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Abstract: This work presents a robust visual localization technique based on an omnidirectional
monocular sensor for mobile robotics applications. We intend to overcome the non-linearities and
instabilities that the camera projection systems typically introduce, which are especially relevant in
catadioptric sensors. In this paper, we come up with several contributions. First, a novel strategy for
the uncertainty management is developed, which accounts for a realistic visual localization technique,
since it dynamically encodes the instantaneous variations and drifts on the uncertainty, by defining
an information metric of the system. Secondly, an epipolar constraint adaption to the omnidirectional
geometry reference is devised. Thirdly, Bayesian considerations are also implemented, in order
to produce a final global metric for a consistent feature matching between images. The resulting
outcomes are supported by real data experiments performed with publicly-available datasets, in order
to assess the suitability of the approach and to confirm the reliability of the main contributions.
Besides localization results, real visual SLAM (Simultaneous Localization and Mapping) comparison
experiments with acknowledged methods are also presented, by using a public dataset and
benchmark framework.
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1. Introduction

Simultaneous Localization and Mapping (SLAM) represents an essential task to be dealt with in
mobile robotics. This paradigm comprises a simultaneous estimation of the map and the localization of
the robot. This fact implies a real challenge when it comes to complexity, due to the incremental nature
of this process, which is very sensitive to the non-linear effects that normally affect the systems in the
form of added noise to the input or just in terms of coupled external noise. Both definitely compromise
the convergence of the system estimation gravely [1,2].

Under this context, different research lines have been conducted in the field of mobile robotics.
It is worth highlighting the evolution of the sensors to acquire information from the environment.
Originally, laser [3–5] and sonar [6,7] were widely acknowledged. Despite the fact that these sensors
are still strongly accepted nowadays [8–10], they are being slightly relegated as secondary sensory
data to the detriment of visual sensors, which have been experienced an growing use recently. Digital
cameras have had a great success, being one of the most feasible tools for acquiring information
from the environment. They represent a promising alternative due to their low cost, lightness,
low consumption, precision and efficiency to process visual data. They also become an encouraging
option for complementing other sensors. In this sense, recent research lines rely on a more extensive
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combination of visual data with multiple light-computation sensory data, such as IMU (Inertial
Measurement Unit) [11], RGB-D [12,13] and GPS [14], which are especially oriented to the wide
diversity of UAV (Unmanned Aerial Vehicle) applications that are deployed these days [15–17].

Amongst other visual sensors, omnidirectional cameras are remarkable for their capability
to acquire a wide field of view with a unique snapshot. Different approaches have focused on
computer vision techniques by using single cameras with visual encoding of 3D landmarks [18,19],
stereo-structure [20–22] and omnidirectional cameras [23–26]. In particular, many approaches support
matching systems that take advantage of the image side [27,28], but also the mapping side [29].

In this paper, we also rely on the potentials of the matching in order to associate visual information.
This association represents the basis for an advanced feature matching, in contrast to generally known
approaches [30,31]. Consequently, we are able to extend the localization developments to a wider field
of application: visual SLAM. Such context implies that huge efforts have to be addressed in order
to assure convergence for the estimation and uncertainty control [1,32]. The core of the approach
is sustained by a previous work, in which a view-based monocular EKF was devised [33] under
a design that focused on a compact view-map with a reduced set of omnidirectional frames, which are
mutually seen as image and landmark at once. This allows us to re-estimate images and also the
entire map at a single step for each t, being then more efficient in contrast to large 3D-landmark maps’
re-estimation [19,34]. Besides this, neither parametrization nor tracking are required. Its performance
was evaluated [32,35] within a comparison framework under the cover of the original fundamentals for
such a SLAM basis [36–38], which established the initial foundations for the improved implementations
and contributions of the present paper.

Nonetheless, the aim of this approach pursues the specific improvement of the localization by
considering the mentioned casuistry in terms of convergence and uncertainty control, rather than
further developments or analysis of the SLAM core. Certain approaches also exploit the catadioptric
reference for localization tasks [39]; however, our proposal loosens the unified projection model to
a panoramic conversion, without estimating any specific parametrized landmarks, but the entire
omnidirectional image instead, since it inherently encodes visual landmarks inside. To that aim,
several contributions are devised so as to produce robust feedback and to reinforce the matching,
which ultimately impacts the localization of the robot. Moreover, straightforward visual SLAM results
are also presented as a further final application. The basis is on a dynamic adaption of the current
uncertainty of the system, with an associated propagation to the system state. Fusing this information
with a Bayesian regression technique [40] permits obtaining a sensor data distribution [41], in order to
extract the probability of matching occurrence, which becomes potentially useful for weighting robust
features and avoiding false positives. In this context, EKF priors represent a fundamental tool for the
developments. Similarly, some works focus on prior inputs in the EKF for a wide scope of modeling,
such as deformable environment modeling with FEM (Finite Element Method) [42,43], motion as
a visual odometry [44], with systematic parameters [45] or through robot kinematics [46]. In general
terms, they all succeed in relaxing the dimensionality of the EKF estimation. However, here, we take
most of the filter-based prior stage in the opposite direction, as in [47], where these data are taken as
a posterior output to be propagated for inference purposes in the matching. That is, no parametrization
for the map of the environment, for the robot, neither for the camera motion is input into the EKF.

