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Abstract: We have developed an output device for a computer-generated hologram (CGH) named a
fringe printer, which can output a 0.35-µm plane-type hologram. We also proposed several CGH with
a fringe printer. A computer-generated rainbow hologram (CGRH), which can reconstruct a full color
3D image, is one of our proposed CGH. The resolution of CGRH becomes huge (over 50 Gpixels) due
to improvement of the fringe printer. In the calculation, it is difficult to calculate the whole fringe
pattern of CGRH at the same time by a general PC. Furthermore, since the fine pixel pitch provides a
wide viewing angle in CGRH, object data, which are used in fringe calculation, should be created
from many viewpoints to provide a proper hidden surface removal process. The fringe pattern of
CGRH is calculated in each horizontal block. Therefore, the object data from several view points
should be organized for efficient computation. This paper describes the calculation algorithm for
huge resolution CGRH and its output results.

Keywords: holography; computer-generated hologram; rainbow hologram; high resolution; fringe
printer; wide viewing angle

1. Introduction

A hologram has 3D information such as the binocular parallax, convergence, accommodation,
and so on. Therefore, a reconstructed image of a hologram provides natural spatial effects.
A computer-generated hologram (CGH) whose interference fringes are calculated on a computer
can reconstruct a virtual object. At the moment, since the hologram requires a fine pixel pitch that is
almost the same as the wavelength of the light, the output device of CGH is not common. The electron
beam writer provides an excellent quality CGH [1]. Furthermore, there were some papers whose
CGHs were output by a laser lithography system [2]. However, both the equipment and running costs
of the electron beam writer are very expensive. On the other hand, Sakamoto et al. had proposed a
CGH printer with a CD-R writer [3]. Since the recording material is CD-R, the running cost of this
CD-R printer is very inexpensive. However, the size of this CGH is restricted by the size of the CD-R.

We have developed the output device of the plane-type CGH, which is called the fringe printer [4].
This printer consists of a laser, an SLM and an X-Y translation stage with stepper motors. The pixel
pitch of this printer is 0.35 µm, and the size of CGH depends on the X-Y translation stage. Our group
has investigated several types of CGHs [5,6]. The Fresnel-type CGH is very popular in CGH [7–9].
However, all light is diffracted by the Fresnel fringe pattern, and it is difficult to reconstruct the
full-color 3D image. Therefore, we proposed a computer-generated rainbow hologram (CGRH) [10].
The rainbow hologram, which was proposed by Benton [11], can reconstruct the full-color 3D image by
sacrificing the vertical parallax. Due to the development of the fringe printer, the resolution of CGRH
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increases to over 50 Gpixels. The calculation system requires large memory when the entire fringe
pattern is calculated. It is difficult to calculate on a common PC.

In this paper, we have proposed the large CGRH calculation. Since the computation of CGRH
is separated on the vertical, it can be calculated independently. In addition, we have described
the deterioration of image quality caused by this separation and proposed the solution. Moreover,
the CGRH output by the fringe printer has a wide viewing angle, and the reconstructed image should
have the correct occlusion. Therefore, object data created from different viewpoints are organized to fit
the separate fringe pattern calculation. Furthermore, we have revealed the problem that is caused on
the hologram plane and proposed the solution. As a result, we obtain a full-color reconstructed image
from about a 56-Gpixel CGRH by a common PC.

2. Rainbow Hologram

The rainbow hologram [11] is well known as a full-color reconstructed image by white light.
By sacrificing the vertical parallax, the rainbow hologram, which is a transmission hologram,
can reconstruct the full-color image.

Figure 1 shows the schematic image of the rainbow hologram recording. The viewing area of
the reconstructed image from the master hologram is limited by the horizontal slit and recorded as
a transfer hologram. Figure 2 shows the reconstruction of the rainbow hologram with white light.
The observer can see the monochromatic image from the same position of the horizontal slit. If the
observer changes the viewing position on the vertical direction, the color of the reconstructed image
also changes. The full-color image can be obtained with three slits corresponding to red, green and blue.
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Figure 1. Recording of rainbow hologram.

