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Abstract: We present the results from a theoretical investigation of laser beam propagation in relay
imaging multi-pass layouts, which recently found application in high-energy laser amplifiers. Using a
method based on the well-known ABCD-matrix formalism and proven by ray tracing, it was possible
to derive a categorization of such systems. Furthermore, basic rules for the setup of such systems and
the compensation for low order aberrations are derived. Due to the introduced generalization and
parametrization, the presented results can immediately be applied to any system of the investigated
kinds for a wide range of parameters, such as number of round-trips, focal lengths and optics sizes.
It is shown that appropriate setups allow a close-to-perfect compensation of defocus caused by a
thermal lens and astigmatism caused by non-normal incidence on the imaging optics, as well. Both are
important to avoid intensity spikes leading to damages of optics in multi-pass laser amplifiers.
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1. Introduction

In the last two decades, the output energy of diode pumped high energy lasers based on
Ytterbium doped materials has scaled the achievable output energies into the range of tens of Joules
for nanosecond pulses [1], as well as for femtosecond pulses within laser architectures based on the
chirped pulse amplification technique [2]. The major advantage of these materials is the long upper
state lifetime in comparison to neodymium-doped materials, which are widely used in flash-lamp
pumped, high energy systems. This allows one to store a large amount of energy within the active
medium with comparably low pump power. Thus, a lower power laser diode pump engine can be
used, which reduces size and cost. Nevertheless, this advantage comes at the price of significantly
lower cross-sections of the laser medium. Hence, extracting the energy and achieving a reasonable gain
in the amplifier requires a higher number of material passes. A major task for the development of such
laser systems is the design of multi-pass setups that maintain the typically top-hat-shaped beam profile
throughout many amplification steps. As such, beam profiles cannot be propagated without significant
diffraction effects, only imaging systems are suitable for this task. In these systems, aberrations should
be as little as possible. These includes low order aberrations, as these may cause high intensities,
leading to damages of optical elements, clipping of the beam profile due to the deformation of the
beam or inhomogeneous depletion of the excitation and, therefore, less efficient amplification.

Though this task is pretty similar to spectroscopic multi-pass cells, the readily available setups,
such as Herriott or White cells [3], are no solution for laser amplifiers, since these cells either do not
have an image plane that is passed multiple times or as there are non-planar optics within their image
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planes, which is not feasible in a laser amplifier, since the laser material should be placed in these
image planes.

In recent years, some compact imaging multi-pass layouts have been demonstrated. With these
setups, a high beam quality and a high number of round-trips have been achieved [4–7]. Furthermore,
due to the repeated use of the imaging optics, the setups described in [5–7] allowed one to achieve a
high number of material passes with a low number of optics. Such systems offer to scale the number
of round-trips without increasing the number of optics, which allows one to achieve simple and
compact designs for multi-pass imaging laser amplifiers. Similar layouts with integration into cavities
of regenerative amplifiers to achieve multiple amplification passes per resonator round-trip were
patented by M. Kumkar et al. [8].

In this work, we will present a method to analyze such systems with multiple round-trips and
repeated use of the imaging optics by employing the ABCD-matrix formalism. These imaging elements
will be modeled as ideal lenses, while in the following ray tracing simulations, spherical optics will be
used for practical reasons.

Thus, starting with only a few basic assumptions, we are able to categorize these systems into
two fundamental types. These two kinds of setups are investigated separately for the introduced low
order aberrations. First, the defocus, caused by thermal lensing, is investigated. Secondly, astigmatism,
caused by tilted incidence on the imaging elements, is analyzed. In both cases, the generalized design
parameters and the number of round-trips are varied. We will also derive means for corrections to the
system parameters that allow one to compensate for these unwanted effects.

The presented results from the paraxial one-dimensional matrix model are cross-checked using the
ray tracing software FRED (Version 9.110 Optimum, Photon Engineering LLC, Tucson, AZ, USA, 2010).
Here, an automated routine was programmed to compute the wavefront produced by sample systems
with varying parameters. The retrieved wave-fronts were further processed using MATLAB (Version
R2012a, MathWorks Inc., Natick, MA, USA, 2012) to obtain the corresponding Zernike coefficients.
Using these, a comparison with the parameters calculated with the matrix formalism is realized.

