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Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
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Featured Application: We describe a method for segmentation of ethnomusicological field
recordings, which robustly segments field recordings into individual units labelled as speech,
solo singing, choir singing, and instrumentals. We also present the SeFiRe segmentation tool
that can be used to visualize and segment field recordings.

Abstract: The article presents a method for segmentation of ethnomusicological field recordings. Field
recordings are integral documents of folk music performances captured in the field, and typically
contain performances, intertwined with interviews and commentaries. As these are live recordings,
captured in non-ideal conditions, they usually contain significant background noise. We present a
segmentation method that segments field recordings into individual units labelled as speech, solo
singing, choir singing, and instrumentals. Classification is based on convolutional deep networks,
and is augmented with a probabilistic approach for segmentation. We describe the dataset gathered
for the task and the tools developed for gathering the reference annotations. We outline a deep
network architecture based on residual modules for labelling short audio segments and compare it to
the more standard feature based approaches, where an improvement in classification accuracy of
over 10% was obtained. We also present the SeFiRe segmentation tool that incorporates the presented
segmentation method.

Keywords: audio segmentation; field recordings; deep learning; music information retrieval

1. Introduction

Ethnomusicological field recordings are recordings gathered in the field, capturing folk music
performances, usually intertwined with interviews with performers (informants) or commentaries by
the folklorist. As their role is to document the legacy of folk musicians in their actual environment,
the recordings are usually taken in non-ideal spaces (e.g., a performer’s home) and may contain
environmental noises (e.g., people entering and leaving the room, background talking) or interruptions.
The practice of methodological gathering of field recordings started in the 1930s (by John and Alan
Lomax), so ethnomusicological archives all over the world contain large recording archives spanning
several decades. Older recordings were recorded with (by today’s standard) poor recording equipment
and may also suffer from signal degradations.

One of the first tasks that ethnomusicologists (or algorithms) face when studying a field recording,
is its segmentation into smaller coherent units, such as units containing speech or individual folk song
performances. Segmentation of audio recordings has a long research history starting with segmentation
of speaking/non-speaking parts in speech recognition or segmentation of radio broadcasts into
music/speech parts. Traditionally, segmentation approaches relied on hand-crafted features, tuned
to discriminate between speech and music, which were the two categories most works aimed to
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discriminate. Many approaches use standard timbral features, such as Mel Frequency Cepstral
Coefficients [1] or chroma features [2], or develop new features, such as noise robust discriminators [3]
or musically-informed Continuous Frequency Activation [4]. Based on the features, authors use
different approaches to segment recordings, such as joint classification and segmentation by using
a combination of standard hidden Markov models and multilayer perceptrons [5] or using a region
growing algorithm to identify regions likely to contain speech or music followed by a maximum
likelihood model that maximizes the probability of class labels given frame-level features and segment
length limits [6].

Recently, as in other domains, deep neural networks are increasingly used for audio segmentation.
In the Mirex 2015 music/speech classification and detection task [7], 11 authors submitted their
classification algorithms, where three were based on deep neural networks, including the best
system [8] (99.7% accuracy) that used one convolutional and one fully connected layer to classify
log-Mel spectrograms as speech or music. Kruspe et al. [9] also explored deep neural networks for
segmentation of broadcast signals, where they applied several fully connected layers over MFCC
and chroma (CENS) features to discriminate between music/non-music, speech/non-speech, and
noise/signal. Reported accuracies ranged from over 99% for silence/signal detection and 98% for
speech/non-speech discrimination, down to 93% for music/non-music discrimination. In the Mirex
2018 music and speech detection task [10], all five authors used variants of different deep architectures
for the segmenting TV broadcasts, where accuracies reached around 90% for speech and music
detection. A more general audio classification approach was presented recently by authors from
Google [11], who compared convolutional architectures for labelling audio from 70 M videos, where the
best performing inception and residual networks achieved an AUC score of over 0.91 for classification
of audio into 3000 classes. They also showed that features from the trained networks can be used
to boost performance for other audio labelling tasks, such as predicting labels on the AudioSet
dataset [12].

