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Abstract: Determining the quality of meat has always been essential for the food industry because
consumers prefer superior quality meat. Therefore, the food industry requires the development of a
rapid and non-destructive method for meat-quality determination. Over the past few years, a number
of techniques have been presented for monitoring meat–chemical attributes. However, most previous
techniques are quite expensive, destructive, and require complex hardware to operate. Thus,
in this work, we demonstrate a low-cost sensing technique (eliminating the expensive equipment
and complicated design) for meat–chemical quality detection. The newly developed system was
integrated with a low-cost monochrome camera and ordinary light-emitting diode (LED) light sources,
with fifteen different wavebands ranging from 458 to 950 nm. The monochrome camera captures
images of the meat sample across a spectral range from 458 to 950 nm using a single snapshot method.
The chemical values (e.g., moisture, fat, and protein) were also determined using conventional
methods. The collected images were combined to produce a multispectral data cube and to extract
spectral data. Partial least squares (PLS) and support vector regression (SVR) modeling were used on
the extracted spectra and chemical values. The developed models for meat samples displayed accurate
chemical-component prediction (R2 > 0.80). Our model, based on a monochrome sensor using only
fifteen wavebands, provided reasonable results compared with the previously developed expensive
spectroscopic techniques. Therefore, this complementary metal-oxide semiconductor (CMOS) based
multispectral sensing technique may have the potential to detect meat quality, thereby facilitating a
simple, fast, and cost-effective method applicable to small-scale meat-processing industries.
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1. Introduction

Meat has become an important resource for human health; it has a high nutritional value, flavor,
and juiciness characteristics [1]. In recent years, consumers and buyers have become more conscious
of meat quality and safety [2]. A United Nations Food and Agriculture Organization (FAO) report
illustrates that, during the past decade, meat production and consumption has increased continuously,
and will increase by 60% by 2050. To satisfy future meat demands, governments and organizations
will likely be concerned about meat production, quality, and safety. A consumer’s meat selection
is usually based on color, marbling, texture, and juiciness parameters [3]. These parameters are
influenced by several chemical attributes. The attributes of moisture, protein, and fat are the largest
contributors to meat quality [4]. They play an important role in meat quality and are directly associated
with the juiciness, tenderness, marbling, and nutritional characteristics of the meat [5]. Thus far,
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a variety of instrumental techniques has been employed to assess the chemical properties in meat
samples. Conventional techniques for meat-quality assessment generally rely on visual evaluations and
laboratory-based chemical analyses, e.g., Kjeldahl nitrogen, Soxhlet extraction, and chromatography
techniques [6]. Although these techniques provide very sensitive chemical identification, they are
tedious, time-consuming, destructive, and often require expensive chemicals.

Because of these weaknesses, conventional techniques are not applicable for large-scale meat
industries, where speed is significant, for on-line product-quality measurements [7]. To overcome such
issues, spectroscopic techniques, which are known as very powerful tools, are widely implemented
in large-scale meat-processing industries [8]. Example techniques include hyperspectral imaging
(HSI), infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, and Raman
spectroscopy [9–11]. In recent years, spectroscopic techniques have become more popular in large-scale
meat-processing industries [12]. The spectroscopic techniques are quite expensive, due to their
high-cost sensor and optic elements; nevertheless, the meat industry invests in a large budget to
employ these techniques to assure the quality of their product. These spectroscopic tools provide
the company with a non-destructive, chemical-free, and rapid quality assessment during the online
meat-product measurement [13]. Several studies have confirmed the potential use of spectroscopic
techniques for monitoring the chemical properties of meat samples with outstanding prediction
accuracies [14–20]. Previous studies have already proven that spectroscopic devices have great
potential for product-quality management and are easily applicable to large-scale meat-processing
industries with high-throughput product screening.

