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Abstract: This paper proposes a new steel concrete composite beam that has a similar shape to the
conventional steel wide flange beam, but whose lower flange has a tubular shape with infilled concrete.
It has openings in the web for perfect integration between concrete and steel materials, and the tubular
lower flange is reinforced with steel rebars to enhance its flexural strength. The bending capacity
of the new composite beam was investigated by performing a two-point loading test on seven
specimens, which can be categorized mainly into two types, non-composite and fully composite
specimens. The load versus displacement curves were plotted for all the specimens and their failure
modes were identified. Theoretical equations were proposed to estimate the flexural strength of the
new composite beam members, and their accuracy was examined by comparing the predictions of
the equations with the test results.
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1. Introduction

It is well known that steel–concrete composite members are structural system that can optimize the
mechanical properties and material characteristics of steel and concrete. In addition to the conventional
composite members utilizing wide flange shapes and shear studs, various types of steel–concrete
composite members have recently been proposed, and their usage has increased on construction sites.

One of the main goals of the recently developed composite systems is the reduction of floor
height. ‘Thor-beam’ and ‘Delta-beam’ developed in Scandinavia [1] and the ‘slimflor beam’ by
the Steel Construction Institute [2] are representative examples with this feature. These slim floor
beams are generally used in conjunction with deep decks and hollow core slabs for 5 m to 9 m
span [1–3]. Nardin et al. [4,5] suggested a methodology that can determine the optimal locations
of shear connectors by performing a test on several slim floor beam specimens. Lawson et al. [6]
proposed a new slim floor beam system without shear connectors that can guarantee a sufficient level of
composite action between the two materials and derived its design strength equations. Braun et al. [7,8]
developed a composite slim floor beam (CoSFB) that retains an enhanced flexural capacity by utilizing
dowel bars passing through the web of the beam section. The typical span of slim floor beams is
approximately 8 m, but the maximum span of the CoSFB system can be extended to 14 m while limiting
the overall floor depth within 400 mm.

The reduction of the amount of steel material and improved constructability are other goals
of recently developed composite systems. The ‘Versa :T:’ beam by Divesakore is one such example;
its main concept is that the steel cross section plays the role of a form for concrete and functions as
a structural component. Lee et al. [9,10] developed a similar composite beam utilizing high-strength
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steel for the improvement of its flexural and seismic capacity. Kim et al. [11,12] developed a new
composite beam that includes bolted cold-formed steel components and steel rebars for improved
bending strength.

This study proposes a new steel–concrete composite beam system with tubular lower flange
illustrated in Figure 1. The composition of its cross-sectional components is shown in Figure 2. This new
composite member has openings in the web for perfect integration of the concrete and steel materials,
and steel rebars are installed inside the tubular lower flange to enhance its flexural strength. It allows
the use of deep decks and piping members passing through the web for floor depth reduction.

In this paper, the bending capacity of the new composite beam is investigated by performing
a two-point loading test on seven specimens, which can be categorized mainly into two types,
non-composite and fully composite specimens. The load versus displacement curves are plotted
for all the specimens and their ultimate failure modes are identified. Theoretical equations to estimate
the flexural strengths of the new composite beam members are proposed, and their accuracy is
examined by comparing the predictions of the equations with the test results.
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Figure 1. Composite beam system with tubular lower flange.
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Figure 2. Composite beam section.

2. Experimental Program

2.1. Test Specimens

In this study, a total of seven specimens were manufactured and tested for the evaluation of the
flexural strength of the proposed composite beam. Five of them are non-composite beam specimens
at construction stage, and the other two are fully composite specimens with floor deck components.
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The test parameters of the non-composite beam specimens include the depth of the beam, existence of
web openings, and location of main rebars. The conventional wide flange specimen is also added as
the reference non-composite specimen for comparison purposes. The two fully composite specimens
include the proposed composite beam specimen with deep floor deck and a conventional wide flange
specimen with a truss floor deck. In all of the proposed composite beam specimens, its lower tubular
flange is reinforced with four D32 rebars. The notation used to indicate each set of test parameters
is presented in Figure 3. The details of the seven specimens are summarized in Table 1, and their
cross-sectional shapes of the seven specimens are illustrated in Figure 4. All the specimens with web
openings have exactly the same opening details as shown in Figure 5.

