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Abstract: Enriched boron-10 and its related compounds have great application prospects, especially
in the nuclear industry. The chemical exchange rectification method is one of the most important
ways to separate the 10B and 11B isotope. However, a real-time monitoring method is needed because
this separation process is difficult to characterize. Infrared spectroscopy was applied in the separation
device to realize the online determination of the boron isotope ratio in boron trifluoride (BF3). The
possibility of determining the isotope ratio via the 2ν3 band was explored. A correction factor was
introduced to eliminate the difference between the ratio of peak areas and the true value of the boron
isotope ratio. It was experimentally found that the influences of pressure and temperature could
be ignored. The results showed that the infrared method has enough precision and stability for
real-time, in situ determination of the boron isotope ratio. The instability point of the isotope ratio
can be detected with the assistance of the online determination method and provides a reference for
the production of boron isotope.
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1. Introduction

Boron in naturally occurring compounds is composed of two isotopes, one of mass 10 and the
other of mass 11. 10B at a relative abundance of 18.8%, has an unusually large cross section for the
capture of low energy neutrons [1]. Therefore, in high concentrations, it is particularly valuable for
neutron shielding [2,3].

The design and realization of the isotopes separation processes of boron began as early as
the Second World War. A large industrial plant with a productivity of up to 300 kg per year of
elemental boron with 95% 10B content was put into operation in 1944 [4]. At present, the most common
methods for the separation of boron isotopes include the distillation method [5], chemical exchange
rectification [6,7], ion exchange [8,9], and laser isotope separation [10,11], among others. Chemical
exchange rectification is the simplest and most productive method for the separation of 10B and 11B
isotopes at concentrations of 95% and over [12]. Figure 1 shows the principal scheme of the apparatus
for the separation of boron isotopes using the chemical exchange rectification method. 10B and 11B can
be extracted from the separation and the complex parts of the apparatus, respectively [13]. The internal
variations in this separation process tend to be very complex, making it necessary to frequently track
any changes in the isotope ratio obtained.
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Figure 1. Principal scheme of the apparatus for the separation of boron isotopes using the chemical
exchange rectification method.

The mass spectrometry (MS) method is one of the most important ways of analyzing the boron
isotope ratio. Analysis comes from the peaks with mass-to-charge ratios (m/e+) equal to 10 and
11 [14]. Porteous [15] et al. determined the isotopic ratio of boron in samples of groundwater by
inductively coupled plasma mass spectrometry (ICP-MS) to evaluate possible levels of boron pollution
from anthropogenic inputs into natural aqueous systems. The matrix effect was reduced by the
preconcentration and ion-exchange of the sample. Compared with the standard material, the precision
of the method achieved 0.13% (natural abundance). However, the sampling and preparation for
this method are very complex, so it is difficult to achieve real-time tracking for this process during
actual production. Infrared spectroscopy (IR) is a traditional technology that has been used for on-line
detection. For instance, Hepburn [16] et al. established a method using online FTIR spectroscopy to
determine the siloxane content in bio-gas. Both the precision and the detection limit for siloxane were
satisfactory when using this online FTIR technology.

The vibrational spectra of BF3 has been studied by Herrebout [17,18] et al.and Sluyts [19] et al.
The results were obtained by dissolving BF3 in liquid Argon. The infrared absorption bands changed
depending on the change in the boron isotope ratio. Thus, the bands could be used to measure
the boron isotopic ratio in BF3. Despite having a good signal-noise ratio in the ν3 region, such a
high dilution factor was difficult to realize via changing optical paths in the industrialized process.
Although the 2ν3 is a weak IR absorption band for BF3, the difference in absorbance peaks was about
112 cm−1 between 10BF3 and 11BF3 at the 2ν3 bands, which means that there is good resolution for this
measurement. In this paper, the IR method was applied to determine the boron isotope ratio based on
calculating the BF3 infrared spectrum at 2ν3. Further, an infrared spectrophotometer was installed in a
boron separation device to monitor the separation process online.

