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Abstract: In recommender systems (RS), many models are designed to predict ratings of items for
the target user. To improve the performance for rating prediction, some studies have introduced
tags into recommender systems. Tags benefit RS considerably, however, they are also redundant and
ambiguous. In this paper, we propose a hybrid deep learning model TRSDL (tag-aware recommender
system based on deep learning) to improve the performance of tag-aware recommender systems
(TRS). First, TRSDL uses pre-trained word embeddings to represent user-defined tags, and constructs
item and user profiles based on the items’ tags set and users’ tagging behaviors. Then, it utilizes
deep neural networks (DNNs) and recurrent neural networks (RNNs) to extract the latent features
of items and users, respectively. Finally, it predicts ratings from these latent features. The model not
only addresses tag limitations and takes advantage of semantic tag information but also learns more
advanced implicit features via deep structures. We evaluated our proposed approach and several
baselines on MovieLens-20 m, and the experimental results demonstrate that TRSDL significantly
outperforms all the baselines (including the state-of-the-art models BiasedMF and I-AutoRec).
In addition, we also explore the impacts of network depth and type on model performance.

Keywords: deep learning; machine learning; neural networks; rating prediction; recommender
systems; tag-aware recommendations

1. Introduction

In the era of information overload, deriving effective content from large volumes of information
for Internet users has become an urgent problem. Recommender systems (RS) are regarded as
integral to solving this problem, as they efficiently analyze the interests, preferences and needs
of individual users and then provide personalized services to them. Many techniques for generating
personalized recommendations have been proposed. For rating prediction task, one of the branches
of recommendation, traditional algorithms focus on users’ ratings of items but do not take item
properties or user evaluations into account. In such cases, tag-aware recommender systems (TRS)
are used to improve performance. Tags provide valuable supplementary information for RS, as they
summarize items’ properties and reflect user preferences through tagging behaviors.

While tags benefit recommender systems considerably, they also have unfavorable features.
A tagging system allows users to tag items using arbitrary words or phrases, which creates two
common issues: (1) redundancy, i.e., different users may use different tags to express similar concepts,
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such as “pretty” and “beautiful”; and (2) ambiguity, i.e., the same tags may have different meanings.
For example, the word "train" has two meanings: a type of transportation or the teaching of skills
through practice and instruction. These issues degrade the accuracy of TRS, as they prevent users from
finding relevant information when ambiguous tags are used because common features are omitted
when tags are represented in different ways.

One traditional solution utilizes clustering in the tag space [1]. However, it is difficult to compute
similarities between tags when tag space is very sparse. Another traditional solution computes the
similarity between two users’ tag sets by using the tool WordNet [2] to represent the similarity between
the two users [3] . WordNet is an online English lexical database. It splits all entries into many groups
according to their meanings. However, weaknesses of WordNet are obvious: it is time-consuming and
labor-intensive to define the dictionary manually. Besides, words of the dictionary not only are limited,
but also cannot keep up with the changes in language.

In our proposed model, we use Word2Vec [4], a tool for mapping words to K-dimensional
distributed vectors, to represent tags with word embeddings. This method captures the semantic
information of tags and simplifies the complex processing of text contents into the computing
of vectors. At the same time, the weaknesses of tags are addressed because the distance of two
vectors can be used to represent their semantic similarities between texts. On the other hand, deep
learning has developed rapidly over the past decades and has achieved success in a variety of tasks,
including those involving recommender systems [5]. Most machine learning algorithms used in
traditional recommender systems are shallow structures that are limited in their use of complex
data. The structures of deep neural networks render them better able to extract more abstract and
representative latent features, improving the accuracy and generalization ability of learning models.
In addition, consider a situation in one’s daily life: after watching the movie entitled “Cold War 1”, one
is likely to search for the movie “Cold War 2” or for another Leung Ka Fai movie to watch. According to
this perspective, users’ preferences evolve over time, and this evolving trajectory follows certain inner
logic. Motivated by this, we organize the historical tagging records of target users by time, and then
leverage recurrent neural networks (RNN) to extract users’ hidden features to take full advantage of the
time-sensitive preferences of users. Recently, deep models focus on hashtag recommendations [6–8]
and tag-aware top-n recommendation [9,10] are also proposed. However, as far as we know, research
that apply sequential deep learning to tag-aware rating prediction remains rare, and there is room for
improvement.