The structure of this paper is as follows: Section 2 presents the general characteristics of the
monocular omnidirectional system and the developments to adapt the epipolar constraint to the
omnidirectional geometry. Section 3 comprises the implementation of the robust visual localization,
where the dynamic uncertainty management and the Bayesian regression inference are also devised.
Section 4 provides a brief explanation of the omnidirectional SLAM approach, as the target application
with which the robust localization is aimed to be fused. Section 5 presents the real experimental
setup so as to assess the suitability and the benefits of the approach with comparison results under
publicly-available real datasets. Section 6 establishes a discussion on the previous results. Section 7
states the main conclusions extracted from this research work.
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2. Monocular Omnidirectional System

This monocular vision system consists of an omnidirectional camera, that is a catadioptric set
conformed by a hyperbolic mirror jointly assembled with a CCD (Charge Coupled Device) camera,
as depicted in Figure 1. The entire real mobile robotic equipment is also presented. The omnidirectional
image generation may be expressed in terms of a central sphere unification, according to the projection
model detailed in [48].

(a) (b) (c)

Figure 1. Real equipment: (a) Pioneer P3-AT with omnidirectional camera mounted, internal odometer
and SICK-LMS200 laser range finder. Omron Adept Technology, Inc. 10 Columbia Drive, Amherst,
NH 03031, USA; (b) CCD FireWire DMK21BF04. The Imaging Source Europe GmbH, Uberseetor
18, 28217 Bremen, Germany; (c) Eizho Wide 70 Mirror. Eizho Laboratory Ltd. Suminoue, Osaka,
559-0034, Japan.

2.1. Epipolarity Adaption Definitions

The epipolar constraint [48] becomes a fundamental tool so as to design a localization technique,
due to the fact that it represents a motion recovery tool. The nature of our omnidirectional system
made us redesign the standard planar epipolar constraint to adapt it to the geometry of our catadioptric
system. This allows us to gather visual information from a more reliable point of view, since an advanced
feature detection and matching procedure between two omnidirectional images can be designed,
in order to localize the robot in terms of poses. To that aim, it is necessary to introduce the essential
matrix, E3x3 [49], and its relation with two matched points between images, x and x′. Given a particular
calibration, the corresponding points may be normalized to x̂ and x̂′:

x̂′TEx̂ = 0 (1)

The terms in E encode a decomposition: R3x3 and T = [tx, ty, tz], as a general rotation and
translation, associated with the skew symmetric [T]x [48]. Then, a 2D movement ∈ XY, and angular
movement (β, φ), between two poses of the robot can be recovered up to the scale factor, from:

E = [T]xR =

 0 0 sin(φ)
0 0 − cos(φ)

sin(β− φ) cos(β− φ) 0

 (2)

This adaption to the omnidirectional geometry is represented in Figure 2. The projection of
the point X on two image references, x and x′, is determined by the epipolar plane, π, and both
camera centers C and C′. An essential aspect is related to l and l′, as the epipolar lines that
determine the geometric location where feature points should be matched. This is a key aspect
for us in order to implement an advanced visual matching, which ultimately returns potential data for
a robust localization.

In contrast to traditional stereo-planar applications [50,51], here epipolar lines transform into
ellipses as they are the intersection of the plane π with the surface of the hyperboloid of the mirror.



Appl. Sci. 2017, 7, 1294 4 of 26

Then, using this adaption for a consistent matching process, some contributions are presented in
the following sections, so as to come up with a robust visual localization, sustained by a dynamic
uncertainty management and Bayesian techniques, on the grounds of this epipolar adaption.

Figure 2. Epipolar constraint adaption to the omnidirectional geometry of the camera.

Finally, it is worth mentioning a last processing step on the image projection. In particular,
we obtained better feature point detection with a post-processed projection conversion to a panoramic
view. As mentioned above, omnidirectional cameras are very sensitive to non-linearities, due to the
nature of the mirror, and this effect is especially evident at top areas of its surface, which consequently
reflect 3D points on a pixel area over the image frame with lower resolution. These are the main
reasons for computing such a planar conversion, together with a Gaussian filter over the top areas of
the image:

Ipano(u, v) = im f ilter[Iomni(r · cos(α) + uc, r · sen(α) + vc), rmax, rmin, rstep, u1, u2] (3)

being Ipano and Iomni the panoramic and omnidirectional image frames in pixels, for which (uc, vc)
represent the center of the omnidirectional image and im f ilter is a Gaussian filter applied between
heights u1–u2 in the panoramic view. Angular and radius variables for the omnidirectional view are
expressed by α ∈ [0, 2π] and r ∈ [rmin, rmin + rstep, · · · , rmin + (n− 1)rstep, rmax], so that the dimensions
of the panoramic view can be tuned in order to get the desired areas of the scene, with the final image
of size(r × α) in pixels.