In this paper, we explore deep neural networks for labelling and segmenting ethnomusicological
field recordings. Unlike broadcast recordings, field recordings are more challenging to label and
segment due to their noisy nature. This was well demonstrated in the Mirex’15 music/speech
segmentation task, which used a dataset that included several field recordings. The best detection
system was based on hand-crafted features and a simple logistic regression classifier trained on field
recordings [1]. It outperformed deep neural networks and achieved an average frame-based accuracy
of 89%, 10% less than on the simpler clean speech/music discrimination task. We describe the dataset
gathered for our experiments, which we make available to the community, the methods used for
labelling and segmentation, and the results achieved, as well as the tools developed in the process.

2. Materials and Methods

The segmentation algorithm presented in this paper was designed to robustly label and segment
ethnomusicological field recordings into consistent units, such as speech, sung, and instrumental parts.
Resulting segmentations should be comparable to manual segmentations researchers make when
studying recordings. Field recordings are documents of entire recording sessions and typically contain
interviews with performers intertwined with actual performances. As these are live recordings of
amateur folk musicians, they usually contain lots of “noise” and interruptions, such as silence when
performers momentarily forget parts of songs, false starts and restarts, dancing noises, interruptions
by other persons, or cars driving by. Performances may also change character; singing may become
reciting, a second voice may join or drop out of a performance, etc.

The described nature of field recordings calls for a robust segmentation algorithm that would not
over-segment a recording at each interruption—for example, we are not interested in each boundary
separating speech and sung parts, as only some of them are actual segment boundaries. We would
also like to distinguish between several different classes of segments and would like to take some
prior knowledge of the classes into account. Last, we are not interested in millisecond-exact segment
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boundaries or exact labeling of each small recording fragment; sometimes placing a boundary between
two performances is a very soft decision and accuracy of a few seconds is good enough. Taking these
points into account, we propose a three step approach to segmentation:

• First, a deep neural network is used to classify short audio segments into a set of
predefined classes;

• then, a set of candidate segment boundaries is obtained by observing how the energy and class
distribution change within the recording; and

• finally, the recording is segmented with a probabilistic model that maximizes the posterior
probability of segments given the set of candidate segment boundaries with their probabilities
and prior knowledge of lengths of segments belonging to different classes.

2.1. Deep Neural Networks for Labelling

Exploration of field recordings from a variety of ethnomusicological archives revealed four major
classes of contents that appear in various cultures: Solo singing, choir (more than one singing voice)
singing, instrumental performances, and speech. Our goal was, therefore, to classify field recordings
into the four classes, and not to limit ourselves to just speech and music.

To train deep learning classifiers, large datasets are needed—the larger the better as recent
experiences show. For speech/music segmentation, some datasets, such as the well-known GTZAN
speech music collection [13], are available, but they mostly contain studio-grade samples labelled as
speech or music, which is not very suitable for our goal. On the other hand, the recent Audio Set
dataset [12] is an excellent large-scale audio classification dataset, however, its categories and contents
are also not ideal for our purpose; for example, there is no solo singing category, examples labeled
with singing are mostly accompanied by music, while the musical genres are mostly oriented towards
popular music genres (pop, rock, etc.).

2.1.1. Dataset

To train and evaluate deep learning models, we decided to gather and label a dataset that
would contain short excerpts from a variety of ethnomusicological (and related) archives that put
their collections online in recent years. The sources include: The British Library world & traditional
music collection (https://sounds.bl.uk//World-and-traditional-music), Alan Lomax recordings (http:
//research.culturalequity.org/home-audio.jsp), sound archives of the CRNS (French National Centre
for Scientific Research) (http://archives.crem-cnrs.fr/), and a number of recordings from the Slovenian
sound archive Ethnomuse and the National Library of Norway, which are not available online, but were
made available to us by ethnomusicologists with the respective institutions. These field recordings
were augmented by the GTZAN music/speech collection, the Mirex 2015 music/speech detection
public dataset, and the MUSAN corpus [14].