3. Computer-generated rainbow hologram53
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The hologram calculated like this diffracts the light in the vertical direction, but the diffracted70

light does not converge in the viewpoint when the reference and illumination beam are a collimated71

beam. Then, all the light does not enter the pupil and only a part of the image divided into the vertical72

direction is observed. If we use the cylindrical lens, the entire reconstructed image can be observed.73

But, using the lens is not preferable when we observe the reconstructed image. Therefore, the spatial74

frequency in the vertical direction is changed by changing the angle of the reference light; the lens75

effect is given to the hologram. When the fringe calculated like this is reconstructed with white76

light, the light is focused and the slit image is distributed in the vertical direction by wavelengths.77

Therefore, this method is the same as the rainbow hologram with the wavelength selection.78

3.1. Calculation of fringe pattern79

Computation of the holo-line follows the interference computation between the wavefront of80

object beam and wavefront of reference beam. Intensity pattern on the hologram plane I(x, y) is81
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I(x, y) = |O(x) + R(y)|2, (1)
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3. Computer-Generated Rainbow Hologram

The calculation algorithm of CGRH had been proposed in [10]. Therefore, this section elucidates
the gist of the proposed method. The calculation flow can be divided into two steps. In the first step,
the 1-D complex amplitude named the sub-line is calculated from sliced object data. Figure 3 shows
the calculation geometry of the sub-line. Since the reconstructed image of CGRH only has horizontal
parallax, one sub-line should be formed by a single horizontal slice of the object data. The object
data are supposed as a collection to the self-illuminated points and can be divided by the position of
each point.
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Figure 3. Calculation geometry for the sub-line.

In the second step, we add an off-axis reference, which has a vertical incident angle, to the
sub-line. Figure 4 shows the second step of CGRH computation. The 1-D hologram (sub-line) does not
have vertical diffracted light. Therefore, the proposed calculation used a reference beam, which only
changes the phase on the vertical direction, and part of fringe pattern named the holo-line was
calculated. Since the proposed calculation uses the same sub-line in each holo-line, only 1-D object
beam calculation is required.
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Figure 4. Two steps to calculate the hololine of a computer-generated rainbow hologram.
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Figure 4. Two steps to calculate the holo-line of a computer-generated rainbow hologram.

When the calculated CGRH is reconstructed, a cylindrical lens is required to converge the
diffracted light to the viewing position. However, this is an undesirable reconstruction when using the
lens. Therefore, we added the lens effect to the reference light. This change provides the wavelength
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selection of the rainbow hologram, and diffracted light by the entire calculated fringe pattern is
observed at the same position.

3.1. Calculation of the Fringe Pattern

Computation of the holo-line follows the interference computation between the wavefront of the
object beam and the wavefront of the reference beam. The intensity pattern on the hologram plane
I(x, y) is described as:

I(x, y) = |O(x) + R(y)|2, (1)

where O(x) is the complex amplitude of the object beam on each horizontal slice plane and R(y) is
the complex amplitude of the reference beam. Since the reference beam of the rainbow hologram is
usually a collimated beam, R of Equation (1) only changes in the y direction.

The location of the i-th object point is specified as (xi, yi, zi). Each point has a real-valued
amplitude ai and a relative phase φi. The object light of a single sub-line is defined as:

O(x) =
N

∑
i=1

ai
ri
(cos φi + j · sin φi), (2)

ri =
√
(xi − x)2 + z2

i , (3)

where N is the number of object points for the single sub-line and ri is the distance between the i-th
object point and the point (x) on the hologram. The wavenumber is defined as k = 2π/λ, where λ is
the free space wavelength of the light. The rainbow hologram displays a 3D image on or close to the
hologram plane. The object point that is close to the hologram plane makes a high intensity fringe
pattern according to Equation (2). Therefore, Equation (2) is changed into the following equation,
which can avoid divergence.

O(x) =
N

∑
i=1

ai
ri + α

(cos φi + j · sin φi), (4)

where α is a positive constant value.
The complex amplitude R(y) is determined by:

R(y) = are f (cos φr + j · sin φr), (5)

φr = ky · sin θre f , (6)

where θre f is the vertical incident angle of the illumination beam and φr is the phase component of the
reconstructed beam.

