-time. The model is implemented using the
SAFE architecture (detailed in [20]), and is provided as an extension of the current Semantic Audio
Parametric Equaliser (available for download at [21]), as shown in Figure 1a.

3. Methodology

In order to model the desired relationship between the two parameter spaces, a number of
problems must be addressed. Firstly, the data reduction process should account for maximal
variance in high-dimensional space without bias towards a smaller subset of the equaliser parameters.
Similarly, we should be able to map to the high-dimensional space with minimal reconstruction error,
given a new set of (x, y) coordinates. This process of mapping between spaces is nontrivial, due
to loss of information in the reconstruction process. Furthermore, the low-dimensional parameter
space should be configured in a way that preserves an underlying timbral characteristic in the data,
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thus allowing a user to transform the incoming audio signal in a musically meaningful way. Finally,
the process of parameter space modification should not be agnostic of the incoming audio signal,
meaning that any mapping between the two-dimensional plane and the equaliser parameters should
be expressed as a function of the (x, y) coordinates and some representation of the signal spectral
energy. In addition to this, the system should be capable of running in near-real time, enabling its use
in a DAW environment.

Warm / Bright ...

(a)

F(x)

A P A’

(b)

Figure 1. An overview of the Semantic Audio Feature Extraction (SAFE) equaliser and its
feature extraction architecture. (a) The extended Semantic Audio Equalisation plug-in with the
two-dimensional interface. To modify the brightness/warmth of an audio signal, a point is positioned
in two-dimensional space; (b) The SAFE feature extraction process, where A represents the audio
features captured before the effect is applied, A′ represents the features captured after the effect is
applied, and P represents the parameter vector.

To address these problems, we develop a model that consists of two phases. The first is a
training phase, in which a map is derived from a corpus of semantically-labelled parameter data,
and the second is an implementation phase in which a user can present (x, y) coordinates and an
audio spectrum, resulting in a 13-dimensional vector of parameter state variables. To optimise the
mapping process, we experiment with a combination of 6 dimensionality reduction techniques and
5 reconstruction methods, followed by a stacked-autoencoder (sAE) model that encapsulates both
the dimensionality reduction and reconstruction processes. The techniques were chosen to represent
a variable range of complexity and nonlinearity, and were intended to provide a selection of possible
solutions to the problem, in which the highest performing section would be used for implementation.
With the intention of scaling the parameters to the incoming audio signal, we derive a series of
weights based on a selection of features, extracted from the signal LTAS coefficients. To evaluate the
model performance under a range of conditions, we train it with binary musical semantics data and
measure both objective and subjective performance based on the reconstruction of the input space
and the structural preservation in reduced dimensionality space.

3.1. Dataset

For the training of the model, we compile a dataset of 800 semantically-annotated equaliser
parameter space settings, comprising 40 participants equalising 10 musical instrument samples using
two descriptive terms: warm and bright. To do this, participants were presented with the musical
instrument samples in a DAW and asked to use a parametric equaliser to achieve the two timbral
settings. After each setting was recorded, the data were recorded and the equaliser was reset to unity
gain. During the test, samples were presented to the participants in a random order across separate
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DAW channels. Furthermore, the musical instrument samples were all performed unaccompanied,
were Root Mean Square (RMS) normalised and ranged from 20 to 30 s in length. All of the participants
had normal hearing, were aged 18–40, and all had at least 3 years’ music production experience.

The descriptive terms (warm and bright) were selected for a number of reasons; firstly, the
agreement levels exhibited by participants tend to be high (as suggested by [3]), meaning there should
be less intra-class variance when subjectively assigning parameter settings. When measured using an
agreement metric, defined by [13] as the log number of terms over the trace of the covariance matrix,
warm and bright were the two highest ranked terms in a dataset of 210 unique adjectives. Secondly,
the two terms are deemed to be sufficiently different enough to form an audible timbral variation in
low dimensional space. While the two terms do not necessarily exhibit orthogonality (for example,
brightness can be modified with constant warmth [9]), they have relatively dissimilar timbral profiles,
with brightness widely accepted to be highly correlated with the signal’s spectral centroid, and warmth
often attributed to the ratio of the first three harmonics to the remaining harmonic partials in the
magnitude spectrum [22].

The parameter settings were collected using a modified build of the SAFE data collection
architecture, in which descriptive terms, audio feature data, parameter data, and metadata can be
collected remotely within the DAW environment and uploaded to a server. As illustrated in Figure 1b,
the SAFE architecture allows for the capture of audio feature data before and after processing has
been applied. Similarly, the interface parameters P are captured and stored in a linked database. For
the purpose of this experiment, the architecture was modified by adding the functionality to capture
LTAS coefficients, with a window size of 1024 samples and a hop size of 256.

While the SAFE project comprises a number of DAW plug-ins, we focus solely on the parametric
equaliser, which utilises five biquad filters arranged in series, consisting of a low-shelving filter (LS),
three peaking filters (P fn), and a high-shelving filter (HS), where the LS and HS filters each have two
parameters and the (P fn) filters each have three, as described in Table 1.

Table 1. A list of the parameter space variables and their ranges of possible values, taken from the
Semantic Audio Feature Extraction (SAFE) parametric equaliser interface.

n Assignment Range n Assignment Range

0 LS gain −12–12 dB 7 P f1 Q 0.1–10 Hz
1 LS Freq 22–1000 Hz 8 P f2 Gain −12–12 dB
2 P f0 Gain −12–12 dB 9 P f2 Freq 220–10,000 Hz
3 P f0 Freq 82–3900 Hz 10 P f2 Q 0.1–10 Hz
4 P f0 Q 0.1–10 Hz 11 HS Gain −12–12 dB
5 P f1 Gain −12–12 dB 12 HS Freq 580–20,000 Hz
6 P f1 Freq 180–4700 Hz

3.2. Evaluation Criteria

To evaluate the model under various conditions and to select an appropriate mapping topology,
we apply objective metrics to the data during the dimensionality reduction and reconstruction
processes. These allow us to evaluate the extent to which (1) the dimensionality reduction technique
retains the structure of the high-dimensional data (trustworthiness, continuity, K-Nearest Neighbours
(K-NN)), (2) the classes are separable in low-dimensional space (Jeffries–Matusita Distance), and (3) the
system accurately reconstructs the high-dimensional parameter space (reconstruction error).