Five second long excerpts were extracted from recordings in these collections. To manually label
them into the target classes, we enhanced the web-based audio annotator tool [15], so that it can
be controlled exclusively by the keyboard. This makes labelling very fast when an excerpt contains
just one class (e.g., speech). When an excerpt contains multiple classes, the user can still use the
mouse to choose individual regions and label them accordingly. The enhancements enabled fast
multi-user annotation of audio excerpts into the four main classes (speech, solo singing, choir singing,
and instrumental), which we augmented with three additional classes. The “Not clear” class was
introduced for sections containing too many short fragments of different types or for sections where
the class is difficult to establish due to performance peculiarities (e.g., when it is difficult to discern
between speech and singing). The “Noise” class was introduced for excerpts with no discernable
contents, and, finally, the “Voice over instrumental” class to separately annotate this type of recording,
which will be useful in our future work. The annotator’s goal was to label each five second clip
with the corresponding label(s), where the clips were randomly chosen from the dataset of unlabeled

https://sounds.bl.uk//World-and-traditional-music
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clips for each participating annotator. The user interface of the annotation application, showing the
spectrogram of an excerpt with the labelled class, was kept very similar to the original audio annotator
and is shown in Figure 1.
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Using the interface, over 7000 excerpts were labelled. Approximately 80% of the excerpts were
labelled into one of the four target classes, the distribution of class labels within the target classes
was approximately equal (roughly 23% for speech, solo singing, and choir singing, and 33% for
instrumentals). This was expected, as we chose the classes to be the ones most often represented
in the field recordings. Ten percent of the other excerpts were labeled as vocals and instrumental,
approximately 6% as not clear, and 4% as noise. The entire dataset with audio excerpts for internal
sources and links to original materials is made publicly available with this paper (the URL is given at
the end of the paper).

2.1.2. Network Architecture and Training

The basic architecture of the deep neural network for classification stems from our previous
work [16], where we demonstrated their usability for the task. We chose convolutional deep networks
as our main classification tool and focused specifically on residual networks [17], which demonstrated
good performance for a variety of image, as well as audio-based tasks. The main feature of residual
networks are their shortcut connections that implement identity mappings and enable convolutional
blocks to learn residuals between the underlying mapping of features and the input. We augmented
the first layer of the previously presented approach with music-specific feature filters and zero-mean
convolutions, which together with data augmentation, improved the overall classification accuracy.

To provide network input, all the audio excerpts were first downsampled to 22,050 Hz, mixed
to a single channel, and normalized. The audio was then split into 46 ms frames with a 14.3 ms
step size, and 80 bin mel-scale spectra (30–8000 Hz) computed for all frames. We log-scaled the mel
values, adding 1e-5 before applying the logarithm and used 2 s long feature blocks (80 × 140) as
network inputs.

The network architecture is shown in Figure 2. The input is processed by two sets of music-specific
feature filters: frequency filters and temporal filters. Frequency filters model changes in the frequency
domain regardless of time—we used 10-by-1 filters, corresponding to the average frequency range
of 700 cents. Temporal filters, on the other hand, model temporal dependencies independent of
frequency—we used 1-by-10 filters, which thus correlate with approximately 143 ms (10 frames) of
audio. This type of filter specialization has been shown to be effective for various audio processing



Appl. Sci. 2019, 9, 439 5 of 12

tasks, such as genre classification and emotion prediction [18,19]. Although each type of filters ignores
one dimension (temporal or frequency), these dependencies are learned on higher network layers.

Additionally, to make the first layer filters more robust to varying recording conditions, we
enforced the filters to have a zero mean, thus effectively learning to recognize the differences in
the signal and ignoring constant offsets. Zero-mean convolutions were introduced to singing voice
detection by Schlüter and Lehner [20] and were shown to be very robust to signal gain changes.

Output feature maps of the initial layer are subsampled by a 2× 2 max pooling layer, and followed
by four resnet v2 blocks [17], where the size of the feature maps is halved (in each dimension) and the
number of filters doubles between three consecutive blocks. Exponential linear units [21] are used as
activation functions of the resnet layers. The batch normalized output of resnet blocks is gathered by
1 × 1 convolutions into a 2D feature map. The map is processed by a small fully connected layer with
four outputs, and the softmax activation function calculates final class probabilities.

The architecture and parameters of the higher layers are derived from our previous work [16],
where we showed the efficiency of ELU and resnet layers for the task.
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Altogether the network contains 172,708 trainable parameters, which is relatively small in the
deep learning world, where sizes of tens of millions of parameters are usual, we wanted to keep the
network small due to the relatively small training set. Also, in our experiments, larger network sizes
did not bring a significant increase in accuracy.

