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Abstract: The optimized dispatch of different distributed generations (DGs) in stand-alone microgrid
(MG) is of great significance to the operation’s reliability and economy, especially for energy crisis and
environmental pollution. Based on controllable load (CL) and combined cooling-heating-power
(CCHP) model of micro-gas turbine (MT), a multi-objective optimization model with relevant
constraints to optimize the generation cost, load cut compensation and environmental benefit is
proposed in this paper. The MG studied in this paper consists of photovoltaic (PV), wind turbine
(WT), fuel cell (FC), diesel engine (DE), MT and energy storage (ES). Four typical scenarios were
designed according to different day types (work day or weekend) and weather conditions (sunny
or rainy) in view of the uncertainty of renewable energy in variable situations and load fluctuation.
A modified dispatch strategy for CCHP is presented to further improve the operation economy
without reducing the consumers’ comfort feeling. Chaotic optimization and elite retention strategy
are introduced into basic particle swarm optimization (PSO) to propose modified chaos particle
swarm optimization (MCPSO) whose search capability and convergence speed are improved greatly.
Simulation results validate the correctness of the proposed model and the effectiveness of MCPSO
algorithm in the optimized operation application of stand-alone MG.

Keywords: stand-alone microgrid; multi-scenario; modified chaos particle swarm optimization;
combined cooling-heating-power; multi-objective optimization

1. Introduction

Under the dual pressures of global energy crisis and environmental pollution [1], distributed
generations (DGs) have received more and more attention for its advantages of low pollution, high
efficiency and flexible installation site [2–4]. DGs include micro-gas turbine (MT), diesel engine (DE),
fuel cell (FC), photovoltaic (PV), wind turbine (WT), small hydropower and some energy-saving
technologies, such as flywheels, super capacitors and accumulators [5]. However, the uncontrollability
and fluctuation of DGs have caused certain impact to the connected distribution network [6], especially
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the renewable power generation, such as PV [7–10] and WT [11–14]. With the growing penetration of
DGs, the negative impact on power grid operation is also increasingly prominent [15].

Microgrid (MG) is an autonomous system that can realize self-control, self-protection and
self-management. It could operate interconnected with the utility grid or in an islanded mode [16]
managing all kinds of DGs effectively at the same time [17]. MGs create a good environment for DGs’
development with the abilities to improve the power quality and reduce the loss of high-voltage network.

To decrease the economic costs and improve the environmental benefits, the optimal dispatch
has gained more and more attention [18]. Different optimization models were proposed for MGs
with diverse constitutions [19]. Michael Ross put forward a dispatch model with consideration of
cost, reliability of service, power fluctuation, peak loading and greenhouse gas emissions [20], but the
CL was not considered while demand side is receiving increasing concerns with the development
of demand response (DR) these years [21,22]. H. Vahedi applied the optimization model in a certain
scenario and got the power output of every micro resource in each period [23]. However, the basic
data from various operation environments would impact the performance of algorithm and model.
Consequently, single scenario cannot verify the adaptation of the algorithm and model. Zhejing Bao
established a day-ahead scheduling model, which combined MT’s combined cooling-heating-power
(CCHP) mode with ice-storage air-conditioners [24]. The electricity power output of MTs is only
decided by the thermal or cooling load. To make full use of the CCHP to improve the whole benefit of
the MG system, this paper proposed a modified strategy for MT to operate in a more economical way.
The MG in this paper consists of six different kinds of DGs since the structure with multi-type micro
resources could further enhance the complementarity between various types of energy.

Particle swarm optimization (PSO) is a stochastic, population-based evolutionary algorithm
and has embraced popularity in the optimized operation of MG because of their advantages of
few constraints on fitness function, simple principle, easy coding and rapid convergence speed [25].
However, basic PSO algorithm is easy to fall into local optimum due to the problem of premature [26].
In order to overcome the problems of premature and poor local search performance in PSO, this paper
introduced chaotic optimization and elite retention strategy into PSO to present modified chaos particle
swarm optimization (MCPSO). The validity and feasibility of the proposed algorithm were proved by
simulation results.

The rest part of this paper is organized as follows. In Section 2, the optimization model of MG
is presented in detail. In Section 3, the proposed MCPSO is presented and the steps of the algorithm
are listed step by step. In Section 4, the case study is conducted to verify the proposed model and
algorithm, while at the same time the simulation results are discussed. Finally, the conclusion is given
in Section 5.