The compressive strength of concrete (Fck) was measured in accordance with the standards of [13],
and the measured average values are summarized in Table 2. Its modulus of elasticity (Ec) is estimated
using the following formula provided in [14]:

Ec = 8500 3
√

Fcu, (1)

where Fcu is the cube compressive strength of concrete and can be calculated using Fcu = Fck + ∆F.
If Fck is less than 40 MPa, ∆F is given as 4 MPa. The material properties of steel components of the test
specimens are listed in Table 3, which were measured per ASTM A370 [15].
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Figure 3. Specimen identification.

Table 1. Details of test specimens.

Specimen Type of
Specimen

Steel Beam
Depth (mm)

Existence of
Web Openings

Location of
Main Rebars

Type of
Floor Deck

588-WF-X

Non-composite

588
No

N/A

N/A

505-TF-X-R1

505
Bottom

505-TF-O-R1

Yes505-TF-O-R2 Middle

390-TF-O-R1 390 Bottom

738-WFC-X-X-TD Fully composite 588 No N/A Truss deck

585-TFC-O-R1-DD 505 Yes Bottom Deep deck
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Table 2. Concrete material properties (unit: N/mm2).

Concrete Type Compressive Strength Modulus of Elasticity

Tube infilled concrete 29.8 27,474.5
Slab deck concrete 29.4 27,360.1

Table 3. Material properties of steel components (units: N/mm2, µm/m).

Component Yield Strength Ultimate Strength Yield Strain

Upper flange 328.3 513.3 1561.4
Web 399.9 541.6 1844.9

Lower tubular flange 456.5 537.6 1991.8
Main rebars 548.6 698.2 2676.2
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2.2. Test Setup

The schematic drawings of the test setup for the non-composite and fully composite specimens
are illustrated in Figure 6a,b, respectively. In all of the test specimens, the length of the span is 6 m,
and the distance from the loading point to the support is 2.1 m. Load was applied to each specimen
at a rate of 15 kN/min using a hydraulic cylinder with a maximum capacity of 1000 kN. The force
generated by the hydraulic cylinder was transmitted to the center of a steel frame, which was installed
to apply a two-point loading to the beam specimen. The distance between the two loading points
is 1800 mm. The magnitude of the loading was measured by a load cell attached to the bottom of
the cylinder, and the vertical displacement was monitored by a linear variable differential transducer
(LVDT) installed at the midspan of the beam. A number of strain gauges were attached in the region
near the span center as shown in the figure. The locations of the strain gauges for the non-composite
and fully composite specimens are illustrated in Figure 7a,b, respectively. The data measured by the
strain gauges at each loading stage are utilized to identify the location of the neutral axis, as discussed
in Section 4. A photo of the actual test setup is given in Figure 8.
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3. Flexural Strength Estimation

3.1. Non-Composite Specimens

In this section, the nominal flexural strength equations of the non-composite specimens at
construction stage are derived for two different cases, depending on the existence of openings in
the web. If no openings exist in the web, it is suggested that the smaller of the plastic moment (Mp)
and lateral torsional moment (MLTB) of the given construction stage section is taken as the nominal
flexural strength (Mn), as in the design of conventional wide flange sections. However, if openings
exist in the web, its yield moment (My) is taken as the nominal flexural strength. This is mainly
because the ultimate failure mode of the non-composite specimens is generally the local web buckling,
as discussed in Section 4.1. Similarly to this case, the Load and Resistance Factors Design (LRFD) of the
American Institute of Steel Construction (AISC) [16] recommends that the nominal flexural strength
of the composite beam section with noncompact web shape should be estimated based on its yield
moment. The test results in Section 4.1 confirm that this approach can accurately predict the flexural
strengths of the non-composite beams with web openings. It is assumed that the non-composite
specimens considered in this study satisfy the width/thickness ratio criteria provided in the LRFD
design specification for its upper flange and web components.

Figure 9 illustrates the three representative locations of the plastic neutral axis (PNA) for
the non-composite beam sections without web openings. The plastic moment estimation for these
three cases can be straightforwardly done as follows.
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(1) In case the plastic neutral axis exists at the web

The internal axial force for each component of the section can be computed as shown in Table 4.
In the equations of the table, Fy and Fy,re represent the yield strengths of steel plate components and
rebars, respectively. In addition, n and Are denote the number of rebars used and the area of a single
rebar, respectively. It is assumed that the contribution of concrete components subjected to tension
force is ignored. The location of the PNA (yPNA) for this case can be determined from the axial force
equilibrium condition expressed below:

CA f + CAw = TAw + Ttu f + Ttw + Ttb f + Tre. (2)

By using the PNA location determined from the above equation, the plastic moment of the given
composite section can be calculated by:

Mp = CA f × (yPNA −
t f
2 ) + CAw ×

(yPNA−t f )

2 + TAw × (hA−yPNA)
2 + Ttu f × (hA − yPNA + tu

2 )

+Ttw × (hA − yPNA + hu
2 ) + Ttb f × (H − yPNA − tu

2 ) + Tre × (H − yPNA − hre)
. (3)

Table 4. Internal force components in case the plastic neutral axis exists at the web.