The network was trained on a dataset of 7136 audio excerpts with minibatches of 128 examples.
For each audio example, the block of input features was drawn from a random location within the five
second audio excerpt, so that for each epoch, the feature blocks used to train the network differed in
their location within training files. Such time translation diversifies the limited training data available
and improves performance, as was also demonstrated elsewhere [22]. In addition, time stretching and
pitch transposition (scaling and shifting of the FFT spectrogram) of up to 30% was used to further
augment the training data and reduce overfitting.

Stochastic gradient descent was used for training in 1000 epochs, and the learning rate was set to
decay from 0.1 by a factor of 0.96 each 500 steps. The experiments were implemented in Tensorflow,
and links to code are provided at the end of the paper. Training was done using the NVIDIA Quadro
K5000 GPU and on average took 7 h for one model.

2.2. Segmentation

The goal of segmentation is to split the recording into a set of consistent units, such as speech
or singing. Unlike broadcast segmentation, we are not interested in each small change of contents
(e.g., just a few spoken sentences), but aim to segment the recording into larger units (entire songs or
longer spoken parts). This is also where the presented approach differs the most when compared to
other speech-music segmentation approaches (e.g., [5,6])—it is designed to segment audio into broader
regions and to ignore small local changes.

The presented segmentation algorithm is a modification of our approach first presented in [1].
To segment a recording, we first find a set of candidate segment boundaries and calculate the likelihood
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of splitting the recording at each boundary. We consider two criteria for boundary placement:
A criterion based on signal energy, such as when performances are separated by regions of silence
(or noise, since recordings may be quite noisy), and a criterion based on the change in signal content,
such as when speech is followed by singing. The way the two criteria are calculated is the main
distinction between the presented approach and [1].

To observe the presence of a signal (vs. silence or noise), we first calculate the RMS energy, e,
of the audio signal over 46 ms time frames. The energy is compared to two measures capturing the
global and local amplitude thresholds. First, the 1st percentile of the energy within 20 s time windows
is calculated and the global noise floor, ng, is set to 5 dB over this value and lower bounded to −60 dB.
Such an adaptive estimate is needed, as field recordings are often noisy or recorded with varying
dynamics, so an absolute threshold would not be suitable as a global noise floor estimate. The local
noise floor, nl , captures local dynamics and is set to 15 dB below the energy median filtered with a 6 s
time window. Based on both noise floors, the silence indicator function, es(t), is set to a value of one,
when energy at time t falls below any of the two noise floors, and zero elsewhere. The likelihood of
placing a boundary at time t, ps(t), is calculated by zero-phase filtering the indicator function with a
second order low pass filter with 0.1 Hz cutoff. An example is given in Figure 3.

Transitions between different kinds of signal content (e.g., speech to singing) are detected by
calculating the symmetric Kullback-Leibler (KL) divergence, d(t), between probabilities of target classes
(as calculated by the deep classifier) within 10 s windows to the left and right of each time frame. KL
divergence will be large when the contents (class probabilities) on both sides will be different, and close
to zero, when they will be similar. The transition boundary placement likelihood, pt(t), is obtained
similarly to the silence likelihood by thresholding and low-pass filtering the divergence function, d(t).
Both likelihood curves are depicted in Figure 3, which shows an excerpt of a field recording, where
content varies between speech and singing. The transition likelihood indicates segment boundaries due
to transitions between different content types well, while the silence likelihood indicates boundaries
between individual units separated by silence/noise, as well as short pauses, which often occur during
speech segments.
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To segment a recording, we construct a probabilistic model, which integrates the data on segment
boundary likelihoods with prior knowledge of typical segment lengths. First, a set of boundary
candidates, Bi, is obtained by finding peaks of both curves. Based on the boundary candidates,
segmentation is defined as a sequence of segments, Si1, Si2, . . . , SiN , 0 < i1 < i2 < . . . < iN, where
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Si1 starts at time 0 and ends at candidate boundary, Bi1, Si2 starts at candidate boundary, Bi1, and ends
at Bi2, Si3 starts at Bi2 and ends at Bi3, and so on.