2. Optimization Model of Stand-Alone MG

2.1. An Overview of MG

MG could be defined as an integrated distribution system composed of various DGs, different
types of loads and other protection or management modules [27]. Figure 1 shows a typical structure of
MG, which connects to the external grid through the point of common coupling (PCC). If the PCC
operates on connected status, the system is called grid-connected MG that is able to exchange electricity
power with external bulk grid. Otherwise, the system is called a stand-alone MG whose power balance
must be maintained by itself. The AC bus contacts the DGs (PV, WT, DE and energy storage (ES) in
this MG) and the electric equipment in this system, ensuring the power generation and consumption.
Usually, ES system and controllable DGs such as DE, MT and FC should be integrated into the MG
except the renewable power generation in order to guarantee the crucial loads to be powered under
extreme situations where the renewable energy output is very low or a fault occurs in external grid.
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2.2. The CCHP Model of MT 

Generally, MT is inefficient unless operating in CCHP mode. The model adopted in this paper 
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where CMT is the fuel cost of MT in operation time, Cnl is the natural gas price to supply MT,  
PMT represents the electrical power produced by MT and ηMT stands for the efficiency of MT. 

CCHP system is consisted of generation module and heat recovery module, and the latter is 
further divided into absorption chiller (APC) and heat-exchanging system (HES). The generation, 
APC and HES modules export electricity, cold and heat energy, respectively. The structure is shown 
in Figure 2. 
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and ηC.REC stand for the heating and cooling efficiency while ωH and ωC are the heating and 
refrigeration coefficient. 

Figure 1. Typical structure of a microgrid (MG). PCC: point of common coupling.

2.2. The CCHP Model of MT

Generally, MT is inefficient unless operating in CCHP mode. The model adopted in this paper for
MT is:

CMT = Cnl ×
PMT
ηMT

(1)

where CMT is the fuel cost of MT in operation time, Cnl is the natural gas price to supply MT,
PMT represents the electrical power produced by MT and ηMT stands for the efficiency of MT.

CCHP system is consisted of generation module and heat recovery module, and the latter is
further divided into absorption chiller (APC) and heat-exchanging system (HES). The generation,
APC and HES modules export electricity, cold and heat energy, respectively. The structure is shown in
Figure 2.
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Figure 2. The structure of micro-gas turbine’s (MT’s) combined cooling-heating-power (CCHP) mode.
APC: absorption chiller; HES: heat-exchanging system.

The energy relationship contained in the heat recovery module could be described by Formulas (2)–(4).

QMT.E =
PMT
ηMT

(1− ηMT − ηl) (2)

QH = QMT.EηH.RECωH (3)

QC = QMT.EηC.RECωC (4)

where QMT.E, QH and QC represent the residual heat of exhaust, heating and cooling capacity
provided by the residual heat of exhaust severally, ηl is the heat loss factor of CCHP system,
ηH.REC and ηC.REC stand for the heating and cooling efficiency while ωH and ωC are the heating
and refrigeration coefficient.
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Models of PV, WT, FC, DE and ES refer to [28–30].

2.3. Objective Function

The optimized operation of MG is a multi-objective and multi-constraint optimization problem.
This paper adopted the daily scheduling model which divided one day into 24 periods equally, and the
load and renewable energy output were assumed to be constant in each dispatch period.

2.3.1. Operation and Maintenance Cost

The operation and maintenance cost is assumed to be proportional to the output of micro resources.
Assuming that the WT and PV module have little operation and maintenance cost, the sub-objective
can be expressed by:

S1(t) =
Q

∑
m=1

(Cm(Pm(t)) + Km × Pm(t)× ∆t) + KH × PH(t)× ∆t + KC × PC(t)× ∆t (5)

where S1(t) is the operation and maintenance cost of the whole MG, Pm(t) and Cm(Pm(t)) are the
electricity output and fuel cost of micro resource m in the tth dispatch period respectively. Km, KH, KC
are the maintenance factors of micro resource m, HES and APC modules, PH(t) and PC(t) are the heat
power generated by HES and the cooling power generated by AC severally, ∆t is the dispatch interval
time, which is 1 h in this paper.