3.2.1. Trustworthiness and Continuity

To evaluate the structural preservation of each technique, the metrics trustworthiness and
continuity [23] are applied to the dataset. Here, the distance of point i in high-dimensional space
is measured against its k closest neighbours using rank order, and the extent to which each rank
changes in low-dimensional space is measured. For n samples, let r(i, j) be the rank in distance of
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sample i to sample j in the high-dimensional space Uk
i . Similarly, let r̂(i, j) be the rank of the distance

between sample i and sample j in low-dimensional space Vk
i . Using the k-nearest neighbours, the map

is considered trustworthy if these k neighbours are also placed close to point i in the low-dimensional
space, as shown in Equation (1).

T(k) = 1− 2
nk(2n− 3k− 1)

n

∑
i=1

∑
j∈U(k)

i

(r(i, j)− k) (1)

Similarly, continuity (shown in Equation 2) measures the extent to which original clusters of
datapoints are preserved, and can be considered the inverse to trustworthiness, finding sample points
that are close to point i in low-dimensional space, but not in the high-dimensional plane.

C(k) = 1− 2
nk(2n− 3k− 1)

n

∑
i=1

∑
j∈V(k)

i

(r̂(i, j)− k) (2)

In both of these equations, a normalising factor is used to bound the trustworthiness and continuity
scores between 0 and 1. These measures evaluate the extent to which the local structure of the original
dataset is preserved in a low-dimensional map; this is described in [24], where it is shown that the
local structure of the dataset needs to be retained for a successful map of the datapoints.

3.2.2. K-NN

In order to measure the similarities in inter-class structures within the high and low dimensional
space, we apply a K-NN classifier with k = 1, as described in [25], and then measure the differences
in classification accuracies. The nearest neighbours are found using Euclidean distances with 13 and
2 dimensions, respectively. The accuracies are derived using K-fold cross validation with K = 20,
where 20% of the data is partitioned for testing. This allows us to measure the extent to which
the between-class structures have been preserved in the reduction process, and effectively acts as
a supervised structural preservation metric.

3.2.3. Jeffries–Matusita Distance

In order to evaluate the extent to which timbral descriptors lie at opposing ends of the mapped
parameter space, we can measure the extent to which the timbre classes are separable using a distance
metric. Typically, this can be done by finding the divergence between class distributions using a
technique such as Kullback–Leibler Divergence (KLD), as we proposed in [26]; however, as explained
in [27], this does not satisfy the triangle inequality based on the measurement’s asymmetry. While
two-sided KLD addresses this, as explained in [28], [29] proposes Jeffries–Matusita Distance (JMD)
as a more appropriate alternative. JMD (as shown in Equation 4) is a metric derived from the
Bhattacharya (BH) distance, as in Equation (3), which bounds the output of the measure from 0 (no
separability) to 2 (perfect separability).

BHi,j =
1
8
(mi −mj)

T(
Si + Sj

2
)−1(mi −mj) + 0.5 ln(

0.5(
∣∣Si + Sj

∣∣)√
|Si|

∣∣Sj
∣∣ (3)

JMD1,2 =

√
2(1− e−BHi,j) (4)

Here m represents the mean and S represents the covariance of classes i and j, respectively.

3.2.4. Reconstruction Error

To measure the reconstruction accuracy (low-to-high-dimensionality mapping) of the model,
we measure the input/output error for each pair-wise combination of dimensionality reduction
and reconstruction techniques by computing the mean absolute error between predicted and actual
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parameter values. This is done using K-fold cross validation with k = 20 iterations, and a test partition
size of 20% (160 training examples). As some of the dimensionality reduction techniques are unable
to embed new information into the reduced-dimensionality space, the first part of the test process
(i.e., the prediction of new low-dimensional values as implemented in [26]) was omitted, and only
regression and interpolation techniques were evaluated.

3.3. Subjective Evaluation

Using the metrics defined in Section 3.2, we are able to select an appropriate model which
is capable of accurately reducing the dataset while preserving the data structure and accurately
reconstructing the input parameters with minimal error. To validate this, we implement subjective
user tests in which participants are asked to equalise a series of audio samples using the
reduced-dimensionality interface. To do this, 10 participants were asked to apply the process to
10 input sounds using only the two-dimensional interface. Each participant was asked to achieve a
warm or bright output sound for each stimuli. During the test, samples were presented to participants
in a random order across separate DAW channels, and the equaliser parameters remained hidden.
No indication was given as to the underlying distribution of datapoints. The stimuli comprised
unaccompanied musical instrument samples and ranged from 20 to 30 s in length. The samples were
primarily taken from electric guitars and included a variety of genres, taken from the Mixing Secrets
Multitrack Audio Dataset [30]. All of the participants had normal hearing, were aged 18–35, and had
varied music production experience, from 0 to 5 years.

4. Model

The proposed system maps between the equaliser parameter space, consisting of 13 filter
parameters and a two-dimensional plane, while preserving the context-dependent nature of the audio
effect. After an initial training phase, the user can then submit (x, y) coordinates to the system using
a track-pad interface, resulting in a timbral modification via the corresponding filter parameters. To
demonstrate this, we train the model with two class (bright, warm) musical semantics data taken from
the SAFE equaliser database, thus resulting in an underlying transition between opposing timbral
descriptors in two-dimensional space. By training the model in this manner, we intend to retain
the high-dimensional structure of the dataset in the two-dimensional space while minimising the
reconstruction error inherent to dimensionality reduction methods.