2. Experimental Method

2.1. Instruments and Reagents

The BF3 was purchased from LiuFang Gas Corporation (Dalian, LN , China) with a stated purity
of 99.95%. Small amounts of SiF4 were present as an impurity in the BF3 but these were ignored
in this study. NIST SRM 951a isotopic reference material of boric acid (10B/11B is 0.2473 ± 0.0002)
was purchased from the National Institute of Standards and Technology (Gaithersburg, MD, USA).
A gas cell (TianGuang Optical Instrument Co. Ltd., Tianjin, TJ, China) was equipped with the
CaF2 windows (ϕ40 × 5 mm). The optical path length of this gas cell was 100 mm. An infrared
spectrophotometer (Xintian Optical Analytical Instrument Co. Ltd., Tianjin, TJ, China) with an
accuracy of transmittance lower than or equal to ±0.2%T. (TJ270-30A, Tianjin, China). The 10B/11B
ratio was measured as a reference by an ICP-MS X7 (Thermo Electron Corporation, Waltham, MA,
USA) series mass spectrometer manufactured by the Thermo Electron Corporation.

2.2. Procedure for Offline Measurement

The procedure for the offline experiment is shown in Figure 2. BF3 gas samples with different
amounts of boron were collected from the chemical exchange rectification device or feed gas cylinder.
The outlet of the gas cell was linked to a buffer bottle and an absorber bottle filled with sodium
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hydroxide solution to prevent BF3 gas from escaping. BF3 was filling into the gas cell, which was
replaced by N2 to remove the air (especially the water in air) inside of the gas cell beforehand. This
was allowed to continue for at least 1–2 min, and the operation was stopped when the inside of the gas
cell was fully replaced by BF3. The valves of the gas cylinder and gas cell were closed in turn for about
10 min before use. The infrared spectra were acquired from scanning the contents of the gas cell at a
scanning speed of 1 cm−1/s and a scanning range of 4000 to 400 cm−1.
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2.3. Procedure for Online Measurement

The online isotopic ratio determination system was set on the device used for boron isotope
separation, as shown in Figure 3. The BF3 gas was extracted from a pipe where the gas flow and the
pipeline can be controlled by valve. The BF3 flowed through a gas cell that was equipped with two
CaF2 windows because the weatherability and corrosion resistance of CaF2 are superior to KBr under
atmospheric and BF3 conditions. The whole gas cell was fitted to the IR spectrophotometer by which
the infrared spectrogram could be obtained directly.
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Figure 3. Diagram of boron isotope ratio online determination system.

2.4. Testing method of ICP-MS

The ICP-MS was used to determine the isotope ratio as a reference. The BF3 gas was absorbed by
a small amount of ethanol and diluted to samples containing 0.1 µg/mL of boron with ultrapure water.
The operation method and experimental conditions of the ICP-MS experiments were similar to the
method found in [15]. After each test, the system pipeline was alternately washed three times with
2% HNO3 and 0.1 mol/L ammonia water solution to reduce any errors due to memory effect. The
specific parameters used for the ICP-MS experiments to determine the boron isotope ratios (10B/11B)
are shown in Table 1.
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Table 1. Experimental conditions and parameters of inductively coupled plasma mass spectrometry
(ICP-MS). Counts per Second (CPS); Atomic Mass Unit (AMU).

Item Parameter Item Parameter

Nebulizer Microconcentric
Nebulizer

Sensitivity/s−1

(µg·L−1)−1 1.759 × 106 CPS

Spray chamber temperature/◦C 3 Scanning mode Peak-jump
Nebulizer gas flow/L·min−1 0.93 Dwell time/ms 10
Auxiliary gas flow/L·min−1 0.9 Acquisition degree 10

Cool gas flow/L·min−1 10 Acquisition time/s 20
Plasma power/W 1250 Channels per AMU 3

Resolution Standard Runs/replicates 3
Sample uptake rate/mL·min−1 1 Sample depth/mm 104

Ionization lens parameters L1 3.8; L2 31.8; L3 189.8 - -

3. Results and Discussion

3.1. Calculation and Correction of the Isotope Ratio

Figure 4 shows the comparison of the IR spectrograms in the 2ν3 regions between natural
abundance BF3 and enriched 11BF3. The peaks at these regions are more complex than peaks in the ν3

regions. Fortunately, the peak changes had no significant overlap of the two bands. By contrast, the
absorption band of 2ν3 for 10BF3 (the range being about 3270–3170 cm−1) was significantly reduced,
which proved that this absorption band is influenced by the amount of 10BF3 that is present. In contrast,
the absorption peaks in the 2ν3 band for 11BF3 (the range being about 3170–3070 cm−1) varied regularly
with changing concentrations of 11BF3. Thus, it was feasible to calculate the isotope ratio based on
comparing the peak areas of these two absorption bands.
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The NIST SRM 951a boric acid standard sample was used to investigate the accuracy of the
ICP-MS. Before testing by ICP-MS, the standard boric acid sample was dissolved and diluted to a
solution containing 0.1 µg/mL of boron with ultrapure water. The relative error between the result
from the ICP-MS and the standard value is shown in Table 2.