2.3.2. Pollutant Disposal Cost

MT, DE and FC would discharge NOX, CO2, SO2 and other environmental pollutants in the
generation process. Emission coefficients of pollutants are diverse for different generation units while
different pollutants will cause various environmental impacts. In this paper, the environmental benefit
was considered by the following conversion formulation:

S2(t) =
Q

∑
m=1

P

∑
n=1

ξn × Amn × Pm(t)× ∆t (6)

where S2(t) is the pollutant disposal cost of the whole MG, ξn represents the conversion coefficient
for different pollutants (NOX, CO2, SO2), Amn is the discharge quantity of pollutant n when micro
resource m lets out unit electricity power, P is the number of pollutant types while Q is the number of
generation units.

2.3.3. Load Cut Compensation

To make use of demand side and further improve the operation reliability, CL was taken into
account, which could also act as an auxiliary adjustment means for power balance in emergency
circumstances. The load cut compensation corresponds to the reliability cost of MG. Generally, it is
measured by the product of the expected energy not supplied (EENS) and unit interruption cost
(UIC). In this study, the EENS was the load cut quantity which had considered the actual operation
economy and reliability conditions of the whole MG, the corresponding compensatory costs S3(t) can
be expressed by:

S3(t) = PEL.c(t)× c(t) (7)

where PEL.c(t) is the actual load cut power in different dispatch period and c(t) is the UIC of MG.
Therefore, the established multi-objective optimization model could be described as:

min F(t) = {S1(t), S2(t), S3(t)} (8)
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Since all the sub-goals have been transformed into cost, the multi-objective model could be
converted to a single-objective model:

min f (t) = S1(t) + S2(t) + S3(t) (9)

The optimization model aims to develop a 24-h dispatching scheme of various distributed
resources in the stand-alone MG to minimize the total cost while meeting the electricity, heat and
cooling demand of customers.

2.4. Operation Constraint

Constraints such as security, reliability and power quality must be achieved in the optimized
operation of MG.

2.4.1. Power Balance Constraint

Q

∑
m=1

Pm(t) = PE.L(t)− PEL.c(t) (10)

PH(t) = PH.L(t) (11)

PC(t) = PC.L(t) (12)

where PE.L(t), PH.L(t) and PC.L(t) are the electricity, thermal and cooling load of the MG respectively,
PH(t) and PC(t) represent the heat and cold energy generated by CCHP module.

2.4.2. Output Constraint

Pm.min ≤ Pm(t) ≤ Pm.max (13)

where Pm.min and Pm.max are the minimum and maximum output power of generation unit m, respectively.

2.4.3. Ramp Up/Down Rate Constraint

Pm(t)− Pm(t− 1) ≤ Rup∆t (14)

Pm(t− 1)− Pm(t) ≤ Rdown∆t (15)

where Pm(t) and Pm(t − 1) represent the power of generation m in current and last dispatch interval,
Rup and Rdown stand for the ramp up and down rate of micro resource m, respectively.

2.4.4. Battery Operation Constraint

BSOC.min<BSOC(t)<BSOC.max (16)

− ηSB.C × λCSB ≤ PSB(t) ≤ ηSB.D × λDSB (17)

where BSOC(t), PSB(t) are the state of charge (SOC) and output power of battery in the tth dispatch
period, Bsoc.min and Bsoc.max represent the minimum and maximum SOC while ηSB.C and ηSB.D are the
charge/discharge efficiency for the battery, λC and λD stand for the maximum charging/discharging
proportion in one hour, and SB is the capacity of the battery.

2.4.5. Load Cut Constraint

PEL.C(t) ≤ Pcut.max (18)
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where Pcut.max is the upper limit of load cut quantity, which is determined by the actual system.

2.5. Modified CCHP Dispatch Strategy

Generally, the electric power output from MT is determined by the thermal or cooling load of
the whole MG. In this case, the output of MT is transformed from a decision variable to a constant
value. Therefore, the optimization model is simplified and the effect produced by MT to operation
performance is weakened. Based on the fact that little variation (5% in this paper) in environmental
parameters will not have a great impact on people’s comfort feeling, this paper proposed a modified
dispatch strategy for MT’s CCHP mode, which is shown in Figure 2 (Take the situation of thermal load
for example). The basic electricity power is determined by thermal load (TL), while the upper limit
increases 5% and lower limit decreases 5% since the variation margin in environmental parameters.
The column in Figure 3 represents the adjustable range of MT’s electric power.
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3. Modified Chaos Particle Swarm Optimization

For multi-objective optimization problem, it is best to find the absolute optimal solution. However,
sub-goals are often contradictory and the absolute optimal solution does not exist. Considering that
the model has been transformed into single-objective optimization, this paper proposed MCPSO to
solve the model.