2. The ABCD-Matrix Model

Using the paraxial approximation, any classical optical system containing only translations of
lengths d and imaging elements with focal length f can be described by the matrices T for translation
and L for the imaging element:

T =

[
1 d
0 1

]
L =

[
1 0
−1/ f 1

]
(1)

In the following, we assume that a round-trip in an imaging multi-pass amplifier is described by
alternating free space propagation and ideal imaging elements. Hence, the matrix representing one
round-trip in a system of n elements is calculated by:

Gn = Tn+1 · Ln · Tn · Ln−1 · . . . · L1 · T1 (2)

An imaging system suitable for allowing several round-trips has to restore both the spatial and the
angular distribution after each round-trip. Hence, it is required that the optical system matrix equals
either the unity matrix U or in the case of a symmetric profile, the negative unity matrix −U. If we
furthermore demand a constant small angle add-on per pass of the system to separate the different
beam passes geometrically, e.g., by introducing a little tilt of the flat optics in the image plane, the latter
solution has to be omitted, as the alternating direction of the angular add on will prevent a summation.

Under these constraints, the prescriptions for building such an imaging system can be derived
by solving the matrix equation Gn = U. In the following, we will give the results for n = 1 . . . 3.
Solutions for systems of more than three elements are no longer distinct, as there are too many degrees
of freedom. Nevertheless, the used algorithm could be applied for these cases accordingly, especially
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as most of such systems can be described by a concatenation of systems with less than four imaging
elements. In this case, the results presented in the following can be directly applied to the sub-systems.

Starting with a system containing only one imaging element per round-trip, there is no solution,
as the focusing or de-focusing effect of the single optic cannot be mitigated and will always alter the
collimation state of the input beam.

In the case of n = 2, there is again no solution that allows one to generate a positive unity matrix.
Nevertheless, a solution is found for the negative unity matrix. Hence, double passing such a system
back and forth will result in a unity matrix again. This is in a narrower sense a special case for four
imaging elements. The solution in this case is:

d1 =
f1 f2 · ( f1 + f2)− d3 f 2

1
f 2
2

(3)

d2 = f1 + f2 (4)

f1 = f2 (5)

Here, d1 to d3 are the corresponding free space propagation distances, and f1 and f2 are the focal
lengths of the imaging elements. This corresponds to the widely-used version of a double-passed
4f-telescope for a multiple imaging layout as, e.g., in [4,6,7]. We will refer to such a kind of system
in the following as a Type I system. Schematic setups for optical systems of this type accomplishing
three round-trips are exemplarily given in Figure 1.
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Figure 1. Schematic drawings of Type I systems with three round-trips based on lenses (a) and on
mirrors (b) as imaging elements. The numbers in the arrows denote the sequence of passing beams.

As this system needs to be double passed to fulfill the constraints, it is not really necessary to
have a unity magnification, as was originally requested by the constraints used for deriving this
solution. This renders Equation (5) unnecessary, but since all distances have to be ≥0, it follows from
Equations (3) and (4) that f1 and f2 must be at least positive. For a system with three imaging elements,
there are already too many degrees of freedom with respect to the four different distances to get a
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closed solution for each distance using our matrix model. Therefore, we concentrate on the special
case of a symmetrical system, where the layout is mirrored at the second imaging element. Hence, the
additional constraints f3 = f1, d4 = d1 and d3 = d2 reduce the degrees of freedom. Furthermore, in a
practical setup, such a layout is very advantageous, as it only requires two different imaging elements.
In this case, the ABCD-model results in the following constraints:

d1 =
f 2
1 + 2 f1 f2

2 f2
(6)

d2 = f1 + 2 f2 (7)

Similar to the Type I system, both f1 and f2 have to be positive to obtain positive distances.
Furthermore, solving these results for 1/ f1, one obtains the imaging equation for an ideal lens:

1
f1

=
1
d1

+
1
d2

(8)

Hence, this system will generate an image of the original beam on the second optical element.
This reverses the angular distribution, and the beam is then imaged back to the original image plane
by the first element. The diameter of the second element only has to be large enough for supporting
the beam itself, as the individual round-trips will not be spatially separated on this optic. Such a
system will be referred to as Type II in the following. Schematic examples are given in Figure 2 for
three round-trips also.

3 4
5

2

1
6

d1d2

L1

L2

3 4

2
5

1
6

d2

d1

L1

L2

2θ

in/out

in/out

(a)

(b)

Figure 2. Schematic drawings of Type II systems with three round-trips based on lenses (a) and on
mirrors (b) as imaging elements. The numbers in the arrows denote the sequence of passing beams.