The model (illustrated in Figure 2) has two key operations. The first involves weighting the
parameters by computing the vector αn(A) from the input signal long-term spectral energy (A). We
can then modify the parameter vector (P) to obtain a weighted vector (P′). The second component
scales the dimensionality of (P′), resulting in a compact audio-dependent representation. During the
model implementation phase, we apply an unweighting procedure based on the (x, y) coordinates
and the signal modified spectrum. This is done by multiplying the estimated parameters with the
inverse weight vector, resulting in an approximation of the original parameters. In addition to the
weighting and dimensionality reduction stages, a scale-normalisation procedure is applied, aiming
to convert the ranges of each parameter (given in Table 1), to (0 < pn < 1). This converts the data into
a suitable format for dimensionality reduction.

4.1. Parameter Scaling

As the configuration of the filter parameters assigned to each descriptor by the user during
equalisation is likely to vary based on the audio signal being processed, the first requirement of the
model is to apply weights to the parameters based on knowledge of the audio data at the time of
processing. To do this, we selectively extract features from the signal LTAS before and after the filter
is applied. This is possible due to the configuration of the data collection architecture, highlighted in
Figure 1b. The weights (αm) can then be expressed as a function of the LTAS, where the function’s
definition varies based on the parameter representation (i.e., gain, centre frequency, or bandwidth of
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the corresponding filter). We use the LTAS to prevent the parameters from adapting each time a new
frame is read. In practice, we are able to do this by presenting users with means to store the audio
data, rather than continually extracting it from the audio stream. Each weighting is defined as the
ratio between a spectral feature taken from the filtered audio signal (A′k) and the signal filtered by an
enclosing rectangular window (Rk). Here, the rectangular window is bounded by the minimum and
maximum frequency values attainable by the observed filter fk(A).

Parameter 

Weighting
Dimensionality 

Reduction

Parameter 

Reconstruction

Parameter 

Unweighting

Scale 

Conversion

Scale 

Conversion

(x, y) Map

Parameter Space 

Mapping

Parameter 

Scaling

Model 

Training

User 

Input

Figure 2. An overview of the proposed model. The grey horizontal paths represent training and
implementation (user input) phases.

We can define the equaliser as an array of biquad functions arranged in series, as depicted in
Equation (5).

fk = fk−1(A, ~Pk−1)

k = 1, . . . , K− 1
(5)

Here, K = 5 represents the number of filters used by the equaliser and fk represents the kth

biquad function, which we can define by its transfer function, given in Equation (6).

Hk(z) = c · 1 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 (6)

The LTAS is then modified by the filter as in Equation (7) and the weighted parameter vector can
be derived using the function expressed in Equation (8).

A′k = |Hk(ejω)|Ak (7)

p′n = αm(k) · pn (8)

where pn is the nth parameter in the vector P. The weighting function is then defined by the parameter
type (m), where m = 0 represents gain, m = 1 represents centre-frequency, and m = 2 represents
bandwidth. For gain parameters, the weights are expressed as a ratio of the spectral energy in the
filtered spectrum (A′) to the spectral energy in the enclosing rectangular window (Rk), derived in
Equation (9) and illustrated in Figure 3.

α0(k) =
∑i(A′k)i

∑i(Rk)i
(9)

For frequency parameters (m = 1), the weights are expressed as a ratio of the respective
spectral centroids of A′ and Rk, as demonstrated in Equation (10), where bni are the corresponding
frequency bins.

α1(k) =
(

∑i(A′k)ibni

∑i(A′k)i

)
/
(

∑i(Rk)ibni

∑i(Rk)i

)
(10)
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Finally, the weights for bandwidth parameters (m = 2) are defined as the ratio of spectral spread
exhibited by both A′ and Rk. This is demonstrated in Equation (11), where (x)sc represents the
spectral centroid of x.

α2(k) =

(
∑i
(
bni − (A′k)sc

)2
(A′k)i

∑i(A′k)i

)
/

(
∑i (bni − (Rk)sc)

2 (Rk)i

∑i(Rk)i

)
(11)

During the implementation phase, retrieval of the unweighted parameters, given a weighted
vector, can be achieved by simply multiplying the weighted parameters with the inverse weights
vector, as in Equation (12).

p̂n = α−1
m (k) · p′n (12)

where p̂ is a reconstructed version of p, after dimensionality reduction has been applied.
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Figure 3. An example spectrum taken from an input example, weighted by the biquad coefficients,
where the red line represents a peaking filter, the black line represents the biquad-filtered spectrum,
and the blue line represents the spectral energy in the rectangular window (Rk).

To ensure the parameters are in a consistent format for each of the dimensionality scaling
algorithms, a scale normalisation procedure is applied using Equation (13), where during the training
process, the pmin and pmax represent the minimum and maximum values for each parameter (given
in Table 1), and qmin and qmax represent 0 and 1. During the implementation process, these values are
exchanged such that qmin and qmax represent the minimum and maximum values for each parameter
and pmin and pmax represent 0 and 1.

ρn =
(pn − qmin)(pmax − pmin)

qmax − qmin
+ pmin (13)

Additionally, a sorting algorithm was used to place the three mid-band filters in ascending order
based on their centre frequency. This prevents normalisation errors due to the frequency ranges,
allowing filters to be rearranged by the user.

4.2. Parameter Space Mapping

Once the filters have been weighted by the audio signal, the mapping from 13 equaliser variables
to a two-dimensional subspace can be accomplished using a range of dimensionality reduction
techniques. In this study, we expand on [26] and evaluate the performance of six dimensionality
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reduction techniques. Here, the algorithms that were used for the dimensionality reduction are
available as part of the dimensionality reduction toolbox in [31]. In addition to this, parameter
space mapping is evaluated by measuring the quality of reduction with rank-based measures and
nearest neighbour classification algorithms. In dimensionality reduction, the reconstruction process
is often less common due to the nature of the task (e.g., feature optimisation, data reduction).
We evaluate the efficacy of two regression-based techniques and three interpolation techniques at
mapping two-dimensional interface variables to a vector of equaliser parameters. This is done by
approximating functions using the weighted parameter data and measuring the reconstruction error.
Finally, we evaluate an sAE model of data reduction, in which the parameter space is both reduced
and reconstructed in the same algorithm; we are then able to isolate the reconstruction (decoder) stage
for the implementation process.