Figure 3 presents a real example for this projection conversion, with feature points indicated.
Figure 3a depicts the conversion seen on the rays’ model side. Omnidirectional projection rays are
backprojected from the mirror to lie on the Cartesian panoramic reference system, as denoted in
Equation (3). Figure 3b,c represents the same image in its omnidirectional and panoramic projection,
after conversion. It may be noticed that the angular variable in the omnidirectional reference, α,
transfers into the u coordinate in the panoramic reference, highlighted as a blue line. Likewise,
the radius r and v are represented in red. Finally, Figure 3d presents a sample image set for evaluating
the benefits of the panoramic conversion when extracting feature points. Along 858 real images,
the number of feature points detected on the panoramic projection is on average ∼14% higher.
In addition, they are only concentrated on bottom areas of the image, thus considering only points
between rmin − rmax, with a final length of 445 in the v coordinate, leading thus to avoiding features
at top pixel areas, where the mirror induces significant non-linearities. This fact implies a valuable
aid in the robustness of the feature extraction. A proper calibration is crucial when dealing with
backprojections. In this respect, the calibration toolbox presented in [52], was used.
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Figure 3. Projection conversion from omnidirectional to panoramic view. (a) Conversion over the rays’
model side; (b) omnidirectional image with angular and radius variables indicated (α,r); (c) same image
in its panoramic projection, transferred to (u,v) coordinates; (d) comparison of the number of feature
points found on omnidirectional and panoramic images, respectively.

3. Robust Visual Localization

This robust visual localization technique relies on the epipolarity adaption presented above.
As observed in Equation (2), two poses of the robot can be univocally related by feature matching
points in two omnidirectional images acquired from such poses; that is, a motion relation that is
determined by an angular transformation. Figure 4 expresses such image-to-pose equivalence in
terms of motion for comparison purposes. Therefore, this can be also deduced from Equation (1).
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Thus, localization between poses, as observed in Figure 4a, can be transformed into a visual problem,
as shown in Figure 4b.

Analytically, Equation (1) can be expressed as a linear system with:

Diei =
[

x0z1 y0z1 z0x1 z0y1

] [
e1, e2, e3, e4

]T
, ∀i ∈ [1, . . . , N] (4)

x̂ = (x0, y0, z0) and x̂′ = (x1, y1, z1) being the two corresponding points between image poses and
ei represent the composing elements in E, which encode the localization values (β, φ). Notice that
only a reduced amount of matching points is required, Nmin = 4, for retrieving a localization, due the
dimensions of DNx4.

Finally, [48] describes the basis for a Single Value Decomposition (SVD) of Equation (2),
which returns a quaternion set of solutions (β, φ), as two rotations and translations:

φ = atan
−e1

e2
; β = atan

e3

e4
+ atan

−e1

e2
(5)

R1 =

cos β − sin β 0
sin β cos β 0

0 0 1

 ; R2 = Rπ R1; tx1 = [cos φ, sin φ, 0]; tx2 = tx1 + π; (6)

(a) (b)

Figure 4. Omnidirectional visual localization between poses A and B. (a) Robot reference system;
(b) camera reference system. Projections pA(u, v) and pB(u, v) are indicated.

3.1. Dynamic Uncertainty Management

After introducing the definition of the fundamentals of the proposed omnidirectional robust
localization, now a detailed description for one of the main contributions of this work is addressed:
the dynamic uncertainty management. The final goal is to improve the matching by allowing this
procedure to adapt dynamically to the instantaneous uncertainties of the system. That is the main
reason for considering the instantaneous uncertainty of the system, at each t, being a magnitude closely
related to those non-linear effects associated with noise, which is ultimately by the uncertainty matrix,
as follows.
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The final outcome implies a reduction of the search area for matching points on the pixel side.
For that purpose, the epipolar constraint is again evaluated from Equation (1). In such a context,
the current inconsistencies in the system (mainly non-linear noise), represented by uncertainty,
are propagated through such a constraint, which now accepts a dynamic threshold, δ(ẑt):

x′T Êx < δ(ẑt) (7)

Note that this threshold depends on a predicted variable, denoted as the observation movement,
ẑt = (β̂, φ̂), which is extracted from the stages of a general filter-based SLAM approach, and it is
implicitly associated with the uncertainty of the system. More specifically, Table 1 comprises all the
interdependencies extracted from the stage structure of the filter-based SLAM. Then, we can take
advantage of the innovation measured between consecutive states of the visual SLAM system, St,
in order to define a powerful tool to establish predicted σ values for ẑt and, thus, for a rotation and
translation, R and T, respectively:

St =

[
σ2

φ σφβ

σβφ σ2
β

]
; R ∼ N(β̂, σβ); T ∼ N(φ̂, σφ) (8)

This aspect entails a predicted matching, which can be found on the second image reference,
even when no feature detection is previously run on the second image at current t. Then, a Gaussian
multi-scale distribution, λi p1, is generated on the first image frame and next propagated on the
second, qi, by introducing the current uncertainty in Equation (7) and also applying the predicted
movement in Equation (8).