It should be mentioned that Type I systems are identical to Type II systems for d3 = 0 and half the
focal length of the second element, to consider the double pass on this element. Under these conditions,
Equations (3), (4) and (6), (7) are equivalent.
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3. Influence of Thermal Lensing and Intrinsic Compensation

In a bulk laser, the thermal load originating from the laser process generates a temperature profile
in the laser medium due to thermal expansion and the temperature dependence of the refractive index.
This effect is known as thermal lensing. Typically, the most prominent effect is a focusing or defocusing
of the beam by the thermal lens leading to increased intensities on amplifier optics and finally to
optical damages. This should therefore be considered in the setup.

In the imaging multi-pass schemes presented in this work, the laser active medium is envisioned
to be situated in the primary image plane. Hence, due to the imaging properties, the actual beam shape
in this plane will be constant irrespective of a thermal lens. Nevertheless, the collimation state will
be altered, adding up the focusing of the thermal lens with every round-trip. It is therefore essential
to include a means of compensation within the system counteracting this effect. In the following,
we will demonstrate that this is possible due to slight adaptions to the optics distances in systems of
both types. The thermal lens will be represented by the matrix Lt as an ideal lens with focal length ft.

In a Type I system, this lens is only passed once per half round trip represented by G2. Hence, the
modified matrix G∗2 is calculated by:

G∗2 = G2 · Lt (9)

To achieve a compensation in G∗2 , again, all entries have to be zero, except for the main axis.
The corrected distances are:

d1 = f1 +
ft

2
·
(

1−

√
1 +

4 f 2
1 · (d3 − f2)

ft f 2
2

)
(10)

d2 =
f1 f2 + ( f1 + f2) · ( ft − d1)

ft + f1 − d1
(11)

d3 = f2 +
f 2
2 · ( f1 − d1)

f 2
1

·
(

1 +
f1 − d1

ft

)
(12)

By deriving these compensating solution, all other solutions that do not converge to the original
Type I solution for ft → ∞ are omitted, as these would represent systems integrating the thermal lens
as an additional imaging element. A more intuitive formulation of Equations (10)–(12) can be obtained
for a standard layout with d1 = f1:

d1 = f1 (13)

d2 = f1 + f2 −
f 2
1
ft

(14)

d3 = f2 (15)

According to this solution, the spherical part of a thermal lens in a Type I system can be completely
compensated just by adjusting the distance between the imaging optics. In this case, it can further be
deduced that the focal length of the thermal lens can only be compensated as long as:

ft ≥
f 2
1

f1 + f2
(16)

otherwise, d2 will become negative. However, in real life, setups ft should be much bigger than f1 in
order to avoid intensity spikes on the imaging elements.

The modified matrix for a Type II system, in which the thermal lens is passed in the beginning
and at the end of each round-trip, is calculated using:

G∗3 = Lt · G3 · Lt (17)
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To compensate for a thermal lens, G∗3 again needs to be equal to U, which leads to:

d1 = f1 +
ft

2
·

1−

√
1−

2 f 2
1

f2 ft

 (18)

d2 = f1 + f2 ·

1 +

√
1−

2 f 2
1

f2 ft

 (19)

As for the Type I system, all solutions that do not converge to the original Type II solution for
ft → ∞ are omitted; though the length of both arms is changed. The lens Equation (8) is also valid for
the new solution. Hence, the major effect of the thermal lens can be seen as a virtual change of the
focal length of L2.

In Figure 3, the validity of the derived compensation formulas is demonstrated using the
ray-tracing software FRED. The traces are performed for compensated, as well as for uncompensated
systems for different values of ft and for up to five round-trips. The exact parameters of the test
systems are displayed in Table 1. The three-dimensional layouts are shown in Figure 4. All test systems
were mirror based with a folding angle 2θ = 2° to keep the influence of astigmatism negligible (cf. the
next section). All traces were done with a collimated coherent Gaussian TEM00 beam with a full width
at half maximum of 2 mm. The source area was 5 mm wide and situated at a 1-mm distance from the
image plane, directly pointing towards it. The short distance was chosen to avoid deformation of the
wavefront due to propagation effects. The beam was sampled with 255 × 255 points. The analysis
surface for recording the wave fronts was placed in front of the image plane and was 10 mm wide with
201 × 201 sampling points.
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Figure 3. Inverse absolute value of the radius Ro as a function of the focal width of a thermal lens ft for
compensated and uncompensated relay imaging systems with 5 round-trips. Results were derived
from ray-tracing simulation. Values small than 10−3 1/m can be considered as numerical noise.

The thermal lens was implemented by replacing the plane mirror sitting in the image plane by a
curved one. The radius of this mirror equals the focal width of the thermal lens, thus simulating the
double pass of a laser medium in an active mirror scheme.
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(a) (b)

Figure 4. Three dimensional setup of the basic layouts for Type I (a) and Type II (b) systems in FRED.
Both layouts have a half folding angle of θ = 5◦ and five passes.