3.1. Basic PSO

PSO is a metaheuristic intelligence algorithm based on population search [31]. Figure 4 shows
the optimization search principle of PSO. Individuals update their velocity vectors according to their
own speed, individual optimal solution pbest and population optimal solution gbest converge to global
optimal solution during iteration. The jth dimension of the velocity and position for particle i at
moment t are updated as follows:

vi,j(t + 1) = g× vi,j(t) + s1 × rand1 ×
(

pi,j − xi,j(t)
)
+ s2 × rand2 ×

(
pg,j − xi,j(t)

)
(19)

xi,j(t + 1) = xi,j(t) + vi,j(t + 1), j = 1, 2 . . . . . . d (20)

where g is the inertia weight representing the velocity component inherited from the original velocity,
s1 and s2 are learning factors while rand1 and rand2 are random numbers between 0~1, d is the
dimension of the optimization model, pi,j and pg,j stand for the individual and population optimal
solution, respectively.
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PSO can approach the optimal solution at a relatively fast convergence speed, because the
individuals can make full use of their experience and the group’s experience. In this paper, load
control and multi-scenario were considered. More decision variables and constraints, and intricate
data in variable scenarios made the model complicated. As a result, for PSO, the problems of
premature, poor local research ability and slow convergence speed in the later iteration appeared.
However, the optimized scheduling of MG requires not only a faster running speed to meet dispatch
timeliness, but also the global convergence capacity to satisfy the dispatch accuracy. Reasonable
modification is urgent to be adopted to improve the performance of basic PSO.

3.2. Chaotic Optimization

Generally, the random state of motion obtained from deterministic equations is called chaos.
The chaotic state widely exists in natural and social phenomenon, especially in nonlinear system,
with its behaviors being complex and similar to random. However, the seemingly chaotic process is
not completely chaotic, there is a fine internal regularity [32]. Chaos optimization is novel because
the randomness and ergodicity of chaos could realize local deep search by searching the space near
superior individuals even without requirement for the continuity and differentiable properties of the
objective function. Consequently, the premature phenomenon will be prevented in this case. The basic
idea for chaos to avoid falling into local optimum is to map the chaotic variables linearly into the space
of the optimal variables [33]. Also, the traversal range of the chaotic motion is enlarged to the range
of the optimization variables. Then the optimization search is completed by the generated chaotic
variables. The chaotic search steps in this paper are listed as follows:

(1) Assume h = 0, and map the decision variables zj
h, j = 1, 2, . . . , m into chaotic variables chh

j between
0 and 1 for every dimension of the solution, where zmax,j and zmin,j represent the upper and lower
search bounds of the jth dimension, m is the dimension number of solution.

chh
j =

zh
j − zmin,j

zh
j − zmax,j

, j = 1, 2 . . . . . . m (21)

(2) Calculate the chaotic variables of next iteration by the following formula:

chh+1
j = 4× chh

j

(
1− chh

j

)
, j = 1, 2 . . . . . . m (22)

(3) Transform chaotic variables chj
h+1 into decision variable zh+1

j .

zh+1
j = zmin,j + chh+1

j
(
zmax,j − zmin,j

)
, j = 1, 2 . . . . . . m (23)
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(4) Evaluate the new solution according to decision variable zh+1
j . If the new solution is better than

the initial or the chaotic search has reached the maximum iterations, the new solution will be the
result of chaos search, otherwise, set h = h + 1 and turn to the second step.

3.3. Elite Retention Strategy

Elite retention strategy preserves the optimal individual or part of excellent individuals in each
iteration, and replaces the worst individuals after next iteration. After this process, the optimal
solution is reserved, and the algorithm’s convergence speed is accelerated while the diversity of
particles is guaranteed.

In this paper, elite retention strategy was introduced into PSO. The first 20% of the best individuals
in each iteration will be chaos searched so as to further excavate the adaptability of excellent individuals
and enhance the local search ability. Then the top 10% of the best individuals will be reserved in each
iteration and replace the last 10% of the population in next-generation individuals. The proportion of
the relatively better individuals in the population is ensured.