Dimensionality reduction is implemented using the following techniques: PCA, a widely
used method of embedding data into a linear subspace of reduced dimensionality by finding the
eigenvectors of the covariance matrix, originally proposed by [32]; Kernel PCA (kPCA), a non-linear
manifold mapping technique in which the eigenvectors are computed from a kernel matrix as
opposed to the covariance matrix, as defined by [33]; probabilistic PCA (pPCA), a method that
considers standard PCA as a latent variable model and makes use of an Expectation Maximisation
(EM) algorithm, a method for finding the maximum-likelihood estimate of the parameters in an
underlying distribution from a given data set, depending on unobserved latent variables [34] as
described in [35]; Factor Analysis (FA), a statistical analysis technique that identifies the relationship
between different variables of a dataset and groups those variables by the correlation of the
underlying factors [36]; Diffusion Maps (DM), a technique inspired by the field of dynamical systems,
reducing the dimensionality of data by embedding the original dataset in a low-dimensional space
by retrieving the eigenvectors of Markov random walks [37]; Linear Discriminant Analysis (LDA), a
supervised projection technique that maps to a linear subspace while maximising the separability
between data points that belong to different classes (see [38]). As LDA projects the data-points onto
the dimensions that maximise inter-class variance for C classes, the dimensionality of the subspace is
set to C− 1. This means that in a binary classification problem such as ours, we need to reconstruct
the second dimension arbitrarily. For each of the other algorithms, we select the first two variables for
mapping, and for the kPCA algorithm, the feature distances are computed using a Gaussian kernel.

The parameter reconstruction process was implemented using the following techniques:
Linear Regression (LR), a process by which a linear function is used to estimate latent variables;
Natural Neighbour Interpolation (NaNI), a method for interpolating between scattered data points
using Voronoi tessellation, as used by [14] for a similar application; Nearest Neighbour Interpolation
(NeNI), an interpolation method where the query point takes the value of the nearest neighbour [39];
Linear Interpolation (LI), an interpolation technique that assumes a linear relationship between the
existing points in a dataset; Support Vector Regression (SVR), a non-linear kernel-based regression
technique (see [40]), for which we choose a Gaussian kernel function.

An autoencoder is an Artificial Neural Network (ANN) with a topology capable of learning
a compact representation of a dataset by optimising a matrix of weights, such that a loss function
representing the difference between the output and input vectors is minimised. Autoencoders can
then be stacked together using the output of the prior layer as the input for the next in order to
construct a deep network architecture. Each autoencoder is then trained individually, learning to
minimise the reconstruction error between its input and the predicted output. This approach has
been used for data compression [41], and by extension, dimensionality reduction. This type of ANN
is often used in order to improve the classification accuracy of logistic regression [42]; however,
since our problem involves data reconstruction as opposed to classification, a logistic layer is not
implemented.



Appl. Sci. 2016, 6, 116 10 of 19

Network Topology

The autoencoder was built using the Theano Python library [43], where we observed an error
of 0.086 using a single hidden layer with N (in this case N = 2) units. To reduce the error, a
mirrored [13− 9− 2] architecture was selected empirically, resulting in an error measurement of 0.08.
To improve reconstruction accuracy further, noise was introduced at each stage in the network, as
demonstrated by [44]. Here, the first autoencoder was corrupted with 0.6 magnitude noise, and
the second with 0.5. This approach is able to further reduce the reconstruction error to 0.0784.
Additionally, we replace the previously-used stochastic gradient descent algorithm with an RMSprop
method [45] with a batch size of 10 as the pre-training and fine-tuning methods of optimization,
and a learning rate of 0.01 and 0.001, respectively. This approach allows for faster optimization, as
shown in [46]. For the weighted parameters, we found that a three-layer denoising autoencoder with
an architecture of [13 − 9 − 6 − 2] and noise of magnitude (0.5, 0.4, 0.3) is able to outperform our
two-layer denoising autoencoder model.

5. Results

5.1. Parameter Space Evaluation

To evaluate the extent to which structures in the parameter space are preserved in the reduced
dimensionality map, we report the trustworthiness, continuity, and class-wise similarity (k-NN). This
is applied to data shown in Figure 4a–g, in which a two-dimensional projection of the 13 equaliser
parameters is given for both warm and bright samples in the dataset.

5.1.1. Low-Dimensional Mapping Accuracy

From Table 2 we show that for trustworthiness, pPCA achieves the highest rating (0.8426), with the
sAE also performing similarly (0.842). The rest of the techniques are also able to achieve a high score,
ranging from 0.81 for kPCA to 0.839 for standard PCA. The only technique that does not perform to
the same standard is LDA, as the algorithm maximizes the separability of classes in the data instead
of preserving the structure of the original dataset unrelated to its classes. For continuity, we can see
that the majority of the techniques perform similarly, with scores ranging from 0.943 for the sAE to
0.958 for kPCA. However, as was the case with trustworthiness, LDA does not perform as well (0.868),
due to the map reduction process.

Table 2. Trustworthiness and continuity scores for the different dimensionality reduction techniques
(higher values are better) and classification accuracy of 1-NN classification

Technique Trustworthiness Continuity 1-NN Classification

Original - - 91.21%
PCA 0.8398 0.9541 87.61%

pPCA 0.8426 0.9567 87.92%
kPCA 0.8102 0.9583 86.14%

FA 0.8337 0.9490 86.19%
DM 0.8395 0.9533 87.89%
LDA 0.7292 0.8684 85.40%
sAE 0.8420 0.9439 84.01%

Trustworthiness and continuity metrics were used with a varying number of neighbours, ranging
from 1 to 250. Here, the sAE exhibits higher scores for a lower number of neighbours (<120), as
shown in Figure 5a—a result that suggests the system is better at retaining the local structure of the
data, which is a necessary goal for a successful mapping technique. Furthermore, while the continuity
score of the autoencoder is lower than the remaining dimensionality reduction techniques (Table 2),
its error from the best performing technique in terms of continuity (kPCA) is only 0.015, which is
deemed negligible.
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(a) PCA (b) pPCA (c) kPCA (d) FA

(e) DM (f) LDA (g) sAE
.