The incident wavefront was extracted before each pass of the image plane and saved for processing
using the scripting functions included in FRED. The extracted wavefronts were then processed using
MATLAB for fitting Zernike polynomials (we used the same numbering as Noll et al. [9]). The radius
of the wavefront Ro was finally calculated from the spherical term of the Zernike polynomials.

Table 1. Configuration parameters for the test systems used in the ray tracings.

Parameter Type I Type II

f1 0.5 m 0.5 m
f2 0.5 m 0.25 m
d1 0.5 m 1 m
d2 1 m 1 m
d3 0.5 m -

diameter L1 75 mm 75 mm
diameter L2 75 mm 19 mm

From the results displayed in Figure 3, it can be seen that for both system types, a good
compensation of the thermal lens can be achieved, which is equivalent two a low value of 1/|Ro |.
Further, at least for the simulated range, 1/|Ro | is widely independent of ft for a compensated system.
In uncompensated systems, the predicted add-up effect of the thermal lens aberrations with an
increasing number of round-trips can also be clearly seen. Comparing the Type I and Type II results,
it is further visible that the Type II systems achieve a higher compensation than the Type I systems
where a lensing effect slightly increasing with the number of round trips can be seen. As this does not
depend on ft, it can be attributed to a system-specific effect, which is very likely caused by spherical
aberrations on the large spherical mirrors that are hit out of center. In Type II systems, this is not the
case, since the beams are always coming from and are reflected into a common spot in the radius
distance of L1. For this, a spherical optic is the optimum case. As the numerical accuracy of the
evaluation algorithm can be estimated to be in the range of Ro =1 km, variations for values smaller
than 1/|Ro | = 10−3 1/m should be attributed to negligible noise. Furthermore, residual defocus errors in
this order of magnitude have no impact in real systems.
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4. Astigmatism in Mirror-Based Layouts

In the amplifier, the use of spherical mirrors instead of lenses as imaging elements has many
advantages. Typically, the losses within a mirror-based layout are lower than for the corresponding
lens design. Furthermore, due to the folding of the setup, a smaller footprint of the system can be
realized. Another drawback for a lens-based design is the presence of ghost foci that are generated
by residually reflected light from the transmitting surfaces. In high energy laser systems, such ghost
foci must be considered very carefully to avoid damages. For the case of a mirror-based design,
it is nearly impossible to generate any ghost foci, as light transmitted through the high reflective
surfaces is de-focused and typically not re-coupled to the rest of the setup. Another advantage is that a
mirror-based design will significantly reduce the collected nonlinear phase, the so-called B-integral.

Nevertheless, the main drawback for a mirror-based design is that to separate the incoming and
outgoing beams on a spherical mirror, an incident angle θ has to be used as shown in Figures 1 and 2.
This adds a certain amount of astigmatism to the beam, which will also increase during the round-trips
in an amplifier. This effect is also problematic in spectroscopic multi-pass cells, as discussed in [3,10,11].
In the following, we derive a quantitative calculation of this effect using the ABCD-algorithm.

In dependence of θ, the focal length in a plane tangential to the optic fm and vertical (sagittal) to
the optic fs are defined as, e.g., in [12]:

fm = f · cos θ (20)

fs =
f

cos θ
(21)

In the following, we describe the relay imaging system in each of the planes by modified system
matrices Gm and Gs, which can be obtained for the corresponding planes by altering the focal lengths
of the optics accordingly, while maintaining the original distances.

For simplicity reasons, we will limit our considerations to the basic layouts of Types I and II.
In case of Type I, this means that we assume f1 = f2 = f and d1 = d2 = f . For Type II, we use
f1 = 2 f2 = f and d1 = d2 = 2 f accordingly. In the following, we will refer to f as the system’s
focal length.

It should be mentioned that the simplifications made are not a general limit of the matrix model,
but rather used to reduce the complexity of the resulting expressions. Additionally, the assumptions
made here will still meet most real layouts of such systems.