Table 2. Accuracy experiment of ICP-MS.

10B/11B Results of ICP-MS Mean
Value

10B/11B Value of
Standard Material

Relative
Error/%1 2 3 4 5 6

0.2471 0.2464 0.2469 0.2468 0.2469 0.2475 0.2469 0.2473 ± 0.0002 0.16
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The relative error between the experimental result from the ICP-MS and the isotopic ratio
of the standard material was less than 0.16%. This result indicated that the ICP-MS, which was
used to determine the boron isotope ratio in solution has a high accuracy, and could be used to
calibrate the isotope ratio of boron in BF3. In Figure 4, the isotopic ratio values of the samples were
calibrated by ICP-MS. The 10B/11B ratios of the natural abundance BF3 and enriched 11BF3 samples
were 0.2473 ± 0.0009 and 0.0526 ± 0.0011, respectively.

10BF3 and 11BF3 could be regarded as two distinct forms of matter. As is shown in Figure 5, the
graph shape of A10 represents peaks of 2ν3 of 10BF3. Similarly, A11 represents 2ν3 peaks for 10BF3.
The baselines of the spectrograms were adjusted to zero before calculation. The experiments were
processed at room temperature (25 ± 3 ◦C).
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It is obvious that the difference in the peak integration value is significant between the A10/A11

and the true value of 10B/11B, and this is most likely due to 10BF3 and 11BF3 having different molar
absorption coefficients at the 2ν3 band. According to Lambert-Beer theory:

lg(I0/I) = ε × b × c (1)

where, ε is the molar absorption coefficient, c is the molarity of the substance (mol/L), b is the optical
length (cm), and lg(I0/I) is the absorbance at the specific wavenumber. A10 or A11 could be regarded
as the addition of several fixed number of absorptions roughly:

A10/A11 =
n
∑

i=1
lg(I0/I10)i/

n
∑

i=1
lg(I0/I11)i

=
n
∑

i=1
ε10ib10ic10i/

n
∑

i=1
ε11ib11ic11i

(2)

For b10 = b11, c10i/c11i is a constant for the same gas (fixed concentration). Then:

A10/A11 = (
n

∑
i=1

ε10i/
n

∑
i=1

ε11i)× (c10/c11) (3)

Let
n
∑

i=1
ε10i/

n
∑

i=1
ε11i = K. K, which is the correction factor, then:

K = A11/A10 × c10/c11 (4)

and
c10/c11 = A11/A10 × K (5)
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The correction factor, K, is the ratio of the addition of a series of molar absorption coefficients in
essence according to Equations (1)–(5). So, boron isotope ratio can be calculated by the peak areas
of A10 and A11. The correction factor can be obtained by testing the BF3 gas of a known isotope
ratio. Table 3 shows the continuous determination results of the A10/A11 ratio for the normal, natural
abundance BF3 sample. The ICP-MS result of 10B/11B for this sample is 0.2473. While, the isotope ratio
of 10B/11B is equal to c10/c11, based on the ICP-MS result and Equation (5), the value of correction
factor K is 0.5431.

Table 3. Investigation of the correction factor by continuous determination of the ratio of A10/A11 of
the natural abundance BF3.

A10/A11 (by IR Method) Mean Value RSD/% 10B/11B (by ICP-MS 1) K

0.4508 0.4513 0.4634

0.4553 1.16 0.2473 ± 0.0009 0.5431
0.4585 0.4601 0.4512
0.4535 0.4498 0.4515
0.4626

1 mean and standard deviation were obtained from 3 determinations.

3.2. Precision Experiment for the IR Method

The precision experiment was achieved by continuous measurements of a group of samples of a
known isotope ratio, and the results are shown in Table 4. The relative standard deviation (RSD) was
calculated by Equation (6),

RSD =
S
x
× 100% =

√
n
∑

i=1
(xi−x)2

n−1

x
× 100% (6)

where, S is the standard deviation, x is the mean value of the results of n tests, and n is the number of
tests. The RSD of the samples with the higher levels of isotope ratio were less than 2.00%. Although
the RSD of the sample where the 10B/11B ratio was 0.0506 (by ICP-MS) was more than 5.00%, the mean
value of the IR method was close to the results from the ICP-MS experiments. These results indicated
that the IR method is more precise when determining the boron isotope ratio.