Internal Axial Force Component Force Equation

Compression force at upper flange (CA f ) CA f = b f × t f × Fy
Compression force at web above PNA (CAw) CAw = tw × (yPNA − t f )× Fy

Tension force at web below PNA (TAw) TAw = tw × (hA − yPNA)× Fy
Tension force at upper flange of tube (Ttu f ) Ttu f = bu × tu × Fy

Tension force at web of tube (Ttw) Ttw = 2tu × (hu − 2tu)× Fy
Tension force at lower flange of tube (Ttb f ) Ttb f = bu × tu × Fy

Tension force at main rebars (Tre) Tre = n× Are × Fy.re

(2) In case the plastic neutral axis exists at the upper flange of the tube

The internal axial force for each component of the section can be computed as shown in Table 5.
The location of the PNA for this case can be determined from the axial force equilibrium condition
expressed below:

CA f + CAw + Ctu f = Ttu f + Ttw + Ttb f + Tre. (4)

By using the PNA location determined from the above equation, the plastic moment of the given
composite section can be calculated by:

Mp = CA f × (yPNA −
t f
2 ) + CAw × (yPNA − t f −

(hA−t f )

2 ) + Ctu f ×
(yPNA−hA)

2 + Ttu f × ( hA+tu−yPNA
2 )

+Ttw × (hA − yPNA + hu
2 ) + Ttb f × (H − yPNA − tu

2 ) + Tre × (H − yPNA − hre)
. (5)

Table 5. Internal force components in case the plastic neutral axis exists at the upper flange of the tube.

Internal Axial Force Component Force Equation

Compression force at upper flange (CA f ) CA f = b f × t f × Fy
Compression force at web (CAw) CAw = tw × (hA − t f )× Fy

Compression force at upper flange of tube above
PNA (Ctu f ) Ctu f = bu × (yPNA − hA)× Fy

Tension force at upper flange of tube below PNA
(Ttu f ) Ttu f = bu × (hA + tu − yPNA)× Fy

Tension force at web of tube (Ttw) Ttw = 2tu × (hu − 2tu)× Fy
Tension force at lower flange of tube (Ttb f ) Ttb f = bu × tu × Fy

Tension force at main rebars (Tre) Tre = n× Are × Fy.re
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(3) In case the plastic neutral axis exists at the web of the tube

The internal axial force for each component of the section can be computed as shown in Table 6.
It is assumed that the contribution of all concrete components to the flexural strength of the member
is ignored because only a small portion of concrete is subjected to compression force, as shown in
Figure 9c. The location of the PNA for this case can be determined from the axial force equilibrium
condition expressed below:

CA f + CAw + Ctu f + Ctw = Ttw + Ttb f + Tre. (6)

By using the PNA location determined from the above equation, the plastic moment of the given
composite section can be calculated by:

Mp = CA f × (yPNA −
t f
2 ) + CAw × (yPNA − t f −

(hA−t f )

2 ) + Ctu f × (yPNA − hA − tu
2 ) + Ctw × ( yPNA−hA−tu

2 )

+Ttw × (H−yPNA−tu
2 ) + Ttb f × (H − yPNA − tu

2 ) + Tre × (H − yPNA − hre)
. (7)

Table 6. Internal force components in case the plastic neutral axis exists at the web of the tube.

Internal Axial Force Component Force Equation

Compression force at upper flange (CA f ) CA f = b f × t f × Fy
Compression force at web (CAw) CAw = tw × (hA − t f )× Fy

Compression force at upper flange of tube (Ctu f ) Ctu f = bu × tu × Fy
Compression force at web of tube above PNA (Ctw) Ctw = 2tu × (yPNA − hA − tu)× Fy

Tension force at web of tube below PNA (Ttw) Ttw = 2tu × (H − yPNA − tu)× Fy
Tension force at lower flange of tube (Ttb f ) Ttb f = bu × tu × Fy