In summary, we propose a tag-aware recommender system based on deep learning (TRSDL) for
rating prediction task. Firstly, the model uses pre-trained word embeddings to represent user-defined
tags so that it not only addresses problems caused by tags but also makes full use of tags’ semantic
information. Secondly, it constructs item and user profiles based on the item’s tags and the user’s
tagging behaviors, and then utilizes deep neural networks (DNNs) and recurrent neural networks
(RNNs) to extract the latent features of the item and the user, respectively. Finally, we use a forward
neural network to simulate matrix factorization (MF) [11] to predict ratings from latent features.
Relative to other tag-aware recommendation methods, the main contributions of the proposed model
are as follows:

1. We use the pre-trained Word2Vec to represent tags, instead of the bag-of-words (BOW) model
that is used in many TRS. By using word embeddings of tags, TRSDL alleviates problems of tag
redundancy and ambiguity, and takes advantage of tags’ semantic information at the same time.
Besides, it reduces the dimensionality of BOW-based representations so that it speeds up learning
process and uses less memory resources.

2. Users’ preferences evolve over time and are influenced by their historical behaviors. By organizing
the user’s tagging records chronologically, and using the excellent ability of the recurrent neural
networks to process temporal sequence, we obtain more useful user dynamic preferences to
enhance RS’s performance.
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3. Interpret ability of deep structure methods is more powerful than shallow structure in the face
of complex data. We model items characteristics and users preferences through deep learning
algorithms, which captures the complex nonlinear relationships within the data, and extracts
high-level abstract features.

The rest of this paper is organized as follows. Section 2 reviews related work. In Section 3,
the proposed model is described in detail, and we present the results of our experiments in Section 4.
Finally, a conclusion and future work are given in Section 5.

2. Related Work

Machine learning has a wide range of applications in various fields [12–14]. As our present paper
focuses on tag-aware recommender systems based on deep learning, we introduce the development
of tag-aware recommender systems and the application of deep learning to recommender systems,
respectively. In the last subsection, we present the most technically relevant work of TRSDL and make
a comparative analysis.

2.1. Traditional Tag-Aware Recommender Systems

Many traditional methods can be applied to TRS. Among them, collaborative filtering (CF) is the
most widely used technique. Extending the CF to TRS, [15] Nakamoto et al. introduced a contextual
CF model which takes tagging information into consideration when calculating the user similarity
between users and predicting ratings for the user. Another work [16] was proposed by Mariho et al.,
who reduced the ternary relation of the user-item-tag to a lower-dimensional space, and then used CF
to generate recommendation results. Based on this model, Ricci [17] developed a similar algorithm
that finds user neighbors via the user-tag matrix and then recommends items liked by these neighbors
to the target user. Karen et al. [18] proposed a generic method that allows tags to be incorporated
to standard CF methods, by reducing the three-dimensional correlations to three two-dimensional
correlations and then applying a fusion method to reassociate these correlations.

To solve the problem of redundancy and ambiguity caused by tags, other kinds of solutions have
been applied to TRS as well, such as clustering, tensor-based methods, graph-based methods, etc.
In [1], Shepitsen et al. presented a personalized recommendation that relies on hierarchical tag clusters.
Through clustering technique, redundant tags are aggregated, and a cluster is more easily detected
than a single tag. Wetzker et al. proposed an algorithm [19] to exploit the semantic contribution of tags.
They extended the probabilistic latent semantic analysis (PLSA) approach and presented a unified
recommendation model that evolving from co-occurrence theory. Szomszor et al. proposed a method
based on semantic web [20], they constructed a movie knowledge base and then predict ratings by
the defined rating tag-clouds. Sumeonidis et al. [21] developed a general framework by applying a
semantic analysis and dimension reduction to the tensor user-item-tag via higher order singular value
decomposition (HOSVD). Rendle [22] proposed a tensor factorization algorithm RTF (ranking with
tensor factorization) that improves optimization approaches. Hotho et al. were also inspired by the
Google PageRank [23] algorithm and in turn proposed the FolkRank [24] algorithm, according to which
users, items and tags reinforce one another’s weights through the spreading of weights, from which
items with higher weights are recommended. In [25], Zhang et al. integrated tagging information into
user-item bipartite graphs and proposed a model based on user-item-tag tripartite graphs. PITF [26] is
optimized from the Bayesian personalized ranking [27] criterion. It models the pair-wise interactions
among users, items and tags in lower dimensional matrices to decrease noise. Similarly, Wang et al.
proposed a probabilistic model BTR (Bayesian-based Tag Recommendation algorithm) [28] to turn the
tag recommendation task into a probability prediction problem so that a classical Bayesian method
could be easily applied.