Table 4. Precision experiment for the IR method.

10B/11B
(by ICP-MS)

Sample (10B/11B, by IR Method) Mean
Value S RSD/%

1 2 3 4 5 6

1.2351 1.2290 1.2382 1.2401 1.2320 1.2355 1.2413 1.2360 0.0048 0.39

0.2473 0.2405 0.2428 0.2451 0.2422 0.2506 0.2472 0.2447 0.0037 1.52

0.0506 0.0559 0.0532 0.0485 0.0511 0.0463 0.0509 0.0510 0.0034 6.64

3.3. Influence of the Pressure and Temperature

Due to the effect of the concentration of BF3, absorbance values grew with an increase in pressure.
In addition, an increase in the temperature made the peak pattern wilder. Figure 6A,B show the
influence of pressure and temperature on the isotope ratio of 10B/11B, with the ranges of pressure and
temperature being the possible interval values for the chemical exchange rectification operation. It was
found that both the pressure and temperature have little impact on the isotope ratio determination
results. Nevertheless, the optimum operation temperature was in the range of 278 to 298 K, because
the errors might increase significantly when the temperature is higher than 303 K.
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3.4. Investigation of the Enriched BF3 Gas by IR

Figure 7 shows the IR spectrograms for an enriched 10BF3 sample and an enriched 11BF3 sample.
It is clearly observed in Figure 7A that when the concentration of 10B decreased, the absorption peaks
of A10 were reduced and the A11 peaks increased. Similarly, the absorption peaks of A11 were reduced
and the A10 peaks were increased in Figure 7B. The calculation results for the samples in Figure 7A,B
were 0.0120 and 0.7536, respectively. All of the results were in good agreement with the ICP-MS as a
reference standard (the isotope ratios for Figure 7A,B were 0.0102 and 0.7546, respectively) for each
sample, which proved the validity of the IR method. A series of enriched BF3 samples, with their
isotopic ratios determined by IR, are listed in Table 5, with the mean and standard deviation obtained
from 10 determinations. By comparing the results of the IR method and the ICP-MS method, the errors
of measurement increased slightly when determining the ratio of high abundance samples. This could
be attributed to the decline in the signal-noise ratio (SNR), which was caused by the decrease in the
absorbance value.
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Table 5. Comparison of the results from the IR method and ICP-MS method.

Series No.
Isotope Ratio of 10B/11B

Results of IR Method Results of ICP-MS

1 1.6385 ± 0.0043 1.6390 ± 0.0006
2 0.7536 ± 0.0045 0.7546 ± 0.0010
3 0.4815 ± 0.0038 0.4832 ± 0.0009
4 0.0915 ± 0.0059 0.0905 ± 0.0010
5 0.0504 ± 0.0063 0.0488 ± 0.0012
6 0.0120 ± 0.0079 0.0102 ± 0.0007

3.5. Online Determination of Boron Isotope Ratio

Figure 8 illustrates the online determination results from the separation part of a chemical
exchange rectification device, showing the enriched stage, the stability stage, and an instability point
(where the isotope ratio suddenly drops). With the assistance of IR spectroscopy, the instability point
can be found and thus encourage correction of the operation. Figure 9 shows the isotope ratio curve of
the complex part where the 11BF3 was enriched on the same isotope separation device. The errors of
determination results were a little larger when the isotope ratio become smaller with the decrease in
SNR. The sampling stage experiments lasted for 12 h and the sampling interval was 2 h. The curve
shows the change of the isotope ratio in the process of product collection. The overtopping (exceeding
limit value) point indicated that the sampling operation should be stopped at that moment, because
the limit of the isotope ratio for 11B product (10B/11B ≤ 0.0204) has been exceeded.
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4. Conclusions

A method was established to determine the isotope ratio of boron based on calculating the 2ν3

region of BF3 in infrared spectra used in a boron separation device to monitor the separation process
online. The results showed that this has many benefits for a chemical exchange rectification device with
the assistance of the online IR method. Response speed and measuring precision might be enhanced
with further improvements such as the use fiber-optic technology.
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