3.4. Steps of MCPSO

Steps of the proposed MCPSO in this paper are given as follows while Figure 5 is the flowchart of
the algorithm:

(1) Initialize the position and velocity of each particle in the population.
(2) Evaluate the fitness of each particle; save current particles’ positions and fitness values into pbest of

each particle; save the position and fitness value of the optimal individual in current population
into gbest.

(3) Update the position and the speed of each particle.
(4) Calculate the objective function value of each particle; preserve the top 20% of the best individuals

with the best fitness values.
(5) Search the selected particles with chaos optimization; update pbest and gbest of the population.
(6) If the search accuracy is satisfied or the iteration number is reached, stop the search and output

the result, otherwise, turn to step 7.
(7) Regenerate the remaining 80% of the particles; calculate the fitness values and replace the last

10% of the individuals with the worst fitness by the top 10% of the good individuals obtained in
step 4 and transfer to step 2 then.
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4. Case Studies

4.1. The Framework of Stand-Alone MG

Figure 6 shows the structure of stand-alone MG adopted in this study. The total capacity of
battery is 50 kWh and the initial SOC is 50% of the total capacity. Other parameters for battery refer
to [34]. PV’s and WT’s rated power are assumed as 250 kW and 300 kW, respectively. Other parameters
such as rated power and maximal/minimal power of various DGs are listed in Table 1. The disposal
cost for different types of pollutants and the emission factors of MT, DE and FC are summarized
in Table 2 [35,36]. It should be noted that the whole simulation takes the situation of thermal load
for example.
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Table 1. Parameters of different distributed generations (DGs); MT: micro-gas turbine.

Type Pe (kW) Pmax/Pmin (kW) Rup/Rdown (kW/min) K ($/kWh)

DE 155 180/10 20 0.01258
FC 135 160/10 10 0.00419
MT 100 125/10 10 0.00587
ES 25 - - 0.01241

Table 2. Pollutant discharge coefficient.

Type Disposal Cost ($/lb) DE (lb/kWh) FC (lb/kWh) MT (lb/kWh)

NOx 4.2 2.18 × 10−2 3 × 10−5 4.4 × 10−4

SO2 0.99 4.54 × 10−4 6 × 10−6 8 × 10−6

CO2 0.014 1.43 × 10−3 1.078 × 10−3 1.596 × 10−3

4.2. Results Analysis

Considering the influence from the scenarios, this paper designed four types of scenarios:
sunny-working day, sunny-weekend, rainy-working day and rainy-weekend. Diverse characteristics
from diverse categories result in the data differences. Working day and weekend mainly cause the
differences in load demand because of people’s life style, while the weather property mainly affects
the output of WT and PV. The predicted load demand and renewable energy output in four scenarios
are shown in Figure 7. It is obvious that the load demand is higher on weekends because of more
activities and no work, and the output of PV in rainy days is evidently lower than that of sunny days
due to the weak sunshine. In comparison, the output of WT is not as regular as PV whose output
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concentrates in a certain period (8:00 a.m. to 6:00 p.m. usually) and not such influenced by weather
conditions. In other words, there are more fluctuations of WT’s power generation.Appl. Sci. 2017, 7, 754  10 of 15 
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Figure 7. The load demand and output prediction of renewable energy in four scenarios. OPBH: ordering
power by heat; EL: electric load.

MCPSO’s parameters setting are: the iteration of chaos search and MCPSO are 10 and 200,
respectively, the particle number is 30, inertia weight is 0.5 and the learning factors are both 2.
For renewable energy generations: PV module adopted maximum power point tracking (MPPT)
technology in all the dispatch periods. When the sum output of PV, WT and MT (ordering power by
heat, OPBH) are greater than the electric load demand, and the battery capacity has reached the upper
limit, WT was adjusted to track the actual electric load. For other situations, the WT module also
applied MPPT. The four models were solved severally to see the adaptation of the proposed algorithm.
The optimization results in different scenarios are shown in Figure 8. Apart from renewable energy
generations, the ES, MT, DE, FC and load demand were all dispatched as decision variables in the
optimized operation.
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Figure 8. The dispatch optimization results for MG in each period for four scenarios; LCQ: load cut quantity.