We assume that the input beam into our system is a collimated beam. A parallel ray with distance
x0 with respect to the optical axis is represented by:

~v0 =

(
x0

0

)
(22)

The resulting output ray after one round-trip in the system in each plane ~vs/m is obtained by
multiplying ~v0 with the corresponding system matrix:

~vs/m = Gs/m ·~v0 (23)

In the case of a Type I system, one obtains for the output after one round-trip:

~vmI =

 x0 · cos4 θ−16 cos3 θ+40 cos2 θ−32 cos θ+8
cos4 θ

x0
f ·
−4 cos3 θ+20 cos2 θ−24 cos θ+8

cos4 θ

 (24)
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~vsI =

(
x0 · (1 + 8 cos4 θ − 32 cos3 θ + 40 cos2 θ − 16 cos θ)

x0
f · (8 cos4 θ − 24 cos3 θ + 20 cos2 θ − 4 cos θ)

)
(25)

For further evaluation, we want to use parameters that are independent of both the exact focal
length f of the system and the input beam parameter x0. The position of a single ray in the image plain
relative to the original position with x/x0 in the respective plane fulfills these requirements and can be
used to predict a deformation and a size change of the beam in the image plane.

As a second parameter, we use the ratio of the system’s focal length and the radius of the output
wave front f/Ro in the respective plane, which allows one to access a changed collimation state, as well
as the astigmatism of the beam. Assuming that the wavefront is orthogonal to each single ray, f/Ro can
be calculated within the small angle approximation using:

f
Ro

=
α f
x

=
f

x0
· x0 ·

α

x
(26)

Using Equations (24) and (25) f/R becomes independent of x0 and f .
Though the exact terms for further round-trips become more complex, so that we refrain

from displaying them here, x0 and x0/ f can still be isolated in the respective terms as in
Equations (24) and (25) in the same way as before. Hence, the chosen expressions can still be used for
describing the behavior of the system.

A Type II system can be treated in the same way obtaining the output ray after one round-trip:

~vmII =

 −x0 · 7 cos2 θ−16 cos θ+8
cos2 θ

− x0
f ·

2 cos2 θ−6 cos θ+4
cos2 θ

 (27)

~vsI I =

(
x0 · (−8 cos2 θ + 16 cos θ − 7)
− x0

f · (4 cos2 θ − 6 cos θ + 2)

)
(28)

Again, the same expressions for describing the system’s behavior as before can be used.
The results for the deformation of the beam are given for up to five round-trips for both system

types in Figure 5. Within the given range of angles, the deformation of the beam in the image plane is
less than 5 %. The influence in both system types is approximately the same. Because the changes in the
tangential and the sagittal direction are nearly identical, the beam shape itself will not be influenced;
only the size of the beam is slightly shrunken.

The absolute astigmatic deformation of the wavefront | f/R| in comparison for Type I and Type II
is given in Figure 6. We used the absolute value here for a clearer presentation. The sagittal component
results in a defocused beam, while the tangential direction results in a focused one. Again, we used
the FRED software to benchmark the results from the matrix calculations. The only difference from the
previous simulations is that the beam diameter is set to 3 mm and the wave length to 500 nm for Type I
systems and 200 nm for Type II. Both changes were made to minimize the propagation effects in the
system, which might disturb the comparability of both approaches and to assure a stable wavefront
reconstruction. The actual wavefront radius was determined from the quadratic part of the sixth
Zernike term. The results show a reasonably good agreement of both calculation methods.



Appl. Sci. 2016, 6, 353 10 of 18

0.95

0.96

0.97

0.98

0.99

1

0 2 4 6 8 10

x
/x

0

θ (°)

Type I

1 round-trip
2 round-trips
3 round-trips
4 round-trips
5 round-trips

0.95

0.96

0.97

0.98

0.99

1

0 2 4 6 8 10

x
/x

0

θ (°)

Type II

sagittal
   tangential

Figure 5. Change in beam diameter in the tangential and sagittal plane as a function of the folding
angle θ for Type I and Type II systems for up to five round-trips.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

|f
/R

o
|

θ (°)

Type I

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

|f
/R

o
|

θ (°)

Type II

1 round-trip
2 round-trips
3 round-trips

4 round-trips
5 round-trips

 

sagital
tangential

Zernike

Figure 6. Absolute astigmatic deformation of the wavefront as a function of the incidence angle on
optic L1 for Type I and Type II systems. Lines are calculated by the matrix method, and single data
points originate from FRED ray tracings.

The slight difference of the tangential and sagittal direction in the ABCD-matrix calculation
further suggests that a slight spherical term is also added to the beam. As this is much smaller than
the actual astigmatic terms, we refrained from further discussing it here.

Comparing Type I and Type II systems, we find that the astigmatic error for the same folding
angle in a Type I system is twice the error in a Type II system. This can be explained logically, as the
sources for the astigmatism in both systems are the large spherical mirrors, which are hit twice as often
per round-trip in a Type I system. Furthermore, it can be seen that the astigmatic error for both systems
increases over-proportionally with the folding angle and rather linearly with the number of round-trips.
Hence, the folding angle in such a system should be chosen as small as reasonable possible.
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5. Astigmatism due to Round-Trips

Another source of astigmatism within the presented relay imaging setups is introduced by the
angular separation of the consecutive passes. This leads to a non-normal incidence on optics L1 and L2

in Type I systems and on L2 in Type II systems. As before, we will use the basic system layouts for
analyzing this effect.