Figure 4. Two-dimensional parameter-space representations using seven data reduction techniques,
where the red data points are taken from parameter spaces described as bright and the blue points are
described as warm. (a), (c), (f), and (g). PCA: Principal Components Analysis; pPCA: Probabilistic
PCA; kPCA: Kernel PCA; FA: Factor Analysis; DM: Diffusion Maps; LDA: Linear Discriminant
Analysis; sAE: stacked-autoencoder.

5.1.2. Class Preservation

The classification of 1-NN in the original dataset achieves an average of 91.21% for 100 iterations
of the algorithm. None of the dimensionality reduction techniques are able to replicate this response,
with pPCA achieving the highest score (87.92%), as seen in Table 2. On the other hand, the sAE
achieved an accuracy of 84.01%, the lowest among the techniques being tested, 7.2% worse than the
classification accuracy of the algorithm in the high-dimensional dataset. This result reveals that sAE is
not as capable as other reduction techniques in preserving the classes on the low-dimensional space;
however, as sAE is able to achieve better results than the other techniques for trustworthiness for a
lower number of neighbours, and its performance in 1-NN is not drastically worse (3.91%) than the
best technique in pPCA, it can be considered a minor problem.

5.1.3. Class Separation

By applying JMD (Equation 4) to the dimensionality reduction techniques, we find that kPCA
outperforms the rest of the techniques used, achieving 0.607, whereas the optimised autoencoder
model performs slightly less favourably with a score 0.558, as shown in Table 3. The only technique
that was excluded from this process was LDA, for two reasons: (1) it is a supervised technique that
specifically maximizes the separability between the different classes in the low-dimensional space,
and (2) in the context of our study, LDA has reduced the dataset to a single dimension, while all the
other techniques have reduced the dimensionality to two dimensions. While class-separability is not
necessarily correlated with accurate preservation of structure, high separability will allow users to
effectively modulate between contrasting timbral descriptors.

Table 3. Jeffries–Matusita Distance (JMD) scores showing separation across different dimensionality
reduction techniques.

Separability Measure PCA pPCA kPCA FA DM sAE

JMD 0.5142 0.5152 0.6076 0.4862 0.5125 0.5581



Appl. Sci. 2016, 6, 116 12 of 19

0 50 100 150 200 250
Number of neighbours

0.5

0.6

0.7

0.8

0.9

1.0

Tr
u
st
w
o
rt
h
in
e
ss
 S
co
re

Trustworthiness over neighbours

PCA
pPCA
kPCA
FA
DM
LDA
sAE(2L)

(a)

0 50 100 150 200 250
Number of neighbours

0.5

0.6

0.7

0.8

0.9

1.0

C
o
n
ti
n
u
it
y
 S
co
re

Continuity over neighbours

PCA
pPCA
kPCA
FA
DM
LDA
sAE(2L)

(b)

0 50 100 150 200 250
Number of neighbours

0.5

0.6

0.7

0.8

0.9

1.0

Tr
u
st
w
o
rt
h
in
e
ss
 S
co
re

Trustworthiness over neighbours

PCA
pPCA
kPCA
FA
DM
LDA
sAE(3L)

(c)

0 50 100 150 200 250
Number of neighbours

0.5

0.6

0.7

0.8

0.9

1.0

C
o
n
ti
n
u
it
y
 S
co
re

Continuity over neighbours

PCA
pPCA
kPCA
FA
DM
LDA
sAE(3L)

(d)

Figure 5. Trustworthiness and continuity plots across the different dimensionality reduction techniques
for number of neighbors (1 : 250). (a) Trustworthiness; (b) Continuity; (c) Trustworthiness (Weighted
Parameters); (d) Continuity (Weighted Parameters).

5.2. Parameter Reconstruction Error

In [26], the sAE was able to achieve the lowest reconstruction error, 0.086, while the technique
that came the closest to its accuracy was kPCA with support vector regression, achieving an error of
0.09. The sAE technique still outperforms all the other combinations of techniques, as can be seen in
Table 4, achieving an overall error 0.074. It should also be noted that the sAE is able to reconstruct the
most parameters of the equaliser (6) more accurately than any other combination of techniques.

5.3. Parameter Weighting

In order to evaluate the effectiveness of the signal specific weights, we measure the
reconstruction accuracy of each system after the weights have been applied (see Table 5). Overall, the
systems exhibit a general improvement in the reconstruction accuracy of the gain and Q parameters.
All the systems have improved accuracy measurements, with the highest performing pair being PCA
with SVR, achieving an error of 0.059. Similarly, the sAE with the same architecture, with hidden
layer sizes [9, 2], is able to achieve a reconstruction accuracy of 0.06—a further improvement from the
0.0748 error observed with unweighted parameters. For the weighted parameters we found that a
three-layer denoising autoencoder was able to outperform our two-layer autoencoder, improving the
reconstruction accuracy by 0.02.
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Table 4. Mean reconstruction error per parameter using combinations of dimensionality reduction
and reconstruction techniques, with the lowest reconstruction error highlighted in grey. The final
column shows the mean (µ) error across all techniques, while the model with the lowest mean
reconstruction error (Stacked Autoencoder, sAE) is highlighted in green. LR: Linear Regression;
SVR: Support Vector Regression; NaNI: Natural Neighbour Interpolation; NeNI: Nearest Neighbour
Interpolation; LI: Linear Interpolation.