Table 1. Filter-based Simultaneous Localization and Mapping (SLAM) stages.

Filter-Based SLAM Stages

State Expression Terms

Prediction

x̂t+1|t = f(x̂t|t, ut) ft: control input-current state relation
ẑt+1|t=h(x̂t+1|t, xi) ut: control input, initial prediction seed

Pt+1|t =
∂ ft|t
∂x Pt|t

∂ ft|t
∂x

T
+ Qt

ht: observation-current relation
Pt: uncertainty covariance

Innovation
vt+1 = zt+1 − ẑt+1|t

Rt: camera covariance noise
Qt: odometer covariance noise

St+1 =
∂ht|t
∂x Pt+1|t

∂ht|t
∂x

T
+ Rt+1

∂ ft|t
∂x : Jacobian of ft at xt

∂ht|t
∂x : Jacobian of ht at xt

zt: observation measurement
vt: innovation measurement

St: innovation covariance

In this sense, Figure 5 breaks down the complete procedure for this advanced matching,
which finally returns a reduced search area where candidate matching points are expected, rather than
a global search over the entire image. The construction of this new search area comes from the
reformulation of the epipolar constraint, which now transforms into an elliptical surface due to
the effects of the omnidirectional adoption and to the drifts induced by δ(ẑt). The final stage
includes a visual descriptor comparison, di(x) and d′j(x′) being the visual descriptors of two candidate
matching points in the first and second image, respectively. In the end, a Mahalanobis metric [53], (χ),
is evaluated over them, so as to get an acceptable visual distance in order to assume two feature points
as a valid pair of matching points:

||di(x)− d′j(x′)|| ≤ χ[dim(zt)] (9)
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Notice the dynamic adaptive nature of this procedure, which always depends on the current
uncertainty, thus adapting to the changing conditions of the system. It is closely related to
inconsistencies and instabilities, which are normally caused by non-linear noise. Therefore,
this contribution assures a reliable control for the uncertainty management, which implicitly performs
false positive avoidance and, thus, non-linear effects reduction. A corresponding analysis of the results
will be presented in Section 5 for further validation.

Figure 5. Dynamic uncertainty management: advanced matching results. p1 represents a multi-scaled
distribution, λi p1. qi projects onto the second image as per R∼N(β̂, σβ) and T∼N(φ̂, σφ), in Equation (8).
A reduced search area is obtained (green). Epipolarity transforms into an elliptic area (blue) due to the
uncertainty propagation on Equation (7).

3.2. Bayesian Regression

The dynamic uncertainty management strategy presented in the previous subsection is based on
an advanced matching with uncertainty propagation. Now, a further contribution to the robustness of
the procedure is presented: a Bayesian regression technique, that is mainly comprised by Gaussian
Processes (GP) [40]. We pursue the development of a sensor data distribution for the feature matching
on the omnidirectional frame. GP is a powerful regression technique since it does not require the
extraction of conventional associations between inputs and outputs, in comparison to traditional
inference techniques. We have customized the implementation of a GP in order to return a matching
data distribution in terms of probability, which can be mapped onto a global reference system.
This information is advantageous in order to refine the search area for matching points. A GP,
denoted as f (x), is constituted by its mean, m(x), covariance k(x, x′), and training and test input
vectors, x and x′, respectively.

f (x) ∼ GP [m(x), k(x, x′)] (10)

Considering that the implemented GP provides a probability distribution for our matching,
now we can exploit the fusion of this probability with an information metric, in order to reduce even
more the search area for matching, thus to enhance the overall system operation and its robustness.
This represents valuable feedback data for refinement, which basically represents a second weighting
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stage before the final match is returned. As far as the selected metric is concerned, we adapted the
information-based Kullback–Leibler divergence (KL) [54]:

KL(Ft) = −∑
i

Ft(i) log Ft(i) (11)

KL(Ft−1 ‖ Ft) = H(Ft−1, Ft)− H(Ft−1) =
k

∑
i=1

Ft−1(i) log
Ft−1(i)

Ft(i)
(12)

where H(Ft) is the entropy [55] of the information distribution of the current feature point set at time t.
Ft(i) represents the probability of the existence of the current i-th feature points at time t (system step
time), that is on the image acquired at the current robot’s pose at t, and also Ft−1(i) for the previous
i-feature points detected at a previous image at t− 1.

We seek the evaluation of the variations and fluctuations in the appearance of the matching points
and their location. In these terms, KL allows one to determine such variations between matching
points detected on a pair of images, Ft−1, and the next matching points on the following pair Ft. Then,
KL encodes substantial variations on the matching points’ location while the robot navigates. Higher
values for KL imply newer visual information observed by the robot. Such values can be used for
determining a specific metric that finally specifies the weighting coefficients to get robust candidate
matchings. This ultimately establishes the probability areas where a corresponding point is more likely
to be found, that is distribution sensor data.