Tension force at main rebars (Tre) Tre = n× Are × Fy.re

The lateral torsional moment of the non-composite beam sections can be calculated by following
the procedure introduced in the LRFD specification. Since the composite beam proposed in this study
has a different cross-sectional shape from the conventional wide flange sections, the warping constant
(Cw) and torsional constant (J) need to be evaluated by the following equations:

Cw = a2 I1 + b2 I2, (8)

J =
b f t f

3

3
+

4× Ap
2

p/tu
, (9)

where several new variables in the above equations can be computed by

I1 =
t f×b f

3

12 , I2 = 2× ( tubu
3

12 + hutu
3

12 + tuhu × ( bu
2 −

tu
2 )

2
) + 2× (π×rre

4

2 + π × rre
2 × (( bu

8 )
2
+ ( 3×bu

8 )
2
)),

ρ =
I1

I1 + I2
, a = (1− ρ)× (H −

t f

2
− hu

2
), b = ρ× (H − tu

2
− hu

2
),

Ap = (bu − tu)× (hu − tu), p = 2× ((bu − tu) + (hu − tu)).

The yield moment of the non-composite beam section with web openings illustrated in Figure 10
can be computed by determining the location of the elastic neutral axis (yNA) as follows:

yNA =
∑ Ay
∑ A

, (10)
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where

∑ Ay = b f t f ×
t f
2 + tw(hA − t f − hh)×

(hA+t f−hh)

2 + butu × (hA + tu
2 ) + 2(hu − 2tu)tu × (hA + hu

2 )

+butu × (H − tu
2 )+nAre × (H − hre),

and ∑ A = b f t f + tw(hA − t f − hh) + 2butu + 2(hu − 2tu)tu + nAre.

From this equation, the moment of inertia of the entire composite section (IT) can be written as:

IT =
b f t f

3

12 + b f t f × (yNA −
t f
2 )

2
+

tw(hA−t f−hh)
3

12 + tw(hA − t f − hh)× (yNA −
hA+t f−hh

2 )
2

+ butu
3

12 + butu × (yNA − hA − tu
2 )

2
+ 2× ( tu(hu−2tu)

3

12 + (hu − 2tu)tu × (yNA − hA − hu
2 )

2
)

+ butu
3

12 + butu × (yNA − H + tu
2 )

2
+ n× (π×rre

4

4 + π × rre
2 × (H − hre)

2)

. (11)

Finally, the yield moment can be expressed as:

My =
Fy IT

ymax
, (12)

where ymax is the larger of the distances from the elastic neutral axis to the top and bottom of the
section. In the derivation of Equation (12), it is assumed that the rebars have a higher yield strength
than that of steel plate components, thus yielding first occurs at the top or bottom fiber of the section.
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Figure 10. Cross-sectional shape of the non-composite beam with web openings.

3.2. Fully Composite Specimens

This section presents the nominal flexural strength equations of the fully composite beam with
floor deck components. Since the concrete and steel components of the fully composite specimens
can be integrated into a single unity due to the existence of the web openings, its plastic moment can
be taken as the nominal flexural strength, as discussed in Section 4.2. Figure 11 illustrates the three
representative locations of the plastic neutral axis for this section without web openings. As in the
LRFD specification, the effective width of slab concrete can be determined as the smaller of the distance
between the centers of adjacent slabs and span length if slabs exist on both sides of the composite
beam. The plastic moments for the three cases can be straightforwardly calculated as follows.
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(b) at the upper flange; (c) below the upper flange.

(1) In case the plastic neutral axis exists above the upper flange

The internal axial force for each component of the section can be computed as shown in Table 7.
In the equations of the table, Fck is the compressive strength of concrete. It is assumed that the
contribution of concrete components subjected to tension force is ignored. The location of the PNA
(yPNA) for this case can be determined from the axial force equilibrium condition expressed below:

Cconc = TA f + TAw + Ttu f + Ttuw + Ttb f + Tre. (13)
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By using the PNA location determined from the above equation, the plastic moment of the given
composite section can be calculated by:

Mp = Cconc × ( yPNA
2 ) + TA f × (ltc − yPNA + tu

2 ) + TAw × (ltc − yPNA + t f +
hA
2 )

+Ttu f × (ltc − yPNA + t f + hA + tu
2 ) + Ttuw × (ltc − yPNA + t f + hA + hu

2 )

+Ttb f × (ltc − yPNA + t f + H − tu
2 ) + Tre × (ltc − yPNA + t f + H − hre)

. (14)

Table 7. Internal force components in case the plastic neutral axis exists above the upper flange.