P: 0 1 2 3 4 5 6 7 8 9 10 11 12 µ

PCA-LR 0.099 0.070 0.142 0.047 0.041 0.139 0.079 0.028 0.124 0.090 0.029 0.102 0.109 0.084
LDA-LR 0.194 0.070 0.150 0.047 0.041 0.171 0.082 0.028 0.116 0.090 0.030 0.123 0.106 0.096
kPCA-LR 0.081 0.070 0.136 0.047 0.040 0.150 0.082 0.027 0.130 0.084 0.029 0.120 0.107 0.085
pPCA-LR 0.099 0.069 0.138 0.046 0.039 0.142 0.078 0.027 0.126 0.092 0.030 0.104 0.108 0.084
DM-LR 0.104 0.070 0.138 0.047 0.040 0.139 0.081 0.027 0.126 0.091 0.031 0.102 0.106 0.085
FA-LR 0.151 0.068 0.156 0.042 0.040 0.143 0.068 0.029 0.144 0.084 0.030 0.103 0.094 0.089

PCA-SVR 0.086 0.064 0.123 0.046 0.040 0.137 0.079 0.028 0.125 0.089 0.031 0.097 0.095 0.080
LDA-SVR 0.196 0.068 0.152 0.048 0.040 0.171 0.081 0.028 0.116 0.087 0.031 0.123 0.105 0.096
kPCA-SVR 0.077 0.069 0.136 0.045 0.039 0.144 0.079 0.026 0.130 0.088 0.032 0.111 0.099 0.083
pPCA-SVR 0.089 0.066 0.128 0.047 0.040 0.136 0.077 0.027 0.128 0.088 0.031 0.096 0.097 0.081
DM-SVR 0.088 0.067 0.121 0.047 0.040 0.133 0.078 0.026 0.124 0.089 0.031 0.096 0.095 0.080
FA-SVR 0.144 0.062 0.137 0.041 0.039 0.144 0.066 0.026 0.144 0.085 0.030 0.098 0.082 0.084

PCA-NaNI 0.091 0.080 0.137 0.054 0.045 0.149 0.092 0.029 0.144 0.107 0.032 0.104 0.107 0.090
LDA-NaNI 0.263 0.098 0.209 0.071 0.046 0.216 0.117 0.031 0.149 0.124 0.033 0.158 0.128 0.126
kPCA-NaNI 0.083 0.082 0.159 0.056 0.042 0.154 0.095 0.029 0.160 0.116 0.033 0.125 0.108 0.096
pPCA-NaNI 0.092 0.078 0.139 0.050 0.041 0.148 0.090 0.028 0.139 0.106 0.034 0.105 0.106 0.089
DM-NaNI 0.094 0.080 0.139 0.052 0.043 0.146 0.091 0.026 0.143 0.107 0.030 0.107 0.103 0.089
FA-NaNI 0.152 0.070 0.157 0.046 0.041 0.164 0.075 0.028 0.159 0.098 0.033 0.102 0.087 0.093

PCA-NeNI 0.099 0.093 0.163 0.060 0.047 0.177 0.106 0.030 0.162 0.123 0.035 0.121 0.121 0.103
LDA-NeNI 0.252 0.100 0.194 0.060 0.042 0.217 0.109 0.031 0.151 0.120 0.037 0.158 0.115 0.122
kPCA-NeNI 0.092 0.096 0.187 0.060 0.042 0.175 0.110 0.025 0.180 0.128 0.029 0.135 0.124 0.106
pPCA-NeNI 0.103 0.088 0.162 0.059 0.042 0.170 0.107 0.027 0.160 0.123 0.034 0.120 0.117 0.101
DM-NeNI 0.110 0.090 0.161 0.059 0.046 0.175 0.101 0.025 0.159 0.124 0.034 0.122 0.116 0.102
FA-NeNI 0.176 0.082 0.171 0.054 0.041 0.193 0.087 0.028 0.205 0.114 0.034 0.138 0.096 0.109
PCA-LI 0.092 0.078 0.141 0.055 0.042 0.149 0.095 0.026 0.143 0.114 0.033 0.108 0.108 0.091
LDA-LI 0.254 0.097 0.195 0.062 0.043 0.209 0.107 0.032 0.153 0.115 0.037 0.155 0.113 0.121
kPCA-LI 0.083 0.082 0.159 0.058 0.039 0.159 0.102 0.028 0.160 0.114 0.030 0.127 0.115 0.096
pPCA-LI 0.091 0.080 0.138 0.053 0.047 0.148 0.095 0.029 0.146 0.112 0.034 0.108 0.107 0.091
DM-LI 0.098 0.076 0.142 0.051 0.045 0.149 0.089 0.030 0.146 0.112 0.033 0.108 0.105 0.091
FA-LI 0.160 0.070 0.153 0.046 0.041 0.172 0.078 0.028 0.176 0.102 0.032 0.119 0.087 0.097

sAE(2-Layer) 0.073 0.046 0.126 0.039 0.027 0.149 0.067 0.014 0.123 0.091 0.017 0.099 0.096 0.074

Table 5. Mean reconstruction error per parameter using combinations of dimensionality reduction
and reconstruction techniques for the weighted parameterers, with the lowest reconstruction error
highlighted in grey. The final column shows the mean (µ) error across all techniques, while the model
with the lowest mean reconstruction error (Stacked Autoencoder) is highlighted in green.