Compared with TRSDL, firstly, these models did not take advantage of word embeddings to
overcome the problem caused by tags; secondly, they still use shallow structures, while the ability
of interpreting complex nonlinear relationships within data is weaker than those based on deep
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structures. Furthermore, they did not take into account the temporal sequence of the user’s tagging
behaviors, which may improve the recommendation performance.

2.2. Recommender Systems Based on Deep Learning

Salakhutdinov et al. introduced the two-layer restricted Boltzmann machines (RBM) [29] for
modeling ratings that slightly outperform carefully tuned SVD models but that still face cold start
problems. To address such problem, collaborative deep learning (CDL), proposed in [30], integrates
a Bayesian stack denoise auto-encoder (SDAE) [31] and a collaborative topic regression (CTR) [32]
to learn items’ and users’ latent vectors, respectively. In terms of the ability of generating ranked
recommendation lists, Collaborative Deep Ranking (CDR) [33], an improved pair-wise model, performs
better than the point-wise CDL. To solve the sparsity problem of ratings, Kim et al. proposed
convolutional matrix factorization (ConvMF) [34] which integrates CNN into probabilistic matrix
factorization (PMF) to enhance the prediction accuracy.

Sedhain et al. presented AutoRec [35], a novel model based on AutoEncoder. AutoRec takes user
or item vectors as input and reconstructs them in the output layer. The values in the reconstructed
vectors are the predicted ratings of the corresponding position. Along this direction, many improved
models based on AutoEncoder were proposed [36–38]. Besides computer vision, convolutional
neural network is also widely used in natural language processing and other fields such as clickbait
detection [39] and so on. Van et al. [40] proposed a model that applies convolutional neural networks
(CNN) in music recommendations to capture advanced features from music signals. In [41], RNN was
applied in a session-based recommendation system to predict the next-step behavior based on the
user’s behavior records. Subsequently, a series of variants of the session-based recommendation were
proposed [42–44]. Then, recommendation systems for modeling the dynamic preferences of users were
put forward [45,46]. Wu et al. proposed a Recurrent Recommender Networks (RRN) [47] based on the
RNN, which was able to model the seasonal evolutions of items and changes of user preferences over
time. Moreover, DeepFM [48] was proposed to integrate factorization machine(FM) and deep neural
networks. It was able to model the high-order feature interactions via DNNs and low-order interactions
via FM. IRGAN [49] is the original model which applies GAN to three information retrieval tasks: web
search, item recommendation and question answering. Google proposed a general framework of wide
and deep learning [32]—jointly trained wide linear models and deep neural networks—that combines
the benefits of memorization and generalization for recommender systems.

The studies above are about recommender systems based on deep learning. They have achieved
excellent results in their respective subdivision research areas. However, these models have not
introduced tags into recommender systems. We believe that tags provide additional information
for reflecting user preferences and the item characteristics, which can of further enhance the
RS performance.

2.3. Tag-Aware Recommender Systems Based on Deep Learning

In this section, we introduce several methods similar to TRSDL and make a brief comparative
analysis. In [6], Tomar et al. presented an approach to recommend hashtags for tweets. They made
use of Word2Vec to represent tweets and trained a deep forward neural network to recommend
corresponding hashtags for tweets. The representation of tags is similar to TRSDL, however, the model
was not proposed for item recommendation or rating prediction task. Besides, the interaction of users
and items profiles is not considered in their model, as well as temporal features.

Zuo [10] and Xu [9] proposed two tag-aware deep models for top-n recommendation, respectively.
In both two models, tags are represented by the bag-of-words (BOW) model. Due to limitations of BOW,
redundancy and ambiguity of tags is not well addressed, and abundant semantic information of tags
is disregarded in the beginning. In addition, in both models, recommended items are generated by
calculating the similarity of two vectors that come from the same mapping space. Zuo et al. calculated
the similarity between users latent features to find nearest neighbors and then recommended their
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loved items, and Xu et al. calculated the similarity between users and items to find the most suitable
recommend items for users. Our model uses a forward neural network to simulate MF to explore the
feasibility of predicting ratings via two vectors from different deep feature space. Finally, our final task
is rating prediction instead of Top-N recommendations.

3. Methodology

To model users and items using tags for rating prediction task, we propose TRSDL to learn latent
features for users and items jointly using two different neural networks. The learned latent features
are used to predict the corresponding ratings in a layer introduced on the top of both networks.