Internal Axial Force Component Force Equation

Concrete compression force above PNA (Cconc) Cconc = bc × yPNA × 0.85Fck
Tension force at upper flange (TA f ) TA f = b f × t f × Fy

Tension force at web (TAw) TAw = hA × tw × Fy
Tension force at upper flange of tube (Ttu f ) Ttu f = bu × tu × Fy

Tension force at web of tube (Ttw) Ttw = 2tu × (hu − 2tu)× Fy
Tension force at lower flange of tube (Ttb f ) Ttb f = bu × tu × Fy

Tension force at main rebars (Tre) Tre = n× Are × Fy.re

(2) In case the plastic neutral axis exists at the upper flange

The internal axial force for each component of the section can be computed as shown in Table 8.
The location of the PNA for this case can be determined from the axial force equilibrium condition
expressed below:

Cconc + CA f = TA f + TAw + Ttu f + Ttw + Ttb f + Tre. (15)

By using the PNA location determined from the above equation, the plastic moment of the given
composite section can be calculated by:

Mp = Cconc × ( yPNA
2 ) + CA f × ( yPNA−ltc

2 ) + TA f × (
ltc+t f−yPNA

2 ) + TAw × (ltc − yPNA + t f +
hA
2 )

+Ttu f × (ltc − yPNA + t f + hA + tu
2 ) + Ttw × (ltc − yPNA + t f + hA + hu

2 )

+Ttb f × (ltc − yPNA + t f + H − tu
2 ) + Tre × (ltc − yPNA + t f + H − hre)

. (16)

Table 8. Internal force components in case the plastic neutral axis exists at the web.

Internal Axial Force Component Force Equation

Concrete compression force above PNA (Cconc) Cconc = bc × yPNA × 0.85Fck
Compression force at upper flange above PNA (CA f ) CA f = b f × (yPNA − ltc)× Fy

Tension force at upper flange below PNA (TA f ) TA f = b f × (ltc + t f − yPNA)× Fy
Tension force at web (TAw) TAw = hA × tw × Fy

Tension force at upper flange of tube (Ttu f ) Ttu f = bu × tu × Fy
Tension force at web of tube (Ttw) Ttw = 2tu × (hu − 2tu)× Fy

Tension force at lower flange of tube (Ttb f ) Ttb f = bu × tu × Fy
Tension force at main rebars (Tre) Tre = n× Are × Fy.re

(3) In case the plastic neutral axis exists below the upper flange

The internal axial force for each component of the section can be computed as shown in Table 9.
The location of the PNA for this case can be determined from the axial force equilibrium condition
expressed below:

Cconc + CA f + CAw = TAw + Ttu f + Ttw + Ttb f + Tre. (17)
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By using the PNA location determined from the above equation, the plastic moment of the given
composite section can be calculated by:

Mp = Cconc × ( yPNA
2 ) + CA f × (yPNA − ltc −

t f
2 ) + CAw × (

yPNA−ltc−t f
2 ) + TAw × (

ltc+t f +hA−yPNA
2 )

+Ttu f × (ltc − yPNA + t f + hA + tu
2 ) + Ttw × (ltc − yPNA + t f + hA + hu

2 )

+Ttb f × (ltc − yPNA + t f + H − tu
2 ) + Tre × (ltc − yPNA + t f + H − hre)

. (18)

Table 9. Internal force components in case the plastic neutral axis exists below the upper flange.

Internal Axial Force Component Force Equation

Concrete compression force above PNA (Cconc) Cconc = bc × yPNA × 0.85Fck
Compression force at upper flange (CA f ) CA f = b f × t f × Fy

Compression force at web above PNA (CAw) CAw = tw × (yPNA − ltc − t f )× Fy
Tension force at web below PNA (TAw) TAw = tw × (ltc + t f + hA − yPNA)× Fy

Tension force at upper flange of tube (Ttu f ) Ttu f = bu × tu × Fy
Tension force at web of tube (Ttw) Ttw = 2tu × (hu − 2tu)× Fy

Tension force at lower flange of tube (Ttb f ) Ttb f = bu × tu × Fy
Tension force at main rebars (Tre) Tre = n× Are × Fy.re

4. Test Results and Discussion

4.1. Non-Composite Specimens

Table 10 summarizes the flexural strengths of the five non-composite specimens by the theoretical
estimation and test and their ultimate failure modes. Their nominal flexural strengths are estimated
using the strength equations provided in Section 3.1. In order to take into account the effect of the
self-weight of the specimens on the test results, the adjusted nominal flexural strengths are calculated
by subtracting the moment by the self-weight from the nominal flexural strengths. These are in turn
compared with the maximum moments obtained from the test results, and the ratios of the latter to
the former are also provided in the table. In Figure 12, the load versus displacement curves of the
five specimens are presented, and the peak load point of each curve is represented by an empty circle.
The photos showing the ultimate failure mode of each specimen are given in Figure 13.