Apart from these applications, a range of studies has been particularly conducted for monitoring
different quality parameters of various meat and meat products utilizing an HSI technique in different
spectral ranges [21]. This technology combines the advantages of both spectroscopy and imaging
techniques in one system to provide both spectral and spatial information for effective quality
inspection. Although HSI is a promising technique that can provide rapid quality monitoring of
various food commodities including meat, it still faces some inherent limitation in terms of application,
complex data handling, and initial investment [22]. To achieve rapid detection of quality parameters
and to increase the industrial operating efficiency of meat products, the multispectral imaging
technique can be adopted for accurate quality prediction in meat products. For a multispectral
imaging system, the concept is similar to the HSI, however, the main difference is in the spectral bands,
which are discrete, non-contiguous, and irregular during image acquisition [23]. Thus, the complexity
of multispectral imaging is comparably lower than that of the HSI technique. Owing to these particular
advantages of multispectral imaging over HSI, a range of studies utilized multispectral imaging for
quality prediction of meat where the data of meat samples were first collected using HSI. The optimal
wavebands were selected by applying a variety of chemometric techniques of variable selection,
and some of which are documented in [22]. However, despite being simple and effective, no study
published concerning on the development of multispectral imaging system using the selected bands
for meat quality analysis, and only applied in terms of data analysis by developing multispectral
models to reduce the (HSI) data dimension and redundancy.

Although the aforementioned spectroscopic devices (specifically, HSI technique) have great
potential for product-quality management in large-scale industries, their price makes them inaccessible
to small-scale industries. Small-scale or medium-sized meat-processing industries often cannot afford
the expensive instruments and quality-control staff; therefore, they cannot ensure the quality of their
product. Hence, they tend to seek devices that are economically reasonable and easily applicable
to their industry. Thus, to fulfill the small-scale industry requirements, it is important to develop
low-cost, yet accurate devices. The objectives of this work are as follows: (a) Develop low-cost and
non-destructive sensing approach for monitoring meat-sample quality; (b) Investigate the feasibility of
the developed technique for predicting important chemical elements, e.g., moisture, fat, and protein,
in the meat; (c) Develop a multivariate analysis model to analyze the chemical components of the meat.
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2. Materials and Methods

2.1. Meat Samples

For this study, sirloin, tenderloin, and turkey breast samples were collected from local
supermarkets in South Korea. The samples were cut into equal pieces, vacuum packed, and stored in a
refrigerator at 4 ◦C for 24 h. After 24 h, the samples were removed from the vacuum packages and
measured. Fifty samples from sirloin and tenderloin meat category and forty samples from turkey
meat category were used for multispectral imaging.

2.2. Instrumentation and Image Acquisition

A multispectral imaging system (shown in Figure 1) was developed to acquire images of the meat
samples. The system was mainly composed of a monochrome industrial camera (DMK 23UM021,
The Imaging Source Asia Co., Ltd., Taiwan) with a maximum resolution of 1280 × 960 pixels (1.2 MP)
and a maximum frame rate of 115 fps, a complementary metal-oxide-semiconductor (CMOS) sensor,
a USB 3.0 cable (CA-USB30-AmB-BLS/3) for the data transfer, light-emitting diode (LED) light sources
with fifteen wavelengths in the range of 458 to 950 nm, a Bluetooth sensor (FB155BC serial board,
Firmtech Co., Ltd., Korea) to control the LED light sources, and a dark-room environment chamber.

2.3. Light-Emitting Diode (LED) Wavebands Selection

In this work, the LEDs of different wavelengths for the developed multispectral system were
selected based on the hyperspectral imaging (HSI). For this purpose, hyperspectral imaging data of all
three categories of meat samples were collected using a laboratory-based hyperspectral imaging system
in the reflectance mode in a wavelength range of 400 to 1000 nm. The system comprised an electron
multiplying charge-coupled device (EMCCD) camera, line-scan imaging spectrograph (Headwall
Photonics, USA), objective lens of 28 mm focal length, and detector size of 1004 × 1002 pixels. A more
detailed description of the used HSI system can be found in [14,21]. The collected images were
corrected, and a partial least squares (PLS) regression model for each parameter (fat, moisture,
and protein) was developed with extracted spectral data and Y vector of reference (measured)
values. Regression coefficient (beta coefficient) was used to select the wavelength containing essential
information. The regression coefficient method selects the optimal wavelengths that have the highest
absolute value of the regression coefficient from the PLS regression model.