In this section, we describe the proposed model in more detail. Specifically, there are three main
parts of this model: (1) Item Model, i.e., constructing item profiles over the item tags semantic space
and extracting item latent features from deep neural networks; (2) User Model, i.e., constructing user
profiles from corresponding item profiles and then using recurrent neural networks to discover the
time-sensitive latent features of the user; and (3) Rating Prediction, where the learned latent features
for the user and the item are used to predict the corresponding rating in a layer introduced on the top
of both networks. Figure 1 provides an overview of the architecture of our model.

Figure 1. The overview of proposed model.

For convenience, we demonstrate types and descriptions of symbols in Table 1.

Table 1. Model notations.

Symbol Description

UT User-Tag matrix
IT Item-Tag matrix
T the tag consisting of tokens
G the token list of Metadata

eT
avg average embeddings of tags

eG
avg average embeddings of metadata
d dimensionality of the Word2Vec model
D dimensionality of an item’s embedding representation
M the number of items in the training set
N the number of users in the training set
Ĩ latent features of the item
Ũ latent features of the user
L the max RNN sequence length
z the concatenated vector of user and item latent features
µ the shift balance factor
β the balance factor of L2 regularization
R the space that users have rated on items
Y predicted rating scores
J the prediction loss function
Θ the set of training parameters
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3.1. Item Model

To capture semantic meaning existing in tags, TRSDL represents tags using pre-trained word
embeddings. An item profile can be derived by modeling all tags and metadata (e.g., genres) of the
target item with average word embeddings. The reason why we introduce metadata to the item
representation is that it avoids items without any tags being denoted by all-zero vectors. Selected
metadata is changing according to the dataset we used. Basically, it would be better if it is an
enumerate feature (e.g., categories) that contains semantic information and can be represented with
word embeddings.

Given a tag T = {t1, t2, . . . , ti, . . . , tn}, where n is the length of tokens after NLP preprocessing
(tokenization, removal of stop words, etc.), ti is the i-th token mentioned. Each token is converted into
a d-dimensional vector eT

i by looking up the word embedding table that can be initialized either by the
pre-trained Word2Vec or by a random process, and then, the average embedding eT

avg = (∑n
k=1 eT

k )/n
is used to denote the tag. If the item has not been tagged yet, we pad it with all-zero vector. Similarly,
metadata G of the dataset are written as eG

avg. Finally, embeddings are catenated into a single vector
Xi = [eT

avg, eG
avg] to present the i-th item. As a result, all items build a matrix of shape [M, D], where M

is the number of items and D = 2 ∗ d is the total length of embedding features.
A standard deep neural network is used to learn the latent features of items. Taking the item

embeddings as an input, the hidden vector Ĩ is computed as a weighted sum of input neurons
as follows:

Ĩ = g( f (Xi)) = ReLU(W · Xi + b) (1)

where W is a weight matrix connecting an input layer to a hidden layer, b is a bias vector, and g(·) is a
certain nonlinear activation function that uses ReLU in the proposed model.

3.2. User Model

We build user profiles as the recurrent neural network [50] (RNN) input layer, and we then take
hidden layer vectors as users’ latent features.

RNN is a powerful model that learns temporal patterns from sequential data. In contrast to
ordinary neural networks, the model analyzes a sequence step by step and stores the information
of all previous steps in the hidden layer. This ability is dependent on the use of the special recurrent
structure shown in Figure 2. As the figure shows, at step t, the hidden layer ht is updated based on
two sources: the current input xt and its previous hidden state ht−1. The formula is written as follows:

ht = g(Pxt + Qht−1) (2)

where g(·) is a nonlinear activation function and Q and P are the weights of the previous hidden
state and the current input. All parameters of the networks are randomly initialized and tuned
through training.

Figure 2. The recurrent structure of RNN.
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In the proposed model, users’ tagging behaviors can be observed as a temporal sequence.
We arrange the latest L components of records according to tagging timestamps. Each item is denoted
as embedding features of the Item Model. Although we use a dynamic RNN structure to address
unfixed length records, we must still ensure that each user’s input has a length of L by trimming longer
ones and padding shorter ones with 0.

For a given user Ui = [u1
i , u2

i , . . . , ut
i , . . . , uL

i ], the user’s representation is a matrix of size L× D.
Consequently, N users’ embedding features form a 3-d array of N × L× D. Between the input users’
profiles and the final prediction, there is a hidden layer with nh units that stores additional information
on records previously observed in the sequence. We take the last component of the valid hidden state
as users’ latent features Ũ.