The intensity pattern of Equation (1) becomes:

I(x, y) = |O(x)|2 + |R(y)|2 + 2 · Re{O(x)} · Re{R(y)}+ 2 · Im{O(x)} · Im{R(y)}, (7)

where Re{C} and Im{C} take the real and imaginary part of the complex number C, respectively. The
first and second term are the DC term, which does not contribute to the reconstructed image. For the
calculation of CGRH, the only the third and fourth term are calculated.

To converge the diffracted light to the horizontal slit, the phase component of the reference beam
in Equation (6) is changed into the following equation.

φr = kr · (sin θre f − sin θs), (8)

θs = tan−1 y
Vd

, (9)
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where θs is the convergence angle to the horizontal slit and Vd is the distance between the hologram
plane and the viewpoint.

3.2. Calculation Area

The maximum diffraction angle of the CGH depends on the pixel pitch of output device. In this
paper, we used a fringe printer, which can output a 0.35-µm pixel pitch CGH for the output device.
Since the object point that is close to the hologram requires a fine pixel pitch, the calculation area
on the hologram plane should be limited by the coordinate of the object point according to the
following equation.

d ≤ λ

2(sin θobj − sin θre f )
(10)

where d is the pixel pitch of the CGH and θobj and θre f are the incident angles of the object beam and
the reference beam, respectively. In the actual calculation, we employed the virtual window (as shown
in Figure 5), which only passes through the object light, satisfying Equation (10).
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4. Point Cloud Creation

The object to be recorded is approximated as a collection of self-illuminated points. Each point
has x, y, z coordinates, a phase component and a real-valued amplitude of R, G, B. Since CG data are
usually used as the object, we have to convert CG data to the point cloud data [7].

For the creation of the point cloud from CG data, the OpenGL library is employed as the
3D-API [12]. By using a color buffer and a z-buffer, which are calculated by OpenGL, the point
cloud is calculated. However, the color buffer of the calculated point cloud is made from a single
viewpoint. Therefore, when the viewer changes position, the absence of the hidden surface’s data
causes a problem: hole and overlap. In order to solve this problem, we employed multi-view rendering,
which makes multiple point cloud data from several viewpoints. Accordingly, the reconstructed image
shows the correct occlusion in every viewpoint.

4.1. Shift Point Data

Since the object point that is close to the hologram plane is calculated by Equation (4) to avoid
divergence, the intensity of the object beam becomes weak, and the reconstructed image has dark
bands on the hologram plane, as shown in Figure 6c. Figure 6a is a CG object used in this research,
and the CG object is placed as shown in Figure 6b; the horizontal white arrow shows the hologram
plane. Therefore, the object points that are close by less than a certain distance from the hologram
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plane need to be shifted a bit far from the hologram plane, as shown in Figure 7. Figure 8 shows the
original point cloud data and the shifted point cloud data. As is evident from Figure 8, the shifted
point cloud data seem almost the same as the original data when the observer sees from front.

x

z
a) CG object

front view
b) CG object

top view
c) Reconstructed image

(simulation)

Figure 6. CG object and simulated image including the dark bands problem.
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a) Point cloud data without shift 
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d) Point cloud data with shift 
(top view)

Figure 8. Point cloud data with and without shift.
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4.2. Reallocation of the Point Cloud

According to the performance improvement of the output device, the resolution of CGH becomes
very high (over 50 Gpixels). It is difficult to calculate the whole fringe pattern of CGRH at the same
time by a general PC. In the calculation of CGRH, each holo-line is independent, as described in
Reference [10]. If the object points are only divided with the vertical coordinate, the reconstructed
image has distortion. When the hologram is reconstructed, the observer sees diffraction light from
the point of the hologram plane, which has to be linearly aligned with the viewpoint and object point.
Therefore, the object points are divided with the straight line connecting the viewpoint with the each
edge of the holo-line, as shown in Figure 9.
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5. Normalization of the Fringe Pattern

The calculated fringe pattern should be normalized by the entire fringe pattern. Otherwise, each
segment reconstructs the difference in the contrast of the image. Especially since the horizontal block
of CGRH is calculated for different numbers of object points, the difference in the contrast of the image
is very large. In this research, the calculated fringe pattern is stored as the floating-point number and
normalized by a range of 3σ after the calculation of the whole fringe pattern [13]. This σ is the standard
deviation calculated from the intensity of the fringe pattern.