Table 10. Test results of the non-composite specimens.

Specimen

Theoretical Estimation (kN·m) Test Results (kN·m)

Ratio of
(2) to (1) (%)

Nominal
Flexural
Strength

Moment by
Self-Weight

Adjusted
Nominal Flexural

Strength (1)

Maximum
Moment (2) Ultimate Failure Mode

588-WF-X 1479.2 6.5 1472.7 1806.5 Bending failure + Local
flange buckling 122.7

505-TF-X-R1 1397.3 10.0 1387.3 1660.3 Bending failure + Local
flange buckling 119.7

505-TF-O-R1 1052.0 9.7 1042.3 1256.3 Web local buckling 120.5

505-TF-O-R2 977.0 9.7 967.3 1191.0 Web local buckling 123.1

390-TF-O-R1 744.5 9.2 735.3 858.3 Web local buckling 116.7
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Figure 12. Load versus displacement curves of the non-composite specimens.

It can be noted from these results that the ultimate failure modes of the non-composite specimens
without web openings are mainly characterized by bending failure, while those of the non-composite
specimens with web openings are mainly characterized by web local buckling failure. This justifies
the theoretical flexural strength estimations of Section 3.1, where the flexural strengths of the
non-composite specimens without and with web openings are based on the plastic and yield moments,
respectively. The ratios of the experimental and theoretical flexural strengths of the specimens ranges
from approximately 117% to 123%, which confirms the effectiveness of the strength equations derived
in Section 3.1. In addition, it can be seen that the proposed non-composite beam section is highly
resistant to lateral torsional buckling due to the existence of its lower tubular flange since no lateral
torsional buckling failure occurred in the test specimens.
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Figure 13. Ultimate failure modes of the non-composite specimens: (a) 588-WF-X; (b) 505-TF-X-R1;
(c) 505-TF-O-R1; (d) 505-TF-O-R2; (e) 390-TF-O-R1.

Figure 14 displays the normal strain distributions at span center of the five non-composite
specimens at several different loading stages, which correspond to the measured vertical displacements
of 10 mm, 20 mm, and 50 mm and at peak load, respectively. The locations of neutral axes at failure
by the test result and theoretical estimation of Section 3.1 are listed in Table 11 and also indicated in
the figure. The results in the table indicate that their ratios range from approximately 87% to 111%,
which confirms that the theoretical estimation is able to accurately predict the location of neutral axis
at failure as well.



Appl. Sci. 2017, 7, 57 15 of 19

Appl. Sci. 2017, 7, 57 14 of 19 

  
(c) 

  

(d) 

  
(e) 

Figure 13. Ultimate failure modes of the non-composite specimens: (a) 588-WF-X; (b) 505-TF-X-R1; (c) 

505-TF-O-R1; (d) 505-TF-O-R2; (e) 390-TF-O-R1. 

Figure 14 displays the normal strain distributions at span center of the five non-composite 

specimens at several different loading stages, which correspond to the measured vertical 

displacements of 10 mm, 20 mm, and 50 mm and at peak load, respectively. The locations of neutral 

axes at failure by the test result and theoretical estimation of Section 3.1 are listed in Table 11 and also 

indicated in the figure. The results in the table indicate that their ratios range from approximately 87% 

to 111%, which confirms that the theoretical estimation is able to accurately predict the location of 

neutral axis at failure as well. 

  

0

100

200

300

400

500

-30000-20000-100000100002000030000

Strain (μm/m)

Distance from bottom(mm)

D=10mm

D=20mm

D=50mm

Disp. at 

peck load

Test

Theory

Neutral Axis

0

100

200

300

400

500

-20000-15000-10000-50000500010000

Strain (μm/m)

Distance from bottom(mm)

D=10mm

D=20mm

D=50mm

Disp. at 

peck load

Test

Theory

Neutral Axis

Appl. Sci. 2017, 7, 57 15 of 19 

(a) 588-WF-X. (b) 505-TF-X-R1. 

  
(c) 505-TF-O-R1. (d) 505-TF-O-R2. 