P: 0 1 2 3 4 5 6 7 8 9 10 11 12 µ

PCA-LR 0.052 0.059 0.062 0.040 0.023 0.114 0.075 0.018 0.107 0.088 0.020 0.034 0.106 0.061
LDA-LR 0.149 0.068 0.116 0.047 0.022 0.118 0.083 0.017 0.101 0.088 0.020 0.028 0.105 0.074
kPCA-LR 0.039 0.066 0.056 0.043 0.021 0.113 0.084 0.016 0.112 0.089 0.021 0.035 0.105 0.062
pPCA-LR 0.054 0.066 0.062 0.042 0.022 0.111 0.074 0.017 0.108 0.090 0.022 0.036 0.110 0.063
DM-LR 0.058 0.068 0.066 0.041 0.023 0.111 0.074 0.016 0.110 0.091 0.020 0.036 0.107 0.063
FA-LR 0.149 0.062 0.141 0.035 0.021 0.111 0.063 0.015 0.066 0.075 0.022 0.024 0.091 0.067

PCA-SVR 0.046 0.059 0.059 0.041 0.021 0.111 0.071 0.015 0.103 0.087 0.021 0.035 0.099 0.059
LDA-SVR 0.155 0.070 0.120 0.047 0.023 0.121 0.081 0.016 0.109 0.094 0.020 0.027 0.104 0.076
kPCA-SVR 0.036 0.068 0.052 0.044 0.023 0.111 0.080 0.016 0.106 0.090 0.022 0.035 0.108 0.061
pPCA-SVR 0.047 0.061 0.058 0.041 0.023 0.113 0.074 0.016 0.106 0.094 0.021 0.035 0.101 0.061
DM-SVR 0.050 0.063 0.060 0.042 0.024 0.110 0.074 0.016 0.103 0.089 0.020 0.035 0.100 0.060
FA-SVR 0.141 0.050 0.136 0.036 0.023 0.108 0.058 0.017 0.064 0.075 0.019 0.024 0.092 0.065

PCA-NaNI 0.048 0.066 0.064 0.047 0.026 0.127 0.081 0.019 0.116 0.096 0.024 0.038 0.111 0.066
LDA-NaNI 0.195 0.092 0.152 0.062 0.025 0.160 0.106 0.020 0.135 0.123 0.026 0.033 0.123 0.096
kPCA-NaNI 0.038 0.075 0.061 0.051 0.026 0.137 0.098 0.020 0.120 0.102 0.024 0.039 0.110 0.069
pPCA-NaNI 0.046 0.065 0.064 0.045 0.027 0.128 0.080 0.022 0.117 0.094 0.021 0.036 0.110 0.066
DM-NaNI 0.054 0.070 0.069 0.046 0.028 0.128 0.084 0.019 0.118 0.100 0.024 0.038 0.109 0.068
FA-NaNI 0.164 0.055 0.163 0.040 0.023 0.124 0.069 0.019 0.077 0.090 0.025 0.029 0.104 0.076

PCA-NeNI 0.057 0.077 0.080 0.057 0.029 0.157 0.100 0.022 0.140 0.119 0.022 0.043 0.126 0.079
LDA-NeNI 0.195 0.096 0.157 0.063 0.027 0.157 0.105 0.023 0.132 0.122 0.027 0.032 0.123 0.097
kPCA-NeNI 0.042 0.081 0.072 0.058 0.030 0.154 0.108 0.024 0.145 0.112 0.025 0.045 0.125 0.079
pPCA-NeNI 0.054 0.072 0.076 0.055 0.027 0.155 0.097 0.022 0.137 0.110 0.022 0.042 0.130 0.077
DM-NeNI 0.059 0.075 0.084 0.053 0.030 0.158 0.095 0.022 0.143 0.114 0.025 0.045 0.129 0.079
FA-NeNI 0.185 0.064 0.190 0.047 0.029 0.144 0.085 0.020 0.091 0.109 0.025 0.033 0.117 0.088
PCA-LI 0.052 0.070 0.069 0.050 0.027 0.136 0.087 0.021 0.127 0.102 0.026 0.038 0.119 0.071
LDA-LI 0.192 0.103 0.154 0.062 0.027 0.161 0.110 0.018 0.140 0.135 0.025 0.035 0.124 0.099
kPCA-LI 0.037 0.069 0.064 0.049 0.027 0.138 0.094 0.020 0.122 0.106 0.024 0.040 0.113 0.069
pPCA-LI 0.052 0.071 0.069 0.049 0.026 0.137 0.084 0.020 0.125 0.102 0.024 0.039 0.116 0.070
DM-LI 0.054 0.070 0.070 0.046 0.029 0.132 0.085 0.020 0.121 0.099 0.024 0.037 0.113 0.069
FA-LI 0.170 0.056 0.162 0.040 0.026 0.124 0.070 0.021 0.077 0.093 0.025 0.030 0.103 0.077

sAE(3-Layer) 0.065 0.053 0.081 0.040 0.021 0.106 0.075 0.015 0.077 0.081 0.017 0.028 0.096 0.058
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Finally, the parameter weighting stage improves the trustworthiness of the low-dimensional
mapping when using PCA, pPCA, kPCA, DM, and sAE, whilst FA and LDA exhibited significantly
lower scores, as presented in Table 6. On the other hand, the continuity of the systems had very
little change, with pPCA, kPCA, DM, FA, and sAE showing very minor reductions, LDA showing
significant reduction, and PCA showing an improvement. In this case, sAE with parameter weighting
still outperforms the other techniques in terms of trustworthiness for a lower number of neighbours,
as in Figure 5c, and the performance in terms of continuity sees the sAE performing better than FA
(Figure 5d).

Table 6. Trustworthiness and continuity scores (including weighting) for the different dimensionality
reduction techniques (higher values are better), and classification accuracy of 1-nn classification

Technique Trustworthiness Continuity 1-NN Classification

Original - - 84.9%
PCA 0.8463 0.9562 67.85%

pPCA 0.8454 0.9552 67.39%
kPCA 0.8263 0.9566 69.40%

FA 0.7761 0.9359 59.52%
DM 0.8477 0.9561 66.03%
LDA 0.6702 0.8340 73.92%

sAE(3-Layer) 0.8440 0.9431 73.51%

5.4. User Evaluation

We evaluate the performance of the selected mode (sAE) using subjective tests in which we
present the user with various samples and ask them to equalise it using the low-dimensional
space (shown in Figure 6). We then measure the class separability using the JMD metric
presented in Section 3.2. In Table 7 we present the degree of separation between user inputs using
high-dimensional and low-dimensional responses from the subjective data. From this we can deduce
that the overlap between warm and bright descriptors has decreased, with a value of 0.8527. This
is higher than the high-dimensional dataset instances (0.5581). Furthermore, we see an increase in
separation between the high-dimensional classes and the opposing low-dimensional classes. For
instance, the high-dimensional warm examples and the low-dimensional bright examples achieve a
separation of 0.7719, again higher than the original separation between the high-dimensional classes.
Similarly, a strong positive correlation between high-dimensional and low-dimensional equalisation
is exhibited by examples in the same class, a desired effect that displays the ability of the users to
choose the corresponding regions for the two descriptors.