6. Results

6.1. Fringe Printer

Figure 10 shows the schematic image of the fringe printer. The fringe printer consists of a laser, an
X-Y translation stage, liquid crystal on silicon (LCoS) as the spatial light modulator and optical parts.
A fractional part of the entire holographic fringe is displayed on the LCoS, and its demagnified image
is recorded on a holographic plate. Then, the plate is translated by the X-Y stage to expose the next
segment of the fringe. Table 1 shows the fringe printer’s parameter. Holographic material VRP-M,
which is manufactured by Slavich, is used as the holographic recording material.VRP-M is a silver
halide material.After development, VRP-M is bleached to improve the diffraction efficiency.
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Table 1. Parameters of the improved fringe printer.

Fringe Printer Value

Moving Area (mm2) 200 × 200
Focal Length (L2) (mm) 200
Focal Length (L3) (mm) 10
Demagnification Rate 1/20

Wavelength (laser) (nm) 473

LCoS Value

Resolution (pixel) 1920 × 1080
Pitch (µm) 7.0

Gray-scale Level (bit) 8
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6.2. Reconstructed Images

Table 2 shows the parameter of CGRH. For the full-color reconstruction, we calculate three fringe
patterns, which use different wavelengths, as shown in Table 2, from point cloud data. The calculated
fringe patterns are synthesized to an 8-bit gray-scale bitmap pattern. We used a Windows 10 64-bit
PC, which has Intel Core i7 7700 K CPU and 32 GB memory. By using the proposed method, an
over 50-Gpixel CGRH was calculated with uniform contrast. Since the normalization had to be
calculated after the entire fringe pattern calculation, the previous method only created about a quarter
size of the memory size, because the fringe pattern is calculated as a float value. After the point
cloud data creation, it took 14.5 min to process and to prepare the fringe calculation such as the
shift of object points, the addition of the calculation area and sorting the point cloud data for each
holo-line. The computation time of the fringe pattern was approximately 50 min. Figure 11 shows the
reconstructed images from several viewpoints. A white LED light, called HOLOLIGHT [14], was used
as the illumination light. HOLOLIGHT can easily make light that is close to the collimated light.
Reconstructed images show good color reproduction compared with the original CG in the horizontal
direction. In the change of the viewpoint in vertical direction, the color spectrum changes from red to
blue, as shown in Figure 11a,e.

Figure 12 shows the numerical reconstruction for with and without shift object points, which are
placed on or close to the hologram plane. To apply shift object data, the dark bands of Figure 12b are
solved in Figure 12a. Figure 13 shows the reconstruction from the different normalizations. To change
the normalization of each holo-line to the entire hologram, the contrast of the reconstructed image
became uniform. These numerical simulations employed the algorithm of [15].
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Table 2. Parameter of the hologram.

Parameter of the Hologram Value

Resolution (pixels) 288,080 × 194,560
Size (mm2) 101 × 68.1
Pitch (µm) 0.35

Wavelength (R, G, B) (nm) 633, 532, 473
Sub-line resolution (pixels) 512

Number of holo-lines 380
Average number of object points approximately 335,000

a) Top view

b) Left view c) Front view d) Right view

e) Bottom view

Figure 11. Reconstructed images from several viewpoints.

a) w/ shift object point b) w/o shift objet point

Figure 12. Comparison of with and without shift object data (numerical reconstruction).



Appl. Sci. 2018, 8, 1955 10 of 11

a) Normalization as a whole b) Normalization as a each Holo-line

Figure 13. Comparison of the normalizations (numerical reconstruction).

7. Conclusions

In this research, we have calculated and output an over 50-Gpixel CGRH that reconstructs a
full-color 3D image. The reconstructed images shows good color reproduction. For the calculation
of the large CGRH, we proposed split calculation for each holo-line. To apply this calculation model,
several object data, which were created from different viewpoints, were managed. In addition,
to employ the shift object data and the normalization as a whole, the output CGRH provides good
reconstructed images.
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Abbreviations

The following abbreviations are used in this manuscript:

CGH Computer-generated hologram
CGRH Computer-generated rainbow hologram
SLM Spatial light modulator
PBS Polarized beam splitter
LCoS Liquid crystal on silicon
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