An illustrative example may be observed in Figure 6. Here, the robot navigates through a
scenario passing through three different poses (A, B and C). Likewise, Figure 7a,b presents the motion
transformation between these poses and the same relation expressed in terms of the image reference.
Finally, Figure 8a–c shows the returned probability data for the feature points found at each pose,
fused with an accumulated probability, while the robot moves and discovers new scenes within this
scenario. Notice that the third image at pose C presents newer feature points (in blue), in addition to
previous feature points already seen in A and B (green). That is the reason why the probability data
for C differ substantially. This is a key aspect in order to apply specific weighting factors within the
matching, with the purpose of encoding this visual change on the scene and also avoiding possible
false positive.

Figure 6. Navigation example along three different poses within an office-like scenario. The robot
sequentially traverses poses A, B and C, respectively. Omnidirectional images are acquired at each
pose, and feature matching and Bayesian regression are computed as per Equations (10)–(13). Motion
transformations at both the pose reference and image reference are depicted in Figure 7a,b.
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Overall, this strategy stores the information of the points’ distribution, which is then transferred
as a KL value in its accumulative format. Then, this information is used for obtaining new weighting
coefficients for the matching:

γ = ∑
t

KL(Ft−1 ‖ Ft) (13)

thus evaluating this metric in an accumulative manner allows one to obtain a global data distribution
for the feature points along the navigation, in terms of probability.

(a)

(b)

Figure 7. Description of the example presented in Figure 6, where the following subfigures correspond
all to traversed poses A, B and C. (a) motion transformation between poses, on the robot reference
system; (b) motion transformation on the image reference system. The projection of P(x, y, z) is
indicated as pA(u, v), pB(u, v) and pC(u, v) respectively on each image. Repeated matches and new
matches are indicated in green and blue, respectively.
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(a) (b) (c)

Figure 8. Evolution of the sensor data information distribution along poses, expressed in terms of the
probability of existence, for example in Figure 6. (a): pose A; (b) pose B; (c) pose C.

3.3. System Workflow

The complete system operation comprises all the introduced contributions, as denoted in Figure 9,
where the workflow is:

(i) omnidirectional image acquisition, I1.
(ii) multi-scaled distribution: projection p1(u, v) of a 3D point, P(x, y, z), establishes the seed for a

multi-scaled distribution, λi p1.
(iii) EKF prior extracted for motion prediction, hence point appearance prediction on the second

image according to qi. Dynamic uncertainty management by propagating R∼N(β̂, σβ) and
T∼N(φ̂, σφ), thus accounting for the current innovation S(t), as the uncertainty metric.

(iv) Bayesian regression computed as per Equations (10)–(13), to produce weighting coefficients for
the final matching over a predicted epipolar search area on the next image, I2.

Figure 9. Complete workflow for the system operation, as detailed in Section 3.3.

4. Robust Localization within Omnidirectional SLAM

Visual SLAM symbolizes a widely-acknowledged final navigation application in mobile robotics.
According to this, we fused the proposed robust localization into an omnidirectional SLAM system [33].
Hence, this section condenses the fundamentals of such a system [56], under the cover of the essentials
of a verified EKF-SLAM method [19,36], with the proposed robust localization now embedded.

This omnidirectional SLAM approach entails an improved view-based map model with respect
to former works, as may be noted in Figure 10. The estimated map is composed of a reduced set of
omnidirectional images, or views, xn = (x, y, θ)T

n , acquired from different poses along the traversed
path. Each n-view encodes visual information in terms of SURF feature points [57]. The pose of the
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robot at t is denoted as xr = (xt, yt, θt)T . Thus, the definition for a state vector considers xr and xn,
with the following 2D structure:

xv(t) =
[

xr x1 · · · xn · · · xN

]T
(14)

each view being n ∈ [1, . . . , N]. Then, the state vector encodes a map constituted by a total number of
N views. It is also worth noticing that each xn accounts for the visual encoding of a specific area of the
environment, so that the robot can always localize itself.

Figure 10. Dual 2D-3D map model composed by omnidirectional views, xn. Information is encoded on
the 2D image plane by feature points over each view, being able to be recovered on the 3D reference by
estimating a scale factor. The re-estimation of xn implies the whole re-estimation of the map at once,
contrary to former 3D-landmark maps.