We treat each candidate boundary, Bi, as a discrete random variable with two outcomes: Either the
candidate boundary represents an actual boundary and splits the recording into two segments, or not.
The probability mass function for the variable is defined as the maximum of both likelihood curves:

P(Bi = true) = max(ps(ti), pt(ti)). (1)

In our model, the probability of each segment is only dependent on the location of the previous
segment, so we can express the joint probability of all segments as:

P(Si1)P(Si2|Si1)P(Si3|Si2) . . . P(SiN |SiN−1). (2)

To calculate the probability of placing a segment boundary at Si given Sj, we consider all candidate
boundaries within the segment, as well as its duration. If the segment is to start at time j and end
at i, values of all candidate boundary variables within the segment must be false, while the value of
the candidate boundary variable at time i must be true. Segmentation can be further constrained
by previous knowledge of the typical lengths of segments, Di, given their class, leading to the
following formulation:

P
(
Si
∣∣Sj
)
= P

(
Di
∣∣Si, Sj

)
P(Bi = true) ∏

j<k<i
P
(

Bj = f alse
)
. (3)

Probability, P
(

Di
∣∣Si, Sj

)
, of the segment duration given its boundaries is dependent on the class

of the segment, as calculated by the deep classifier. Probability, P
(
Ci = c

∣∣Si, Sj
)
, that the segment, i,

belongs to class c is calculated by averaging all class labels within the segment.
By analyzing durations of segments in our collection of field recordings, we estimated the means

and standard deviations for all segment classes (µc, σc); for example, the duration of speech segments
varies a lot and ranges from several seconds to over 10 min, while the average length of choir singing
segments is around three minutes and their standard deviation below two minutes. By additionally
enforcing minimal segment duration, Dmin, we obtain the following expression for the probability of
segment duration:

P
(

Di
∣∣Si, Sj

)
=

{
∑
c

P
(
Ci = c

∣∣Si, Sj
)
G(i− j, µc, σc)

0, i− j < Dmin
, (4)

where G is the unscaled Gaussian function.
We find the sequence of segments that maximizes the joint probability as given in Equation (2)

with dynamic programming, which leads to a simple and efficient solution. After segmentation is
calculated, segments can be labeled by finding the class, c, that maximizes P

(
Ci = c

∣∣Si, Sj
)
.

3. Results

In this section, we evaluate the presented labelling and segmentation algorithms on different
datasets and compare their performance to other approaches.

3.1. Labelling

While there is a large number of published works dedicated to speech/music classification, they
mostly deal with broadcast recordings, where their per-frame classification accuracies reach over 90%
for classification into speech or music. Results may depend highly on the dataset, as recent Mirex
music/speech detection results also show [7,10]. We are not aware of other works dealing specifically
with field recordings, so to put our work into perspective, we compare it to three other approaches on
the same dataset:
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• A similar residual network architecture, but without music-specific filters in the input layer
(12 3 × 3 filters were used), without zero-mean convolutions and data augmentation during
training [16]. The network was trained on 64 channel mel spectrograms;

• a multilayer perceptron with one hidden layer of 16 neurons trained on the VGGish [11] features
extracted from the data. VGGish are audio classification features extracted from a VGG-like
deep model trained on a large YouTube dataset and made available by Google. Input to the
MLP consisted of two consecutive 128-dimensional VGGish vectors, each summarizing 1 s of
audio; and

• a simple logistic regression model trained on hand-crafted features, as described in [1].

Three-fold cross validation was used to assess the performance of each approach, where two
thirds of the dataset was used for training, the remaining third for testing, and the procedure repeated
three times. The train/test split was done on audio files, so the audio from the test set never appeared
in the training data. Average classification accuracies and the number of parameters of each approach
are listed in Table 1. The proposed model outperforms the others. It has approximately the same
number of parameters as our previous approach; however, the music specific filters with zero-mean
convolutions, combined with data augmentation, increased its accuracy. Both approaches use batch
normalization and l2 regularization during training to avoid overfitting. In addition, a third of the
dataset is used for testing at each run, so it is safe to assume that the performance is realistic for a
wide variety of materials. The small neural network based on the VGGish features also performed
well, and analysis showed that this approach makes a higher number of errors when discerning solo
singing from speech, as well as choir singing from solo. These classes are likely underrepresented
in the AudioSet dataset, so the features do not capture the distinctions well enough. Our previous
approach based on a small set of carefully chosen features and a simple logistic regression classifier still
achieves an almost 80% accuracy. As it is fast to calculate, it represents a viable option for classification
in scenarios where speed is important and GPU not available (it is approximately seven times faster
than the deep learning approach on a consumer grade GPU).