In the application of the user model, we use an LSTM [51] cell rather than an RNN cell to
avoid missing information of a long sequence and to prevent gradients from vanishing during back
propagation through time (BPTT). LSTM is an evolvement structure of RNN that addresses sequence
problems in a way very similar to RNN. We apply the LSTM cell through TensorFlow.

3.3. Rating Prediction

The learned latent features for users and items are used to predict the corresponding ratings in a
layer. In matrix factorization method, the inner product of user latent vectors ui and item latent vectors
vj can approximate the rating rij [11],

rij ≈ ui · vj (3)

Inspired by this, we use the interaction of two latent features learned from the hybrid deep
structure to predict the main part of the rating. The rating of a target item given by a user is computed
as following:

Y = pred(Ũ, Ĩ) = Ũ · Ĩ + µ ∗ (ReLU(W0 · z + b0)) (4)

In the left-hand part, we use the inner product of latent features Ũ and Ĩ to predict the rating.
The right-hand part is a shift weighted by µ, z is a concatenated vector of Ũ and Ĩ, Wz is the weight
used to model the strength of Wz, and bz denotes the bias of the concatenated vector.

The loss function is the square error between real and predicted ratings. It is defined as:

J(θ) = ∑
rui∈R

( ˆrui − rui)
2 + β||Θ||2 (5)

where ˆrui is the predicted rating, rui is the real rating, Θ is the set of parameters to be trained and β is a
balance factor of L2-regularization.

The training target is to minimize the loss function. Gradients are computed via back propagation
through time, while training is done using an RMSProp [52] optimizer with shuffled mini-batches.

4. Experiments

4.1. Dataset

To demonstrate the effectiveness of the proposed model, we perform experiments through
MovieLens (http://movielens.org).

The dataset (mL-20 m) contains 20,000,263 ratings and 465,564 tags for 27,278 movies. Each movie
belongs to several genres selected from 19 categories. The data were generated by 138,493 users
between 9 January 1995 and 31 March 2015. Each user has rated at least 20 movies and ratings range
from 0.5 to 5.0.

To ensure the scale of the data we used is identical in all comparing experiments and reduce the
interference of noise data, we selected samples created by users who have tagged items. After cutting
down, the statistical descriptions of the dataset used are shown in Table 2.

http://movielens.org
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We sorted samples according to the tagging timestamps and divided the dataset into two parts:
80% of the data were selected as the training set and the remaining 20% of the data constituted the
testing set. The reason we choose an 80%/20% split is that the state-of-the-art TRS studies [9,10] used
80% of data as the training set, too. Meanwhile, we followed the original proportion of split (80%/20%)
of mL-100 k although we used mL-20 m.

Table 2. A summary of the used dataset.

Item Quantity

Users (u) 7159
Movies (i) 13,396
Ratings (r) 126,083

Tags (t) 34,065
Genres (g) 19

4.2. Measurements

We use the following metrics to evaluate the performance of the prediction algorithms: the root
mean square error (RMSE) and the mean absolute error (MAE). It is preferable when indicator values
are smaller. The formulas of RMSE and MAE are as follows:

RMSE =

√
∑rui∈R( ˆrui − rui)2

|R| (6)

MAE =
∑rui∈R | ˆrui − rui|

|R| (7)

where |R| denotes the number of samples and ˆrui and rui denote the predicted and real ratings of each
sample, respectively.

4.3. Experimental Results and Discussions

We experiment with several variants of the model in the first part, and then evaluate TRSDL
against some baselines in the second part.

4.3.1. Evaluation of Model Architectures

To evaluate the performance of choosing different network types (LSTM or DNN) and different
network depths (1, 2 and 3), we employed a bottom-up approach [53] to create different models for
comparison.

(1) In the first model, we learn both users’ and items’ latent features from two single-layer neural
networks.

(2) The second one is built on Model (1)—we stack multiple hidden layers of both networks to verify
whether the increase of layers can improve the model’s performance.

(3) We apply a single-layer LSTM in the user model instead of the DNN of Model (1).
(4) In the last model, we stack multiple hidden layers based on the third model.

For clarity, we combined Models (1) and (2) as the first group of experiments, which is represented
by “NNs”, and combined Models (3) and (4) as the second group, which is denoted by “TRSDL”.
In the two groups, network layers are distinguished by the number shown after @. For the NNs
experiments, user profiles are constructed from corresponding items’ average embeddings rather than
from chronological item embeddings as TRSDL.