The proposed multi-objective model took load control into account for optimized operation.
Figure 9 displays the load control which corresponds to the load cut quantity (LCQ) in detail for
different scenarios. From the results, it could be found that the load control in sunny-working day
and rainy-working day scenarios concentrates in 1:00~7:00 and 19:00~24:00 periods for the most time.
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Compared with the load demand and renewable energy output in Figure 7, it can be found that the
load control mainly occurs in the period when the renewable power was lacking or the load demand
was relatively high. The reason is that for stand-alone MG, controllable DGs such as DE, FC and MT
are started to satisfy the load demand when the clean energy is insufficient in order to keep the power
balance. If the load compensation was lower than the generation cost of DGs and there were loads
that could participate in DR, the energy management system would cut off part of the unimportant
load under the guidance of the economic purpose. In contrast, the load control in sunny-weekend
and rainy-weekend scenarios was more common, because the load demand on weekend increases
and renewable energy could not satisfy the load demand at most times. In addition, low PV output in
rainy-weekend further expanded the gap between the load demand and renewable energy output.

Appl. Sci. 2017, 7, 754  11 of 15 

loads that could participate in DR, the energy management system would cut off part of the 
unimportant load under the guidance of the economic purpose. In contrast, the load control in 
sunny-weekend and rainy-weekend scenarios was more common, because the load demand on 
weekend increases and renewable energy could not satisfy the load demand at most times. In 
addition, low PV output in rainy-weekend further expanded the gap between the load demand and 
renewable energy output. 

 
Figure 9. The LCQ dispatch optimization results for MG in each period for four scenarios. 

The SOC variation of ES is related to the total output of renewable energy system and electric 
load (EL). From Figure 8, it could be seen that the battery were prior to be used in initial period, 
because it is more economical compared with other micro-sources. After that, the SOC change of 
battery depends on whether the electric power is surplus when the load demand is ensured. It can be 
found that sunny-working day, sunny-weekend and rainy-working day scenarios in Figure 7 exist in 
the condition where the sum of renewable energy and basic output (decided by TL) of MT was 
greater than the EL demand. Accordingly, the battery output was negative at these times, which 
represents the charge of battery. For rainy-weekend scenario, the EL was high and PV’s output was 
low, which led to a situation that the EL was always higher than the sum of renewable energy and 
basic output of MT, so there was no charge condition after the beginning discharge period. 

Figure 8 also reveals that the FC was prior dispatched to the DE within a certain range, because 
the model took the economic and environmental benefits into account and the FC was more 
ecofriendly than DE, which was proved by the parameters in Table 2. 

According to the optimization strategy, the operation costs of four scenarios at different times 
for each day are shown in Figure 10. When the sum of renewable energy and basic output of MT was 
greater or closer to the load demand, the operation cost was relatively low. Otherwise, the cost 
would increase because of the expenditure from other generation units. Comparing the four 
scenarios, the costs of sunny-weekend and rainy-weekend were significantly higher than the 
working days because the load demand was higher on weekend. And the cost of rainy-weekend was 
higher than sunny-weekend, because the PV output was lower on rainy days. 

6:00 12:00 18:00 24:00 6:00 12:00 18:00 24:00 6:00 12:00 18:00 24:00 6:00 12:00 18:00 24:00
0

10

20

30

40

50

Time/h

O
ut

pu
t P

ow
er

/k
W

(b)Sunny-weekend(a)Sunny-working day (d)Rainy-weekend(c)Rainy-working day

Figure 9. The LCQ dispatch optimization results for MG in each period for four scenarios.

The SOC variation of ES is related to the total output of renewable energy system and electric
load (EL). From Figure 8, it could be seen that the battery were prior to be used in initial period,
because it is more economical compared with other micro-sources. After that, the SOC change of
battery depends on whether the electric power is surplus when the load demand is ensured. It can be
found that sunny-working day, sunny-weekend and rainy-working day scenarios in Figure 7 exist in
the condition where the sum of renewable energy and basic output (decided by TL) of MT was greater
than the EL demand. Accordingly, the battery output was negative at these times, which represents the
charge of battery. For rainy-weekend scenario, the EL was high and PV’s output was low, which led to
a situation that the EL was always higher than the sum of renewable energy and basic output of MT,
so there was no charge condition after the beginning discharge period.

Figure 8 also reveals that the FC was prior dispatched to the DE within a certain range, because
the model took the economic and environmental benefits into account and the FC was more ecofriendly
than DE, which was proved by the parameters in Table 2.