The astigmatism will be included in the calculation by the same means as before, but using a
varying incidence angle ϕ(k).

In the case of a Type II system, the sole source of astigmatism due to the round-trips is the mirror
L2. As the mirror L1 is placed in the radius distance to the image plane, the incidence angle on L1 is
always normal to its surface. Including the astigmatism terms for L2 according to Equations (20) and
(21) for Gm

3 and Gs
3 for a single round-trip in the tangential and sagittal plane respectively results in:

Gm
3 =

[
1 0

2 cos(ϕ(k))−2
f cos(ϕ(k)) 1

]
Gs

3 =

[
1 0

− 2 cos(ϕ(k))−2
f 1

]
(29)

Here, ϕ(k) is the incident angle, which varies for each round-trip. Given, that the system matrix
represents an ideal lens in each plane, the inverse focal width 1/ f will just add up over the round trips.
Hence, (1/Ro)m/s after n round-trips can be expressed in each plane by a sum:(

1
Ro

)
m
= − 2

f
·

n

∑
k=1

cos(ϕ(k))− 1
cos(ϕ(k))

(30)(
1

Ro

)
s
=

2
f
·

n

∑
k=1

cos(ϕ(k))− 1 (31)

The maximum incidence angle ϕmax can be calculated using:

ϕmax = arctan
(

an

2d2

)
= arctan

(
an

4 f

)
(32)

Here, an is the maximum separation on the optic L1, and it depends on the total number of
round-trips n. an again can be calculated assuming an optimum usage of the optics aperture D
(cf. Figure 7) using:

an = D · n− 1
n

(33)

Hence, the change in the incidence angle for each pass is given by:

∆ϕ =
2ϕmax

n− 1
(34)

Now, ϕ(k) can be calculated by:

ϕ(k) = ϕmax − (k− 1) · ∆ϕ (35)

The wavefront radius Ro of the sagittal and tangential plane of the astigmatic wavefront can be
directly calculated using Equations (30) and (31).

For the case of Type I systems, such a closed solution no longer exists as both L1 and L2 generate
the astigmatism during the round-trips and are not situated in an image plane or in an equivalent one.
Hence, propagation effects will also be present. The handling of this type is nevertheless identical to
the procedure described in the previous section for the astigmatism due to the folding angle except for
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a varying incidence angle ϕ(k) for every pass. The computations for ϕ(k) are the same as for Type II
systems except for ϕmax, which is half of the value in Type I systems (cf. Figure 7):

ϕmax =
1
2
· arctan

(
an

2d1

)
=

1
2
· arctan

(
an

2 f

)
(36)

For the following results, we used a collimated input beam according to the procedure in Section 4.
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Figure 7. Upper image: arrangement of passes on optic L1 for different numbers of round-trips.
The numbers denote the sequence of hits on the optic L2. Center image: parameters for folding angles
on L2 due to the round-trips in a Type II system with four round-trips. Lower image: parameters for
folding angles on L1 due to the round-trips in a Type I system with four round-trips.

In Figure 8, the absolute astigmatic deformation of the wavefront as a function of the ratio between
the diameter of the optic L1 and its focal width is shown for both system types. Using D/ f for the x-axis
and | f/R| for the y-axis allows being independent from the exact focal width and the actual diameter
of L1. Hence, the results are applicable to a wide range of specific systems.

For the ray tracing simulation, systems identical to the ones used in Section 4 were used. To keep
the influence of the folding angle negligible, this angle was fixed at 0.5°. Again, the ray-tracing results
are in good agreement with the results from the simplified matrix model. Only for Type I systems,
there seems to be a small deviation. This is most likely caused by a combination of a residual influence
from the system’s folding angle and inaccuracies due to deviations in the propagation lengths, which
are not included in the matrix model. These originate from the different distances between the image
planes and L1 and L2 for different round-trips.