 
(e) 390-TF-O-R1. 

Figure 14. Measured strain distributions of the non-composite specimens. 

Table 11. Locations of neutral axis at failure of the non-composite specimens. 
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Theory (1) Test (2) 
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505-TF-O-R1 254.7 261.0 102.5 

505-TF-O-R2 247.7 273.9 110.6 

390-TF-O-R1 196.8 172.3 87.6 

4.2. Fully Composite Specimens 

Similar to the case of the non-composite specimens in Section 4.1, Table 12 summarizes the 

flexural strengths of the two fully composite specimens by theoretical estimation and testing and 
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fully composite specimens, and the ultimate failure mode of each specimen is shown in Figure 16.  
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from the trend of the load–displacement curve in Figure 15, it is expected that the experimental 
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Figure 14. Measured strain distributions of the non-composite specimens.

Table 11. Locations of neutral axis at failure of the non-composite specimens.

Specimen
Location of Neutral Axis at Failure (mm)

Ratio of (2) to (1) (%)
Theory (1) Test (2)

588-WF-X 294.0 272.4 92.7
505-TF-X-R1 387.3 335.9 86.7
505-TF-O-R1 254.7 261.0 102.5
505-TF-O-R2 247.7 273.9 110.6
390-TF-O-R1 196.8 172.3 87.6

4.2. Fully Composite Specimens

Similar to the case of the non-composite specimens in Section 4.1, Table 12 summarizes the flexural
strengths of the two fully composite specimens by theoretical estimation and testing and their ultimate
failure modes. Their nominal flexural strengths are calculated using the strength equations provided in
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Section 3.2. Figure 15 plots the load versus displacement curves of the two fully composite specimens,
and the ultimate failure mode of each specimen is shown in Figure 16.

These results indicate that the ultimate failure mode of the reference specimen (738-WFC-X-X-TD)
is bending failure, while that of the composite specimen with lower tubular flange (585-TFC-O-R1-DD)
is premature concrete crushing in the region of the loading point. However, as can be seen from
the trend of the load–displacement curve in Figure 15, it is expected that the experimental flexural
strength of specimen 585-TFC-O-R1-DD would have been much higher if the region near the loading
point of the specimen had been properly reinforced to prevent the premature concrete bearing failure.
In addition, it can be emphasized that the experimental flexural strengths of the two specimens do not
show much difference, although the reference specimen with the conventional wide flange section
has an almost 26% higher total depth than that of the composite specimen with lower tubular flange
proposed in this study.

Figure 17 presents the normal strain distributions at the span center of the two fully composite
specimens. The locations of neutral axes at peak load by the test result and theoretical estimation of
Section 3.2 are listed in Table 13. These results indicate that the neutral axis locations by the test and
theory coincide well with each other in the case of the reference specimen, but they do not in the fully
composite specimen with tubular lower flange. This seems to happen because the cross section of the
latter did not fully yield at the peak load level.

Table 12. Test results of the fully composite specimens.

Specimen

Theoretical Estimation (kN·m) Test Results (kN·m)

Ratio of
(2) to (1) (%)

Nominal
Flexural
Strength

Moment by
Self-Weight

Adjusted
Nominal Flexural

Strength (1)

Maximum
Moment (2) Ultimate Failure Mode

738-WFC-X-X-TD 2350.1 31.4 2318.7 2496.0 Bending failure 107.6
585-TFC-O-R1-DD 2288.2 42.1 2246.1 2138.6 Concrete bearing failure 95.2

Appl. Sci. 2017, 7, 57 16 of 19 

specimens do not show much difference, although the reference specimen with the conventional wide 

flange section has an almost 26% higher total depth than that of the composite specimen with lower 

tubular flange proposed in this study. 

Figure 17 presents the normal strain distributions at the span center of the two fully composite 

specimens. The locations of neutral axes at peak load by the test result and theoretical estimation of 

Section 3.2 are listed in Table 13. These results indicate that the neutral axis locations by the test and 

theory coincide well with each other in the case of the reference specimen, but they do not in the fully 

composite specimen with tubular lower flange. This seems to happen because the cross section of the 

latter did not fully yield at the peak load level. 

Table 12. Test results of the fully composite specimens. 