Table 1. Average classification accuracies for the compared approaches.

Model Number of Parameters Accuracy

proposed approach 172,708 0.92
standard resnet 172,936 0.89
MLP on VGGish 4180 0.8677

logistic regression 51 0.7958

An analysis of errors showed that many mistakes are logical and can be attributed to several
factors. First, some of the recordings are very noisy and even a human listener can have some difficulty
discerning the contents. Such recordings are often mistakenly classified as instrumentals, as the noise
is considered part of the performance. The confusion matrix in Table 2 shows that many mistakes are
made between neighboring classes: Solo singing is misclassified as choir singing or speech, choir mostly
as solo, instrumentals as choir, or speech as solo. Some confusions may be due to the particularity of
the contents, e.g., some short excerpts of dialectal speech may sound very much like singing, when old
people sing, they may sound similar to speech. Chanting is also problematic, as it borders on speech
and singing, while choir parts sung in unison, labelled as choir singing in our dataset, may sound very
similar to solo singing and are often confused as such.

Some mistakes are not really mistakes—an excerpt may be correctly classified, and wrongly
labelled. Namely, each audio clip in our dataset is only labelled with a single class, even though parts
of it may contain another class. An example is a choir recording, where some parts are sung solo and
then evolve into choirs. As the network only classifies short 2 s excerpts, it may correctly label the solo
part as solo, however, the entire example is labelled as choir, so this is considered a misclassification.
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If we consider the labeling of whole five second audio clips by averaging class probabilities within the
clip and taking the maximum value as its class, the overall classification accuracy increases to 94%.

Table 2. The confusion matrix calculated from test results of all three cross validation folds.

Predicted
solo choir instr. speech

true

solo 0.84 0.07 0.02 0.07
choir 0.05 0.91 0.03 0.01
instr. 0.01 0.02 0.96 0.01
speech 0.05 0.01 0.01 0.93

3.2. Segmentation

We evaluated our segmentation algorithm on a set of 160 field recordings from the Ethnomuse
archive, which were manually segmented by ethnomusicologists and contained 3703 segments. When
evaluating the accuracy of our segmentation approach on this dataset, we needed to consider the goal
of segmentation, which is not to separate every small excerpt of a particular type (e.g., short speech
between units), but larger units, such as songs. This also means that boundaries in manual annotations
are not placed very precisely, but often quite arbitrarily. For example, if two songs that follow each
other are separated by an 8 s break or a short spoken sentence, the boundary annotation may be placed
anywhere within the pause. To account for that and provide a realistic measure of the algorithm’s
performance, we needed to use wide evaluation windows (up to 8 s) within which the boundaries
were counted as correctly placed—much larger as is customary, e.g., in Mirex evaluations, where 0.5 s
and 1 s windows are used. Note, since the average segment length is over 120 s, such large windows
sizes are still acceptable. In Table 3, we provide results of our approach with two differently sized
windows: 3 s and 8 s. We also provide a comparison of the presented probabilistic approach to a
baseline based on thresholding the silence and/or transition likelihood curves at the value of 0.5.

With larger window sizes, the algorithm can find a majority of boundaries (recall is at 76%).
Precision is not so good, which means that the algorithm oversegments certain regions. This mostly
occurs in long speech sections, which contain regions of silence that, for example, occur when people
reflect on past events (consequently causing new boundaries), or in solo singing performances that
are interleaved with reciting or spoken statements, such as “this is repeated three times and we start
dancing in a circle so and so ...” (causing high KL divergence and new boundaries). False negatives
occur when performances follow each other without significant changes, for example, several songs
sung in a row almost without interruptions or when the boundary was placed because of the change
of topic in speech parts, which the algorithm is not designed to detect. Segment start or end points
may also be missed, because they interleave with speech, so that the boundary is placed either too
soon or too late in a recording.