2.4. Image Acquisition

Equal-size meat samples were manually placed inside the dark chamber for the image acquisition,
within the camera field of view (FOV). Before the image acquisition, the exposure time was set using
a white Teflon tile with uniform reflectance. The system components and image-acquisition process
were controlled by custom software created with the Microsoft Visual Basic environment under the
Windows operating system (Figure 2). The software graphical user interface (GUI) included several
options, e.g., image capture, camera calibration, LED information, image correction, image display,
and save. To correct the captured raw images (XR) of meat samples, a white reference image (XW)
was obtained with a Teflon sheet, while a dark reference image (XD) was obtained with a lens cover.
Further, the relative reflectance (XC) was calculated as:

XC=
XR − XD
XW − XD

(1)

Finally, the calibrated images were saved in TIFF format and image processing, such as
multispectral cube construction, and analysis was done in MATLAB software environment, version
2016a (MathWorks Inc. Natick, MA, USA).
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2.5. Reference Measurements

Once the images were acquired, the center slice of the meat sample was used for the reference
analysis using conventional chemical analysis methods. The reference values for the moisture, protein,
and fat content of the meat samples were measured using a modified Association of Analytical
Communities (AOAC) standard method (1995). The moisture content was determined using an
oven-drying method [14]. Two grams of the meat sample were placed on an aluminum dish and dried
for 2 h in an oven at 110 ◦C; then, the weight difference was calculated. The crude protein content was
measured using the Kjeldahl method [4], and further calculated using a protein coefficient. The crude
fat content was measured using the Soxhlet extraction method [4].

Table 1 shows the descriptive statistics, e.g., mean, range, and standard deviation, obtained
using the conventional methods. The values indicate a wide variation in the measured components.
The variation in the protein content was relatively smaller than that observed in the fat and moisture
content as with other previous studies [24]. We also calculated the skewness and kurtosis parameters,
which are related to the sample distribution. Measured parameters with a large deviation and a wide
range of measured values would help us to improve the stability of the established predictive models.

Table 1. Descriptive statistics of measured parameters.

Sample Type Parameter N Range Mean ± SD Skewness Kurtosis

Sirloin
Fat 50 7.54–37.47 21.32 ± 6.51 0.08 2.64

Moisture 50 47.52–73.86 59.09 ± 6.35 0.15 2.25
Protein 50 3.28–32.11 19.50 ± 5.83 −0.25 3.31

Turkey
Fat 40 4.10–56.70 25.54 ± 13.18 0.37 2.29

Moisture 40 26.55–72.01 51.09 ± 12.03 −0.24 2.35
Protein 40 7.44–28.49 18.07 ± 4.97 −0.20 2.43

Tenderloin
Fat 50 7.60–22.33 16.85 ± 4.01 −0.75 2.30

Moisture 50 57.78–70.55 63.75 ± 3.14 −0.15 2.42
Protein 50 7.50–23.06 16.88 ± 4.19 −0.61 2.13

Range, Mean and SD values are in %.