Specimen 

Theoretical Estimation (kN·m) Test Results (kN·m) 

Ratio of (2) 

to (1) (%) 

Nominal 

Flexural 

Strength 

Moment 

by Self-

Weight 

Adjusted 

Nominal 

Flexural 

Strength (1) 

Maximum 

Moment (2) 
Ultimate Failure Mode 

738-WFC-X-X-TD 2350.1 31.4 2318.7 2496.0 Bending failure 107.6 

585-TFC-O-R1-DD 2288.2 42.1 2246.1 2138.6 Concrete bearing failure 95.2 

 

Figure 15. Load versus displacement curves of the fully composite specimens. 

  
(a) 

  

0

500

1000

1500

2000

2500

0 50 100 150 200 250

738-WFC-X-X-TD

585-TFC-O-R1-DD

Point of peak load

M
o
m

e
n

t 
(k

N
-m

)

Displacement (mm)

Figure 15. Load versus displacement curves of the fully composite specimens.



Appl. Sci. 2017, 7, 57 17 of 19

Appl. Sci. 2017, 7, 57 17 of 19 

  
(a) 

  
(b) 

Figure 16. Ultimate failure modes of the fully composite specimens: (a) 738-WFC-X-X-TD; (b) 585-

TFC-O-R1-DD. 

Table 13. Locations of neutral axis at failure of the fully composite specimens. 

Specimen 
Location of Neutral Axis at Failure (mm) 

Ratio of (2) to (1) (%) 
Theory (1) Test (2) 

738-WFC-X-X-TD 154.9 152.6 98.5 

585-TFC-O-R1-DD 98.8 166.3 168.3 

 

  
(a) (b) 

Figure 17. Measured strain distributions of the fully composite specimens: (a) 738-WFC-X-X-TD; (b) 

585-TFC-O-R1-DD. 

5. Conclusions 

In this study, we proposed a new steel concrete composite beam that has a similar shape to the 

conventional steel wide flange beam, but whose lower flange has a tubular shape with infilled 

concrete. The bending capacity of the new composite beam was investigated by performing a two-

point loading test on seven specimens, which can be categorized mainly into two types, non-

composite and fully composite specimens. The load versus displacement curves were plotted for all 

the specimens and their failure modes were identified. Theoretical equations to estimate the flexural 

strengths of the new composite beam members were proposed and their accuracy was examined by 

0

100

200

300

400

500

600

700

-500005000100001500020000

Test

Theory

Neutral Axis

D=10mm

D=20mm

D=50mm

Disp. at 

peck load

Strain (μm/m)

Distance from bottom(mm)

0

100

200

300

400

500

-20000200040006000

Test

Theory

Neutral Axis

D=10mm

D=20mm

D=50mm

Disp. at 

peck load

Strain (μm/m)

Distance from bottom(mm)

Figure 16. Ultimate failure modes of the fully composite specimens: (a) 738-WFC-X-X-TD;
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Figure 17. Measured strain distributions of the fully composite specimens: (a) 738-WFC-X-X-TD;
(b) 585-TFC-O-R1-DD.

Table 13. Locations of neutral axis at failure of the fully composite specimens.

Specimen
Location of Neutral Axis at Failure (mm)

Ratio of (2) to (1) (%)
Theory (1) Test (2)

738-WFC-X-X-TD 154.9 152.6 98.5
585-TFC-O-R1-DD 98.8 166.3 168.3

5. Conclusions

In this study, we proposed a new steel concrete composite beam that has a similar shape to the
conventional steel wide flange beam, but whose lower flange has a tubular shape with infilled concrete.
The bending capacity of the new composite beam was investigated by performing a two-point loading
test on seven specimens, which can be categorized mainly into two types, non-composite and fully
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composite specimens. The load versus displacement curves were plotted for all the specimens and
their failure modes were identified. Theoretical equations to estimate the flexural strengths of the
new composite beam members were proposed and their accuracy was examined by comparing the
predictions of the equations with the test results. The main conclusions of this paper are as follows:

(1) The proposed composite beam with lower tubular flange can have almost equal flexural strength
to that of a composite beam with a conventional wide flange at the fully composite stage, although
the latter has an almost 26% higher total depth. Consequently, the proposed composite beam is
highly effective in reducing the floor height.

(2) The nominal flexural strength of the proposed composite beam at fully composite stage can be
determined based on its plastic moment. The theoretical estimations based on this assumption
predicted the experimental results well.

(3) The nominal flexural strength of the proposed composite beam at the construction stage can be
determined based on its yield moment since its ultimate failure mode was generally local web
buckling. However, if it does not have any openings in the web, its plastic moment can be taken
as the nominal flexural strength, and it is highly resistant to lateral torsional buckling due to the
existence of the lower tubular flange.
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