The accuracy of classification of correctly found segments into one of the four classes is similar
to the overall classification accuracy of entire excerpts as presented previously—95%, errors are also
similar to the ones described previously.

Table 3. Precision, recall, and F1 measure for segmentation with different tolerance windows.

Algorithm 3s Window 8s Window

P R F1 P R F1

proposed approach 0.47 0.62 0.52 0.56 0.76 0.63
silence threshold 0.51 0.38 0.40 0.58 0.44 0.46

transition threshold 0.45 0.42 0.40 0.56 0.54 0.51
silence & transition thr. 0.44 0.60 0.48 0.52 0.70 0.57
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4. Discussion

Although it seems that with the advent of deep learning, which is already solving many difficult
classification problems, music-speech classification and segmentation should be a relatively trivial
task, recent work shows that we are still quite far from a perfect solution. Audio materials can be very
diverse, so developing a robust approach that would process broadcast recordings on one side, and
field recordings, on the other side of the quality spectrum, is difficult. The type of music the algorithms
are trained on—e.g., commercial music vs. folk music, is also important, as is the goal of segmentation.
Segmenting broadcast recordings, where the goal may be to detect all broadcast music, even short clips
in the presence of speech (as in the recent Mirex evaluation [10]), is a different task to segmenting field
recordings, where division into broader units is required, and short local changes need to be largely
ignored. Also, as we show in our analysis of a wide spectrum of field recordings, these may require a
finer level of classification than simply speech and music.

Therefore, we believe that research into specialized methods, such as ours, which is specifically
targeted to segmentation of field recordings, is still needed. To disseminate our work, we make the
dataset used for training our models, as well as the code for training and segmentation, available to the
research community. To assist ethnomusicologists with their work, we also developed a segmentation
tool, SeFiRe, which we make available to interested researchers. SeFiRe incorporates our classification
and segmentation algorithms (as presented in this paper, as well as a music-speech segmenter [23]) to
visualize and automatically segment field recordings according to their contents. The segmentation
can also be manually corrected and exported.

SeFiRe visualizes field recordings as color-coded waveforms, where the color matches the contents.
The four classes, speech, solo singing, choir singing, and instrumental performances, are mapped into:
Dark blue, light blue, green, and red color. The display color of each short audio excerpt is interpolated
between these basic colors according to the probability that the excerpt belongs to the respective class.
Thus, where the classification algorithm is uncertain between two classes (e.g., solo vs. choir singing),
the color reflects the uncertainty and is placed somewhere between the two.

The user interface of SeFiRe is presented in Figure 4. The user may load a new recording, play
back and navigate the recording, and perform segmentation, whereby they can choose the algorithm
as well as the sensitivity of segmentation, which influences the number of placed boundaries. The user
may also manually correct, annotate, and store the resulting segmentation.
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5. Conclusions

In the paper, we presented a method for segmentation of field recordings into individual units. Our
method is composed of two main components: A deep neural network for classifying audio excerpts
into four content types (speech, solo singing, choir singing, and instrumentals), and a probabilistic
segmentation algorithm based on the detection of changes in signal energy and content. We presented
an evaluation of our method, which showed that it performs favorably to the compared approaches,
and described our tool for segmentation of field recordings, SeFiRe, which provides a user-friendly
way for the interested public to use the presented algorithms for segmentation. The dataset, code for
training the models, the trained model, and the SeFiRe tool are made publicly available with this paper.

Our future work will be directed primarily towards improving the classification. On the one
hand, we wish to improve its accuracy by expanding the dataset and adding other external sources,
such as the AudioSet, as well as using the weakly labelled paradigm for training. We also plan to
expand on the number of classes, in the first place to include the voice+instrumental category, in order
to be able to identify all parts of the field recordings that contain vocals. We will use a separate voice
detector for the task. Furthermore, we plan to work on a hierarchical classification framework for the
identification of instrument families and experiment with an integrated deep approach that would
perform classification and segmentation jointly.

Supplementary Materials: The SeFiRe dataset is available online at: https://github.com/matijama/field-
recording-db. The training code and the trained model are available online at: https://github.com/matijama/
field-recording-segmentation. The SeFiRe segmentation tool is available online at http://lgm.fri.uni-lj.si/
portfolio-view/sefire/.
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