It is essential to notice the duality characteristic of this mapping approach. It presents a capability
of producing both 2D and 3D results, despite the fact that the robot has a monocular camera mounted,
and thus, the images are accordingly acquired in a 2D reference. Certainly, the visual information is
compressed on the 2D image frame by feature points. However, they express the same information
as 3D landmark-based approaches [36,58]. As explained in Section 3, by using a motion prediction
together with uncertainty propagation, the lack of scale may be retrieved, and so 3D information.
As a result, and contrary to previous 3D landmark models, the re-estimation of the 3D pose of every
landmark in the environment is no longer needed. Now, with this approach, a single re-estimation of a
view (position), as part of xv(t), inherently implies the whole re-estimation of the visual feature points
inside it and, at the same time, the re-estimation of the complete map itself, since it is composed by
views as a whole. This is a simpler procedure, which allows one to re-estimate at once all the views
with all the visual information contained, represented by the set of feature points encoded at each
view. Finally, it produces a single and complete map re-estimation. In order to get a clearer picture of
this omnidirectional SLAM structure, its workflow may be divided into: (i) view initialization in the
map; (ii) observation measurement; (iii) data association. Dealing with localization tasks leads us to
concentrate on Stage (ii), which is consequently presented in the following subsection.
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Observation Model

The observation model provides measurements that express a motion transformation from the
robot’s pose to a specific landmark, in terms of SLAM nomenclature. In this approach, and similarly to
the explanation introduced in Section 2, the motion transformation can be referred to the comparison
between two images, in angular terms (β, φ). Thus, the motion between two poses of the robot may be
recovered in the same manner. Transferring this localization relation into the robot’s reference system
leads to the following notation, where zt,n encodes such observation measurements, which already
comprises all the presented contributions to come up with a robust localization proposal, as depicted
in Section 3.

zt,n =

[
φ

β

]
=

[
arctan

(
yn−yt
xn−xt

)
− θt

θn − θt

]
(15)

The terms in zt,n correspond to those associated with the different poses of the observed views in
the map, xn, and the current pose of the robot, xr. It is worth noting that such variables are iteratively
re-estimated as part of the state vector of the system, xv(t), in Equation (14).

5. Results

This section aims to present real experiment results in order to provide a further understanding
of the contributions proposed in this work. The experimental setup has been conducted under
the publicly-available datasets [59,60], so as to analyze the positive outcomes and benefits of the
robust localization proposal. Additionally, further experiments have also been configured to test the
performance of the combined approach: robust localization within an omnidirectional SLAM system.
Besides this, a public benchmark toolkit and dataset [61,62] have also been used for comparative
purposes with well-acknowledged methods [19,47,63].

The real equipment (CPU: 2 × 1.7 GHz; RAM: 2 GB) was already introduced in Section 2 and
Figure 1, and it is set to acquire 1280× 980 omnidirectional images at a variable [0.25–1.5] fps. Therefore,
for the final application, for which this equipment is oriented, such frame rates are acceptable to work
in real time. The SICK-LMS200 laser data are processed in order to get a ground truth for error
comparison. The software was initially developed in MATLAB 2017 for preprocessing and debugging
purposes. Next, the implementation was optimized in the robot operating platform, ROS [64], with the
same specified computation resources. The real dataset comprises several subsets [59,60] within indoor
office and laboratory-like spaces, from which different sub-datasets have been extracted. Note that
Dataset 1 is an appended area of Dataset 2. A third additional sub-dataset, Dataset 3, is extracted
from [62]. Its associated benchmark toolkit provides a wide set of solutions [61,65], obtained by
verified and reliable methods on different sub-datasets within the same project. For the selected
sub-dataset, Bovisa 2008-10-04, a solution computed by an inverse depth parametrization method is
provided [47,63]. This solution will be compared to our approach. The main characteristics of these
datasets are synthesized in Table 2, and their layouts may be observed in Figures 11 and 12, respectively.
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(a)

(b)

Figure 11. Main details for the large scenario where the two sub-datasets were acquired. (a) Layout for
Dataset 1; (b) layout for Dataset 2.

Table 2. Dataset characteristics.

Real Datasets

Dataset Images/Frames Distance Figures Mockup

Dataset 1 [59] 516 51.6 m Figure 13a,b Figure 11a
Dataset 2 [60] 1450 174 m Figures 13–15 Figure 11b
Dataset 3: Bovisa 10-04-2008 [62] 57,733 1310 m Figures 16 and 17 Figure 12
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(a) (b)

Figure 12. Main details for Dataset 3 Bovisa 2008-10-04, which is used for comparison purposes.
(a) Layout for Part 1; (b) layout for Part 2.

5.1. Robust Localization Results

Initially, we produced localization results only focusing on the proposed robust localization,
aiming at validation. Firstly, Figure 13 compares performance results between a general localization
technique based on our former approach [33] (‘standard’) and with the proposed robust localization
presented here. It is worth mentioning that the experiments are run under Dataset 1, for a 100-times
execution setup, in order to get consistent average results to model the error. Poses and associated
images are randomly extracted from the dataset for localization computation, so that no specific
localization structure is presented rather than a sample, as shown in Figure 13.