2.6. Spectral Extraction and Correction

The monochrome camera obtained the meat images with a snap-shot method. The generated
images are discrete, with each LED providing a single image over the range of 450 to 950 nm. Therefore,
we combined all the images from different LEDs to generate a “multispectral cube,” which consists
of two spatial dimensions and one spectral dimension. The total time for image collection and
multispectral cube generation was about sixteen secs. The region of interest (ROI) was selected
on the multispectral cube to extract the continuous spectrum for statistical analysis. This step was
manually performed for each meat image, and the ROI-selected pixel spectra were averaged for each
meat sample before the analysis. However, the pixel selection step can be done automatically for an
industrial process chain by applying a simple threshold method on the acquired multispectral image
to discriminate the meat sample from the background. In addition, the extracted spectral data were
subjected to different preprocessing methods to remove random noise and spectral variation. Various
preprocessing techniques, e.g., auto-scaling, mean centering, normalization, and standard normal
variate (SNV), were tested and selected using the respective model accuracy. This method is commonly
used to remove spectral variations and the scatter effect from the data, and transform the data into a
normal form. The best preprocessed data were used for further analysis.

2.7. Data Analysis

In this study, partial least-squares regression (PLSR) and support-vector regression (SVR) models
were used to analyze the meat data. PLSR is the most frequently applied chemometric technique to
predict the sample quality. It is an extension of the multiple linear regression model, which is widely
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used to specify the linear relationship between a dependent variable (Y-matrix) and independent
variables (X-matrix) [12]. In this study, the independent variable was the spectral data obtained from
the multispectral device, while the dependent variable was the chemical parameters (e.g., moisture,
fat, and protein content) measured using conventional methods.

The goal of the PLSR model is to predict the chemical parameters of the meat samples. In the PLSR
model, data decomposed into orthogonal structures called latent variables (LVs). The LVs describe the
maximum covariance between the spectral data and the response variables [25]. To build a regression
model for predicting the chemical components in the meat, the entire dataset (X and Y matrix data)
was divided into calibration and prediction sets using the Kenard–Stone (KS) algorithm. KS algorithm
uniformly divides the samples by calculating the Euclidean distances between the X variables [26].
By using the KS method, 70% percent of the data were used to build the calibration dataset, while 30%
were used as the prediction dataset. Further, the PLS model was constructed using the calibration
set, while the prediction set was retained for testing the model’s performance. However, to prevent
the model from over-fitting or under-fitting, it was critical to select the optimal number of latent
variables (LVs) for the regression model. The optimal number of LVs was selected using the lowest
value from the root-mean-square error (RMSE) method during the cross-validation (leave-one-out)
process. The equation is as follows:

RMSEcv=

√
1
n ∑n

i=1 (yi − ŷi)
2, (2)

where ŷi and yi are the predicted and measured chemical values, respectively, and n is the number of
observations in the calibration set.

Similar to PLSR, SVR also solves regression problems. However, its advantage over PLSR is that
it solves both linear and non-linear problems using an optimization approach. SVR fits data into the
linear regression model, y = wx + b, between the independent variable (x) and the dependent variables
(y) by minimizing the cost function. The final SVR function can be expressed as:

y(x) = ∑n
k=1 αkK(x, xk) + b, (3)

where αk are Lagrange multipliers, b is the bias term obtained from the optimization process, K(x,xk) is
the kernel function, and xk and x are the input training and testing vectors, respectively.

A radial basis function (RBF) was used to develop the SVR model, while optimal kernel parameters
(γ and C) were used to train the dataset. The proper kernel function and optimum kernel parameters
are crucial during the SVR process; they are optimized using the cross-validation method with the
lowest RMSE value. Detailed descriptions of the SVR model are available in the literature [27,28].

In the present study, the SVR analysis was performed using RBF kernel functions to predict the
chemical parameters of the meat samples. Initially, the calibration set of the meat-sample data was
cross-validated, and optimum parameters were obtained with the lowest root-mean-square current
(RMSC) value. The optimized parameters were used to train the meat samples’ calibration data set.
Finally, the prediction set was used to test the model. All SVR computations were conducted using
the MATLAB software and the SVR toolbox. Figure 3 shows the flowchart of the overall data-analysis
process used for the meat samples.
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3. Results and Discussion