For all baselines, we tuned the learning rate lr ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1}, the batch
size bs ∈ {128, 256, 512}, regularization strength β ∈ {0, 0.001, 0.005, 0.01} and the appropriate latent
dimension nh ∈ {16, 32, 64, 128, 256}.
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The final hyper-parameters we used are listed in Table 3, where L denotes the max sequence
length for LSTM, µ is the balance factor for the effects of hidden concatenated features. Furthermore,
to prevent gradient explosion, we apply gradient clipping to TRSDL, and the max gradient norm
is set to 5.

Table 3. Parameters of various model structures.

Structures Settings

NNs@1 lr = 0.01, nh1 = 64, L = 20, µ = 0.1, β = 0, bs = 256
NNs@2 lr = 0.01, nh1 = 128, nh2 = 64, L = 20, µ = 0.1, β = 0, bs = 256
NNs@3 lr = 0.01, nh1 = 128, nh2 = 64, nh3 = 16, L = 20, µ = 0.1, β = 0, bs = 256

TRSDL@1 lr = 0.01, nh1 = 64, L = 20, µ = 0.1, β = 0, bs = 256
TRSDL@2 lr = 0.01, nh1 = 128, nh2 = 64, L = 20, µ = 0.1, β = 0, bs = 256
TRSDL@3 lr = 0.01, nh1 = 128, nh2 = 64, nh3 = 16, L = 20, µ = 0.1, β = 0, bs = 256

Experimental results of various model structures are shown in Table 4. From the table, the
performances for several model architectures are quite clear and conclusive:

(a) TRSDL@3 provides the best results with an MAE of 0.658 and an RMSE of 0.870, which are 5.18%
and 3.87% lower than the best results of NNs, respectively. The worst performance of TRSDL
group is from the single-layer structure TRSDL@1, with an MAE of 0.688 and an RMSE of 0.905,
which still outperforms all of the NNs’ experiments.

(b) As the number of network layers increases, the MAE value of the NNs experiment decreases
from 0.862 to 0.694 (the RMSE value decreases from 1.104 to 0.905), and the MAE of the TRSDL
group decreases from 0.688 to 0.658 (the RMSE decreases from 0.905 to 0.870).

Table 4. Results of various model structures.

Structures MAE RMSE

NNs@1 0.862 1.104
NNs@2 0.711 0.934
NNs@3 0.694 0.905

TRSDL@1 0.688 0.905
TRSDL@2 0.670 0.881
TRSDL@3 0.658 0.870

Experiment (a) verified that the proposed TRSDL significantly outperforms all NNs model
architectures. As one of the most important contributions, temporal information indeed enhances the
model’s performance. Features learned from tagging sequential information can be used to improve
predictions, and LSTM is good at processing the sequential data.

Experiment (b) shows that the number of neural network layers plays an important role in the
model behavior. In both two groups of experiments, the model based on single-layer structure is
the worst performing. The performance improves when layers stack, as the lower layer captures
surface characteristics of input data, while more advanced features are captured by upper layers.
In other words, hidden features extracted from the shallow structure are less informative than the deep
structure. Our proposed TRSDL is able to learn complex nonlinear relations within data through the
deep interaction of latent features.

4.3.2. Comparative Results and Evaluations

To show the advantage of the proposed model TRSDL, we compare it with seven baselines.
The baselines are: traditional algorithms based on collaborative filtering (i.e., ItemCF, UserCF and
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TAG-CF), the state-of-the-art models for rating prediction (i.e., BiasedMF and I-AutoRec), and
tag-aware recommender based on deep learning (i.e., DNN and BOW-TRSDL). We first describe
the competing methods as follows:

• ItemCF: For every item of the test set, the weighted average ratings of the nearest items in the
training set are returned. The cosine similarity is used to measure the degree of items’ similarity.

• UserCF: Similar to the itemCF model, the nearest user neighbors’ weighted average ratings are
regarded as predictive ratings. User similarity is measured by cosine similarity.

• TAG-CF: This method integrates tag information to the collaborative filtering and proposes a
tag-aware hybrid prediction algorithm [54]. The principle process is shown in the following steps.