Figure 13a presents a comparison between the % of matched points out of the total number of
feature points detected in two images (Y-left-axis), with the time consumed in the process (Y-right-axis)
and with the total number of matched points (X-axis). The proposed localization technique provides
a ∼30% average increase of feature points matched, with respect to the standard. This implies that
larger numbers of feature points are now matched correctly, and it increases the probability of obtaining
a robust localization. It also produces a considerable reduction of false positives due to the delimited
search area on the image. Obviously, this comes at the cost of computation. Notwithstanding that,
the time results are proven to keep a stable and bounded solution for real-time purposes, regardless of
the number of matchings.

Secondly, Figure 13b presents accuracy results in angular terms for the localization. The robust
localization proposal is demonstrated to outperform the standard localization technique ∼40%
on average. Note that these results show the average error on the estimated localization (β, φ),
in Equation (15). In general, this is a desirable output, especially when dealing with the parallax effect
associated with angular measurements. Then, subtle improvements of the angular localization suffice
to ensure convergence on a generic visual SLAM application.

Finally, Figure 13c presents the RMSE (Root Mean Square Error) in the final XY pose and the time
consumption with the total number of feature points detected in two images. It is worth highlighting
that an acceptable tradeoff solution is also fulfilled in order to assure real-time operation with a
sufficient precision, considering the requirements of the final application. Figure 13d presents an
example of the estimated localization structure from a sample path in Dataset 1.
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Figure 13. Omnidirectional localization results. (a) % matched points and time consumption with total
number of matched points; (b) localization error in angular terms; (c) Root Mean Square Error (RMSE)
and time consumption with the number of feature points in a localization experiment; (d) localization
results for a sample path in Dataset 1.

5.2. Omnidirectional SLAM Results

In this subsection, a number of tests is performed to evaluate the overall omnidirectional SLAM
system, with the robust localization embedded. Notice that the redesign of the observation model, zt,n,
in Equation (15), now implements the proposed robust localization. In this sense, Figure 14 shows
real data results for such omnidirectional SLAM approach, using Dataset 2. In particular, Figure 14a
confirms the suitability of the approach to produce a reliable estimation under a real application
operation. Moreover, it is demonstrated to outperform the accuracy of a general SLAM approach,
with standard localization, as presented in previous works [33]. This confirms the robustness of the
estimation, which remains stable, whereas the estimation of the standard model tends to diverge in the
presence of subtle error drifts on the localization. In addition to this, Figure 14b presents the average
RMS results for the computed error, when the number of matchings is modified. Likewise, Figure 14c
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presents the same results for the standard localization. Again, these results confirm that a tradeoff
setup with a low number of matching points still produces a well-balanced and feasible estimation.
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Figure 14. Omnidirectional Simultaneous Localization and Mapping (SLAM) results in Dataset 2.
(a) SLAM estimation with the proposed localization approach (green), standard (red) and ground truth
(black); (b) RMSE (m) with the number of matchings for the localization proposal; (c) RMSE (m) with
the number of matchings for the standard localization.

Next, Figure 15 presents more real data results regarding the error-time implications, which refer
to the experiment shown in Figure 14. Figure 15a,b shows the behavior of the error on the estimated
pose with the time step. In particular, Figure 15a expresses the evolution on the error for each
coordinate in the omnidirectional SLAM approach, with the robust localization proposal embedded.
Likewise, Figure 15b presents the error for the standard SLAM system, with the standard localization
technique. It may be observed that the presented proposal outperforms the standard one.



Appl. Sci. 2017, 7, 1294 18 of 26

Having tested the validity and suitability of the approach in terms of the estimation accuracy, then
it is worth evaluating the behavior of the uncertainty. To that end, Figure 15c assesses the evolution
of the current uncertainty of the system at each time step. As described in Section 3, a dynamic
uncertanty management was devised, together with Bayesian regression. According to this, the same
experimental parameters for the weighting coefficients in the advanced matching, as defined in
Equation (13), are here considered. Then, Figure 15c proves that the implemented approach provides
a robust and feasible management of the uncertainty, which is significantly improved in contrast to
that obtained by the standard SLAM system. The uncertainty metric is computed from the covariance
matrix Pt, as presented in Table 1:

σ2
experiment = trace[Pt · PT

t ] (16)
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Figure 15. Omnidirectional SLAM error results in Dataset 2: (a) error in the SLAM estimation for the
robot’s pose along each time step with the proposed localization approach (X, Y and θ); (b) error in the
standard SLAM approach with standard localization; (c) uncertainty evolution (m) at each time step:
proposed SLAM approach with robust localization (green); standard SLAM approach (red).
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5.3. Comparison Results

Finally, in this section, we compare the proposed approach with an extensively verified method,
such as the inverse depth parametrization with EKF [19]. Specifically, we run the benchmark
toolkit that is provided with Dataset 3, Bovisa 2008-10-04, both publicly-available [62]. The results
obtained with the inverse EKF parametrization method were originally discussed in [47,63]. Figure 16
presents the comparison results. Figure 16a represents the estimated solution for both methods.
The proposed approach is represented in blue, the inverse parametrization method in red and the
available GPS-ground data in black. Next, Figure 16b represents the same comparison, divided into X
and Y coordinates.