In Figure 9, the evolution of the astigmatic deformation over the round-trips is shown for sample
systems with D/ f =0.3 with five and with 10 round-trips. It can be seen that due to the variation of ϕ

over the individual passes, the main contribution to the wavefront deformation originates from the
first and the last passes, while the intermediate passes add only a minor contribution. Furthermore, as
there is virtually no change in the amount of deformation during the middle passes, the assumption
that the chosen folding angle θ is sufficiently small to be negligible is confirmed.
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Figure 8. Absolute astigmatic deformation of the wavefront as a function of the ratio between the
diameter D of optic L1 and its focal width f for Type I and Type II systems. Lines are calculated by the
matrix method, and single data points originate from FRED ray tracings.
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Figure 9. Evolution of the astigmatic deformation of the wavefront for 5 round-trips (a) and for 10
round-trips (b). Lines are only for illustration purposes.

In comparison to the astigmatism caused by the system’s folding angle, the obtained astigmatic
deformation due to the round-trips is rather small. Nevertheless, for compact systems using a short
focal length and a high number of round-trips, a considerable amount of deformation accumulates.
In general, Type II systems are less critical by a factor of about two when using the focal length of the
optic L1 as a criterion.

6. Intrinsic Astigmatism Compensation Methods

Though astigmatism can be compensated in a straightforward way by using cylindrical optics for
pre- and or post-compensation, it is often more convenient to have an intrinsic compensation. If this is
achieved in each single pass of the system, it further reduces issues arising from the deformation of the
beam profile on optics outside the image plane. The basic idea for such a compensation mechanism is
to introduce astigmatism in two orthogonal directions with the same strength, which finally cancel
each other. Such approaches were also discussed, e.g., in [3,10,11] for spectroscopic cells. We will
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present two approaches to achieve this within the presented Type I and Type II systems in the basic
configurations, as described in Section 4.

In the case of the astigmatism within a Type I system caused by the folding angle of the arms, a
compensating effect can be achieved when both arms are tilted in orthogonal planes by approximately
the same amount (cf. Figure 10). Using this configuration in each plane, the beam will have one optic
that is hit in the sagittal plane having a focal length of fs and one in the tangential plane having a focal
length of fm, where only the order is reversed for each beam axis. Hence, using Equation (4) results in:

d2 = fm + fs = f ·
(

cos(θ) +
1

cos(θ)

)
(37)

Furthermore, Equation (3) must be fulfilled for both directions to achieve a complete compensation.
An exchange of f1 and f2 in Equation (3) must not alter d1 or d3. This results in:

d1 = d3 =
fm f 2

s + fs f 2
m

f 2
m + f 2

s
= f · cos θ · 1 + cos2 θ

1 + cos4 θ
(38)

A system with the according setup will be fully compensated, at least according to the matrix
model. To cross-check this, we modeled a Type I system according to the ones presented in Section 4
with a folding angle of θ = 10◦ and five round-trips in the compensated arrangement. The resulting
astigmatic deformation of the wavefront f/R was less then 4.5× 10−3 in all individual round-trips.
Compared with the original value of f/R ≈ 0.3, this practically corresponds to a full compensation and
proves the results from the matrix model. The residual deformation corresponds to the astigmatism
caused by the round-trips, which is in the same range for the chosen configuration (D/f = 0.15;
cf. Figure 8).

Figure 10. Different views of a compensated Type I system with five round-trips and θ = 10◦.

In the case of a Type II system, a compensation according to the just described method in Type I
systems is only possible if the system is extended to get a second arm that can be tilted. In the following,
we will discuss another way to compensate for astigmatism, which is based on compensating the
astigmatism due to the folding angle with the astigmatism originating from the round-trips. We will
use a basic Type II system (cf. Section 4) with 10 round-trips, a diameter of L1 of 200 mm and a focal
length of f = 500 mm, resulting in D/ f = 0.3.

According to Section 5, the total astigmatic deformation due to the round-trips of the system
f/Ro is calculated to be 0.0329 in the tangential plane and −0.0328 in the sagittal plane. Now, we use
the matrix method according to Section 4 to numerically find an angle that will produce the inverse



Appl. Sci. 2016, 6, 353 15 of 18

amount of astigmatic deformation. Therefore, the tangential and the sagittal plane will be exchanged in
relation to the round-trip-based astigmatism to achieve a compensating effect. In the tangential plane,
we find an angle of θ = 3.27° and in the sagittal plane an angle of θ = 3.29°. Hence, the compensation
still has a small error. As a compromise, we use θ = 3.28°. Furthermore, there is a slight error due to
the distances that would have to be adapted to the modified new focal lengths. We ignore this here,
since the error is small.

The results for the astigmatic deformation from the ray-tracing of an accordingly designed
Type II system are shown in Figure 11 in dependence of the round-trip number. As the generation
of astigmatism due to the round-trips is strongest for the first and the last pass and nearly
vanishes in between, the system is under-compensated for the first and the last passes, while it
is over-compensated for the middle passes. The astigmatism due to θ is rather constant. In sum, this
leads to an approximately perfect compensation after all passes, which demonstrates the validity of
the compensation mechanism.