(1) Calculate item co-occurrence similarity itemSim based on Item-Tag matrix T. (2) Establish a
predictive rating matrix C based on item similarity. (3) Construct a pseudo-matrix M to integrate
the rating matrix R and the predictive rating matrix C. (4) Calculate user similarity userSim through
M, the similarity is measured with Pearson correlation coefficient [55]. (5) Predict ratings based on
the user similarity matrix. The rating formula is defined as:

ˆrui = r̄u +
∑v∈Neighbor(u) userSim(u, v)(rvi − r̄v)

∑v∈Neighbor(u) userSim(u, v)
(8)

• BiasedMF: BiasedMF is the state-of-the-art collaborative filtering technique [11]. Features of users
and items are mapped to a latent factor space, and the interaction between user’s latent vector pu

and item latent vector qi is learned to predict ratings. The rating formula is defined as follows:

ˆrui = µ + bi + bu + qi
T pu (9)

where bi and bu indicate the bias of the item i and the user u, respectively; and µ is the global
average rating.

• I-AutoRec: I-AutoRec is a novel rating framework based on AutoEncoder [35]. It takes item vectors
as input and reconstructs them in the output layer. The values in the reconstructed vectors are the
predicted value of the corresponding position.

ˆrui = (h(ri; θ))u (10)

h(r; θ) = ( f (W · g(Vr + µ) + b)) (11)

where h(r; θ) is the reconstruction of input r, θ = {W, V, µ, b} for transformations W, V, and biases
µ, b. The parameters we used in experiments are: learning rate lr = 0.001, the number of hidden
units nh = 500 and the regularization strength λ = 0.002.

• DNN: In the DNN model, item profiles are the same as those of TRSDL, while user profiles are
constructed from corresponding items’ average embeddings rather than from chronological item
embeddings. Ratings are predicted by latent features extracted from two parallel deep neural
networks. The parameters of DNN model are the same as those of NNs@3.

• BOW-TRSDL: The state-of-the-art tag-aware recommenders are found in [9,10]. Unfortunately, we
cannot compare with them directly because our ultimate targets are different (i.e., their application
scenario is top-n recommendations). Considering the biggest difference is the way tags are
represented during the profile constructions, we leverage the bag-of-words (BOW) model to build
users’ and items’ profiles. The model is denoted as “BOW-TRSDL”. In the model, tags used less
than 10 times are cut down to reduce the amount of computation and the noise. Other parameters
are the same as those of TRSDL.

• TRSDL: TRSDL is our proposed model. We utilize the DNNs to obtain items’ latent features
and leverage the LSTM to extract users’ latent preferences from their temporal tagging sequences.
Then, these hidden features are interacted to predict corresponding ratings. The parameters in the
experiment are the same as those of TRSDL@3.
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Table 5 depicts in detail prediction performances of TRSDL and other seven baselines on the
MovieLens dataset in terms of MAE and RMSE. Observing the experimental results, we have the
following findings and discussions.

Table 5. The comparison of MAE and RMSE values for the dataset.

Models MAE RMSE

ItemCF 1.091 1.329
UserCF 1.237 1.481
TAG-CF 1.042 1.366

BiasedMF 0.673 0.904
I-AutoRec 0.703 1.057

DNN 0.735 1.011
BOW-TRSDL 0.736 0.971

TRSDL 0.658 0.870

Overall, TRSDL significantly outperforms other baselines in all metrics. The MAE and RMSE
of TRSDL are 0.658 and 0.870, followed by the best baseline BiasedMF, with an MAE of 0.673 and
an RMSE of 0.904. TRSDL reduced the prediction errors—MAE and RMSE decreased by 2.23% and
3.76% compared to the suboptimal BiasedMF. The superior performance of TRSDL is mainly because
that integrating tag representations based on word embeddings and users’ tagging behaviors within a
hybrid deep learning model improves the performance.

Table 5 demonstrates that, when comparing TRSDL to ItemCF, UserCF and TAG-CF models,
TAG-CF and TRSDL perform better than ItemCF and UseCF in terms of indicator MAE. TAG-CF
and TRSDL utilize additional tag information in recommender systems, which can be regarded as
the good reflections of users’ preferences and items’ characteristics. The reasons that TRSDL achieves
much higher improvement than TAG-CF may be that: On the one hand, TRSDL uses distributed
word representations to encode tags instead of discrete vectors based on the bag-of-word model so
that the model takes advantage of the semantic information of tags. Accordingly, not only users’
preferences and opinions towards items are implicitly discovered, but also the problem of redundancy
and ambiguity caused by user-defined tags is mitigated. On the other hand, TRSDL captures more
general and abstract hidden features through deep networks. It enables complex and high-level
relationships within data to be represented in deeper layers of the networks, and then effectively learns
non-linear relationships among users, items and tags.