It is worth noting that this toolkit computes a transformation alignment for the estimated solution.
As explained in [63], the inverse depth method does not estimate the scale factor. This is the reason
why the authors compute a transformation alignment by means of an offline Levenberg–Marquardt
optimizer. Under these conditions, the presented approach confirms a valid estimation for a proper
scale, by introducing the first prior of the odometry into the filter. Then, a robust scale factor
estimate is maintained. Consequently, the main outcome can be inferred from Figure 17, where error
histograms are presented for the absolute position error. Both results are presented: with the alignment
optimization enabled and disabled, in the toolkit options. Figure 17a,c represents the error histograms
for the proposed approach for each case. Likewise, Figure 17b,d represents the error histograms for
the inverse depth parametrization method, under the same conditions. It may be observed that our
approach produces improved accuracy results, with average values under 3 m, independently of the
alignment setup.
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Figure 16. Cont.
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(b)

Figure 16. Estimation results in Dataset 3: (a) position estimation, XY(m). The proposed solution
is presented in blue (dark blue: GPS areas; light blue: rest); the inverse EKF solution in red;
the GPS-ground truth in black; (b) evolution in X(m) and Y(m).
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Absolute Position Error: Proposal vs. GPS. Not aligned
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Figure 17. Histograms for the absolute position error (m) in Dataset 3: (a) proposed approach with
alignment optimization; (b) inverse EKF approach with alignment optimization; (c) proposed approach
without alignment optimization; (d) inverse EKF approach without alignment optimization.

6. Discussion

Once the results have been presented, in this section, we provide a further insight into the key
facts deduced from the real data results.

As an initial outline, Figure 13 demonstrates the reliability and consistency of the proposed
robust localization. The results confirm the enhancement of the localization angles β and φ (∼40%),
in comparison to the standard visual localization technique. Besides this, a relevant increase of the
number of matching points is produced (∼30%), a fact that implies a better final estimate for the pose,
since the number of false positives is also reduced. This is an important outcome, as it allows us to get
enough visual data to keep producing estimates even under some specific circumstances in which the
standard localization technique may be compromised.

Next, the evaluation of the robust localization proposal has been analyzed under real operation
conditions within a novel omnidirectional SLAM approach. Figure 14 shows the performance of the
approach in a dynamic and challenging scenario. These results highlight the capability to produce an
acceptable performance, as a balanced tradeoff, for the final application requirements.

Regarding the error assessment, the results presented in Figure 15 prove the ability of the proposal
to keep the estimation error stable, the convergence of the SLAM system and also the uncertainty of
the system.

Finally, Figures 16 and 17 present comparison results with a well-acknowledged technique, such as
the inverse EKF parametrization method. Here, the proposed approach confirms its validity to deal
with large outdoor scenarios, but also to improve the final estimation accuracy and the scale estimate.

Overall, the following aspects should be highlighted:

(i) Robust visual localization technique in terms of accuracy and performance.
(ii) Significant increase of usable visual data (matchings) when standard techniques fail to gather

reliable visual data.
(iii) Acceptable tradeoff solution to produce real-time localization.
(iv) Consistent SLAM estimation with the proposed robust localization technique for

real-time-oriented tasks.

The most straightforward future improvements are oriented towards the 6DOF extension
outdoors, but also towards the computation enhancement. Regarding the uncertainty management,
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some other developments may be tackled in order to confer the ability to feature entire regions on the
image, which would permit accounting for specific area-tracking and also for the associated uncertainty.
This would also be interesting for discovering unexplored areas.

7. Conclusions

This article has presented a robust visual localization technique for mobile robotics applications,
achieved with a monocular omnidirectional sensor system, constituted by a hyperbolic mirror and
a digital camera. Several contributions have been designed and implemented in order to deal with
inconsistencies and non-linearities, which especially affect visual sensors. A dynamic uncertainty
management control has been devised so as to adaptively conform to the instant variations on the
uncertainty of the system. These variations are principally induced by the noise input associated with
the changing scene conditions. Moreover, Bayesian regression has also been introduced in order to
take most of the sensor data distribution, which ultimately is used to define an informative metric
that permits designing robust weighting coefficients for the visual matching block. The adaption of
the epipolar geometry towards the omnidirectional nature of the omnidirectional sensor system was
also implemented.

The contributions presented herein have been tested in terms of validity and reliability. The results
obtained with real datasets have proven the suitability of this realistic robust localization proposal.
A tradeoff configuration can be selected in order to operate in real time with sufficient accuracy,
considering the specific requirements of the visual SLAM equipment. Besides this, the utilization of
visual data has also been improved, since more matching points are detected, in contrast with standard
approaches, which tend to fail to gather trustworthy information. Finally, the ultimate SLAM results
have confirmed the robustness of the localization proposal when it is embedded in such a real visual
system. The final estimations demonstrate consistency in keeping stability and convergence in the
system, besides a good tradeoff balance between accuracy and performance. Moreover, the additional
comparison results reinforce the validity of this approach.
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