Table 7. Jeffries-Matusita Distance (JMD) scores showing separation for data gathered from
13-dimensional parameters and a two-dimensional interface using warm(W) and bright(B) examples.
Higher scores are desirable for the first four measurements, while lower scores are better for the last
two columns.

Separability W(13-d)/B(13-d) W(2-d)/B(2-d) W(13-d)/B(2-d) B(13-d)/W(2-d) W(13-d)/W(2-d) B(13-d)/B(2-d)

JMD 0.5581 0.8527 0.7719 0.6988 0.0846 0.1439

Table 8. Pearson correlation between the reconstructed equaliser curves.

Metric B(13-d)/B(2-d) W(13-d)/W(2-d) W(13-d)/B(13-d) W(2-d)/B(2-d)

Pearson correlation 0.9346 0.9247 -0.7594 -0.9121

This is reinforced by the low Euclidean distances between class centroids (shown in Figure 6) and
strong positive coherence (spectral correlation) between the equaliser curves achieved using the 13-
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Figure 6. Equalisation settings shown in reduced dimensionality space where the figure (a) shows
the results of users recording warm and bright samples using 13 parameters; (b) the results of users
producing the same descriptors using a sAE-based two-dimensional equaliser. Here, diamonds
represent the class centroids.

and 2-dimensional interfaces (shown in Figure 7a,b). These results are provided through the Pearson
correlation measures in Table 8, revealing a positive correlation between the high-dimensional and
low-dimensional datasets for the same descriptor: 0.9346 for warm and 0.9247 for bright, and a
negative correlation between opposite high-dimensional and low dimensional descriptors: −0.7594
and −0.9121, respectively.
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Figure 7. The reconstructed equaliser curves for the centroid of the warm and bright descriptors
for both the high-dimensional (red) and low-dimensional (blue) datasets. (a) Reconstructed warm
equaliser curve; (b) Reconstructed bright equaliser curve.

6. Discussion

For reconstruction accuracy we find that the sAE is able to outperform all pairwise combinations
of dimensionality reduction and reconstruction techniques, whether the system includes parameter
weighting or not (Table 4 and Table 5). Furthermore, the sAE is able to achieve the second highest
trustworthiness score (see Table 2, Figure 5a,c) in low-dimensional space, and performs to a high
standard in the preservation of high-dimensional clusters (continuity), as in Table 2 and Figure 5b,d.
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Using a sAE however, the class-separability in low-dimensional space is reduced when parameter
weighting is applied. Furthermore, the system is able to reconstruct the most parameters of the
equaliser accurately (six for the unweighted parameters and five for the weighted parameters), while
FA with SVR is the only combination able to accurately reconstruct five parameters for the weighted
reconstruction. It achieves lower results for overall reconstruction accuracy (0.065), trustworthiness
(0.7761), and classification (59.52%), and marginally lower for continuity (0.9359).

Whilst the parameter reconstruction of the autoencoder is sufficiently accurate for our
application, it is bound by the intrinsic dimensionality of the data, defined as the minimum
number of variables required to accurately represent the variance in lower dimensional space. For
the bright/warm parameter-space data used in this experiment, we can show that the intrinsic
dimensionality requires three variables when computed using Maximum Likelihood Estimation [47].
As our application requires a two-dimensional interface, this means the reconstruction accuracy is
inherently limited.

Additionally, the user tests revealed that the two-dimensional slider using a sAE is able to
accurately reconstruct the equaliser curve, retaining the characteristics associated with warm (boost
on low-mid and cut on high-end) and bright (cut on low-end and boost on high-end), as displayed in
Figure 7a,b. Participants of the experiment also commented that the underlying two-dimensional
map is easy to quickly learn and provides an intuitive tool for controlling an audio equaliser.
Taking into account that the final audio effect should be incorporated alongside the equaliser, with
the high-dimensional parameters also available to the users, and with indications as to where the
semantic regions are placed, it can be expected that the resulting effect will feature a quick way of
achieving the different descriptors (using the two-dimensional slider) and a further fine-tuning stage
(via changing the high-dimensional equaliser parameters) if that is necessary.

Providing the model training is applied offline, mapping techniques such as PCA, LDA, DM,
pPCA, kPCA, and FA are all capable of running in real-time given the lower degree of computational
complexity, as do reconstruction methods such as the interpolation techniques (LI, NaNI, NeNI) and
the sAE. Similarly, while the sAE requires iterative training, which will have variable training times
based on the number of iterations, the learning rate and the number of neurons and hidden layers, it
still offers a fast implementation as the user-input process is relatively lightweight.

7. Conclusions

We have presented a model for the modulation of equalisation parameters using a
two-dimensional control interface. The model utilises a sAE to modify the dimensionality of the
input data and a weighting process that adapts the parameters to the LTAS of the input audio
signal. We train the model with semantics data in order to get the appropriate decoder weights
and bias units, which can then be applied to any new input data. This data is given by a user as
the position of the cursor changes in an (x,y) Cartesian space. This new information will compute
high-dimensional values, which will be rescaled and unweighted, and consequently passed to the
equaliser parameters. We show that the sAE model achieves better reconstruction accuracy than
other regression and interpolation techniques, achieving an error as low as 0.058. Similarly, the
trustworthiness and continuity of the system perform similarly to (and in some cases outperform) the
rest of the dimensionality reduction techniques. Through subjective testing, we can show that the
2D equaliser provides users with an intuitive tool to recreate the high-dimensional equaliser settings
extracted from the original dataset. This is demonstrated by comparing the centroids taken from the
high and low-dimensional maps and by comparing the equalisation curves when applied to warm
and bright samples.
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