The results show that TRSDL outperforms two state-of-the-art algorithms, BiasedMF and
I-AutoRec, proving that our proposed model is a competitive method of rating prediction studies.
We also note that the performance of I-AutoRec is dramatically worse than BiasedMF, while I-AutoRec
outperforms BiasedMF when it was proposed in [35]. We guess the phenomenon is related to the
sparsity of the dataset. I-AutoRec works well on the MovieLens-1 m and MovieLens-10 m datasets.
The sparsity of the two datasets is 95.754% and 98.692%, respectively, and the sparsity of the data we
used (after preprocessing) reaches 99.551%. This also proves from the side that TRSDL is robust to the
sparse data to some degree.

DNN and BOW-TRSDL models are similar to TRSDL. The difference between DNN and TRSDL
is the type of networks in the user model (i.e., DNN uses a three-layer neural network to replace the
three-layer LSTM of TRSDL), while the difference between BOW-TRSDL and TRSDL is the approach
of tags representation (i.e., BOW-TRSDL represents tags based on the bag-of-words model instead
of word embeddings). TRSDL performs better than DNN (the MAE and RMSE decreased by 0.077 and
0.141, respectively), which verifies that learning the temporal features of users through the recurrent
neural networks provides useful information for improving the recommendations. TRSDL outperforms
BOW-TRSDL, indicating that the bag-of-words model cannot discriminate redundant tags with similar
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meanings or ambiguous tags with multiple meanings. In addition, the vector generated by the BOW
model is very high dimensional which leads to huge resource consumption.

We analyze the variance and the two-tailed t-test between the performances of TRSDL and the
three best baselines (BiasedMF, I-AutoRec and DNN) to verify whether the performance differences
are statistically significant. Firstly, we analyze the statistical differences of MAE measurement.
The sig value of Levene’s test is 0.126 > 0.05, indicating that the variance is homogenous. After that,
we conduct the one-way analysis of variance for all groups. The p-value is 8.21× 10−14, which
means the difference is significant. Furthermore, we perform t-tests for TRSDL and baselines.
The p-value of TRSDL-BaisedMF, TRSDL-I-AutoRec and TRSDL-DNN are 3.27 × 10−6, 2.73 × 10−13

and 2.70 × 10−8, respectively. All p-values are smaller than 0.05, illustrating the MAE differences
are statically significant. p-values can verify whether the effect exists, however, they do not reveal
the size of the effect. To overcome the limitation of p-values, we also report the effect size with the
Cohen’s d values [56]. The d values are 3.28, 10.22 and 4.72, respectively, all effect sizes are bigger
than 0.8 indicating big effects. Secondly, the analysis of RMSE is similar. The sig value of Leneve’s
test is 0.166 indicating the homogeneity of variance. The p-value from one-way variance analysis
is 1.65 × 10−29, which means the difference reaches the significant level. According to the t-tests
between TRSDL and baselines, p-values obtained from TRSDL-BaisedMF, TRSDL-I-AutoRec and
TRSDL-DNN are 6.61 × 10−7, 1.10 × 10−20 and 2.75 × 10−7, respectively. The corresponding Cohen’s
d values are 3.72, 30.06 and 3.98, respectively. All the analyses demonstrate that the RMSE differences
are statistically significant. In summary, these results show that the performance differences are
statistically significant.

5. Conclusions

In the paper, we propose TRSDL as an innovative and effective hybrid deep learning model for
tag-aware recommender systems. We use word embeddings to represent tags such that semantic
information is utilized to construct the profiles of users and items. We also integrate forward and
recurrent neural networks into a joint model to not only extract high-level latent features of users and
items but also take advantage of temporal features of users’ preferences.

We evaluate our proposed model on MovieLens-20m, and TRSDL significantly outperforms all
the baselines. Experimental results demonstrate that TRSDL is effective and competitive for rating
prediction task. It improves traditional collaborative filtering methods and performs better than the
state-of-the-art models on this dataset.

We thus plan to investigate reasonable improvements to our model in the future. Future studies
will involve: (1) improving the model such that it can be used without ratings data and evaluating
the performance of the improved model on more complex real datasets with tags; and (2) using
the improved model for top-N items recommendation and verifying that the model has a good
generalization ability.
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