According to the optimization strategy, the operation costs of four scenarios at different times
for each day are shown in Figure 10. When the sum of renewable energy and basic output of MT
was greater or closer to the load demand, the operation cost was relatively low. Otherwise, the cost
would increase because of the expenditure from other generation units. Comparing the four scenarios,
the costs of sunny-weekend and rainy-weekend were significantly higher than the working days
because the load demand was higher on weekend. And the cost of rainy-weekend was higher than
sunny-weekend, because the PV output was lower on rainy days.
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4.3. Comparison Analysis 

This paper proposed a modified dispatch strategy for CCHP mode without influencing the 
essential demand and comfort feeling. In order to verify the effectiveness of the modified strategy, 
simulations with completely same conditions except the strategy of CCHP in four scenarios were 
conducted and the operation costs were shown in Table 3. 
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20 times, which indicated the better searching performance and the more excellent convergence 
ability. The next was the CPSO while the last was PSO. This is because elite retention and chaos search 
further excavate the best individuals in each iteration. The lowest standard deviation of MCPSO 
indicated that the algorithm was stable and had a stronger robustness. It is really a great advantage 
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4.3. Comparison Analysis

This paper proposed a modified dispatch strategy for CCHP mode without influencing the
essential demand and comfort feeling. In order to verify the effectiveness of the modified strategy,
simulations with completely same conditions except the strategy of CCHP in four scenarios were
conducted and the operation costs were shown in Table 3.

Table 3. Comparison of the modified and traditional strategy for CCHP.

Scenario (a) (b) (c) (d)

Modified Strategy ($) 28.926 506.816 13.043 824.484
Traditional Strategy ($) 30.201 521.794 13.639 844.073

Decreased Percentage (%) 4.22 2.87 4.37 2.32
Initial Load Demand (kW) 1201.761 1268.601 1201.761 1268.601
Actual Power Output (kW) 1159.959 1273.904 1156.716 1266.460
Decreased Percentage (%) 3.48 0.42 3.75 0.17

(a) Sunny-working day; (b) Sunny-weekend; (c) Rainy-working day; (d) Rainy-weekend.

Through the above comparison, it is obvious that the economic and environmental benefits of
MG were improved in the four scenarios while the comfort and primary demand were not destroyed
with the modified CCHP dispatch strategy. For example, in the rainy-weekend scenario, the total cost
decreased 2.32% at the expense of 0.17% thermal load change. The improved effect was more evident
in the weekend scenario because of the wider changeable range resulted from higher load demand.

With the purpose of comparing the effectiveness and overcoming the randomness of different
algorithms, PSO, CPSO and MCPSO algorithms were applied to solve the entirely same models in the
rainy-weekend scenario for 20 times, and the statistic results are shown in Table 4.

Table 4. Statistics of different algorithms’ 20 operating results.

Algorithms
Total Cost

Average Convergence Time/s
Average Cost/$ Standard Deviation/$

PSO 851.146 1.972 254.84
CPSO 833.564 1.496 267.35

MCPSO 824.732 0.358 243.28

From Table 4, it can be seen that the proposed MCPSO obtained the lowest average total cost in
20 times, which indicated the better searching performance and the more excellent convergence ability.
The next was the CPSO while the last was PSO. This is because elite retention and chaos search further
excavate the best individuals in each iteration. The lowest standard deviation of MCPSO indicated that
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the algorithm was stable and had a stronger robustness. It is really a great advantage in optimization.
MCPSO also had some advantages on average convergence time, because the elite retention strategy
could help particles realize the accuracy requirement more quickly.

5. Conclusions

This paper studied the optimized operation problem of a stand-alone MG consisted of WT, PV,
MT, FC, DE and ES with the consideration of CL and various scenarios. Based on the CCHP mode
of MT, a multi-objective optimization model was established to dispatch the DGs effectively and
economically considering four different operation scenarios. A modified dispatch strategy for CCHP
was proposed to further strengthen the economy of MG. To solve the optimization model, the chaotic
optimization and elite retention strategy were introduced into PSO so as to improve the global search
ability and accelerate the convergence speed. Simulation results validated that the presented model
and MCPSO could effectively solve the optimization problem for stand-alone MG in different scenarios
and the modified strategy could further improve the economic and environmental benefits.
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