-0.01

-0.005

0

0.005

0.01

0 2 4 6 8 10

f/
R

round-trip

(a)

(b)

Figure 11. Compensated Type II system with d = 200 mm and f = 500 mm for 10 round-trips.
(a) Astigmatic wavefront deformation as a function of round-trip number as a result of a ray-tracing
calculation; (b) different views of the compensated Type II system.

7. Higher Order Aberrations

For further discussion, we have also analyzed the higher order Zernike terms generated in the two
astigmatism compensated systems described in Section 6. The derived terms are shown in Figure 12.
It can be seen that the overall compensation of the astigmatism works slightly better in the Type II
system as the round-trips were compensated, as well. Furthermore, there is some low amount of
de-focus left in the Type I system, which can also be contributed to the round-trips. In the case of the
Type II system, a very small amount of astigmatism under 45° still remains.
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The higher order terms are even smaller than the residual terms for astigmatism in both
compensated systems and should be of no practical relevance. The residual distortions are dominated
by coma, which has basically the same origin as the astigmatism. Higher order Zernike terms are
negligible. The total wavefront error contributed by all terms higher than six is below 10 nm for
the Type I system and 2 nm for the Type II system. The corresponding wave forms are shown in
the lower part of Figure 12 after subtracting all terms lower than seven. Here, also the coma can be
clearly identified.

Figure 12. Analysis of ray-tracing results from the compensated Type I system with five round-trips and
the compensated Type II system with 10 round-trips. The upper diagrams show the Zernike coefficients
of the output wave front (numbering according to Noll et al. [9]) for a wavelength corresponding to
1 µm. The lower images show the corresponding residual wavefront after subtracting all terms lower
than seven.

8. Conclusions

In this work, we presented a matrix model for the categorization and evaluation of imaging
setups for multi-pass laser amplifiers in which the imaging elements are repeatedly used to reduce the
total number of optics needed. It was found that such systems can be classified into two basic types,
which we referred to as Type I and Type II. Here, Type I systems resemble a double-passed telescope,
with a total of four interactions with imaging elements. Type II systems resemble a three-element
imaging with three interactions of imaging elements per round-trip, accordingly. With the matrix
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formalism, we directly derived laws for the distances between the optics in dependence of their
individual focal lengths.

Further we discussed the influence of aberrations in the setup of such systems. It was shown that
both types of systems can be used to internally compensate a thermal lens within their image plane.
Correction terms for the distances were again derived by the matrix formalism accordingly.

The problem of astigmatism was analyzed and quantified as well in dependence of the inevitable
folding angle of the arms in mirror-based systems as for the tilted incidence required to geometrically
separate individual round-trips for in- and out-put coupling. It was found that comparing both system
types, equally dimensioned Type II systems exhibit a lower astigmatism by a factor of about two.

Further using the matrix formalism, we demonstrated different methods, where due to geometrical
folding, an intrinsic compensation of the system’s astigmatism could be achieved. Here, a Type I
system was compensated for the folding angle of the arms, while in a Type II system, compensation
of the arms’ folding angle was achieved with the astigmatism generated by the round-trips. In both
cases, a nearly complete compensation was demonstrated.

All presented calculations with the matrix method were cross-checked by analyzing the Zernike
polynomials of wavefronts calculated by coherent ray-tracing of representative systems in the
commercial software FRED. Hereby, a very good agreement between both calculation methods was
achieved, proving the validity of the matrix method. The ray-tracing software also allowed analyzing
higher order Zernike terms. It was found that both systems exhibit practically negligible higher order
distortions even for a high number of round-trips and comparably short focal length.

From a practical point of view, the results of our calculations suggest that, in general, Type II
systems show a superior performance when compared to Type I systems. This statement is supported
by the lower amount of astigmatic aberrations generated under similar conditions, the higher degree
of compensation of effects from a thermal lens and by the overall lower amount of residual aberrations
in a compensated system. The latter point is even more pronounced, as the investigated Type II system
allows twice the number of passes, and therefore, it is also more compact. Furthermore, from an
engineer’s point of view, Type II systems seems to be more convenient as the total number of optics is
smaller, in particular for the large diameter optics, on which the round trips are separated. Until now,
mostly Type I systems can be found in the literature, but we believe that the use of Type II systems can
lead to more compact laser designs with less aberrations, where shorter focal lengths can be employed.
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