3.1. Selection of Optimal Wavebands Using Hyperspectral Imaging (HSI) Data

The sensitive wavelengths from HSI data reflecting the characteristics of spectra for predicting
quality parameters of meat sample, such as moisture, fat, and protein, were obtained based on the
regression coefficient (beta coefficient) plot of the PLSR model. The highest absolute values of the
regression coefficient obtained from HSI data were deemed the most important variable responsible
for the prediction and interpretation of model [29]. A range of studies has utilized the beta coefficient
for optimal wavebands selection and emphasized that wavelength selection can be carried out based
on the information derived from the PLS model. This is a much more straight forward and simpler
strategy [7,30]. The beta coefficient provides spectral difference among different groups (concentration)
of samples, thus, revealing important wavelength regions for different quality parameters.

As shown in Figure 4, the highlighted and selected wavebands regions had particular importance
for moisture, fat, and protein contents. These selected spectral bands are well-known absorption
peaks for the aforementioned quality parameters. The peak of beta coefficients (Figure 4) obtained for
moisture, fat, and protein showed a good match with the spectral regions mentioned in previous studies
for the prediction of aforementioned chemical components in meat sample [14,16,23]. In addition
to wavebands selected using beta coefficients, five additional LEDs in the wave range between 800
and 900 nm were also used as this region represent the combined features from moisture and fat
contents [14]. In particular, the region between 700 and 800 nm was selected for moisture (Figure 4a),
and the region between 650 and 750 nm and 900 and 950 were selected for fat content (Figure 4b) [16,23].
Although the range between 700 and 1000 nm is not quite sensitive for protein content, the visible
region between 458 and 600 nm representing the myoglobin (a protein found in muscle cells) [16,18,19]
was selected for protein content (Figure 4c). However, the beta coefficients obtained from three
different models show some common peaks with different intensities. This is possibly because the
change in concentration of an individual quality parameter (moisture, fat, or protein) highly affects the
concentration of other chemical components.

Following the application of the regression coefficient method for optimal waveband selection,
a simplified model based on selected wavebands was developed for each parameter using PLS
multivariate analysis method, and the prediction performance of the simplified model was then
compared with the model developed using all variables. Based on the results, no difference was
observed between the performance of two different models developed with selected wavelength
and all variables. Therefore, owing to the effectiveness of selected wavelength for prediction of
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aforementioned quality parameters of different meat samples, LEDs of above-mentioned wavebands
were selected and used as an illumination source to obtain multispectral images of meat samples.Appl. Sci. 2019, 9 FOR PEER REVIEW  8 
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3.2. Spectral Characteristics of Meat Samples

Figure 5 shows the spectral characteristics of three types of meat sample: sirloin, tenderloin,
and turkey. The spectra from the meat samples showed varying intensity in the region from 458 to
950 nm. The variation in the visible spectrum (458–700 nm) is mostly caused by the characteristics of
the sample’s skin, color, and darkness of the meat; whereas, the variation towards the near-infrared
(NIR) region is due to the chemical components in the samples.

The region at 762 nm is the third overtone of the O−H stretching, which is linked to the presence
of water; the region at 930 nm is the third overtone of the C−H stretching, linked to the presence of
fat in the muscle of the meat [24]. In comparison with the tenderloin spectra, the turkey and sirloin
samples showed higher spectral-absorbance intensity. This might be due to the presence of higher
fat and moisture content in the samples. The fat and moisture values in the tenderloin samples were
14.73% and 12.77%, respectively, which were lower than the turkey and sirloin samples, showing lower
spectral absorbance (Figure 5). However, the turkey spectra showed relatively higher optical reflection
in the visible region of the spectrum due to the outside skin color.
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Figure 5. Mean absorbance spectra of three different meat types (sirloin, tenderloin, and turkey).

3.3. Model-Parameter Optimization

Figure 6 shows parameter-optimization examples for the PLSR model. The first four latent
variables (number of principal components) capture the maximum X and Y variance for over 80% of
the data, the percentage variance decreased after four latent variables (Figure 6a). It is important to
note that only the first four latent variables (LVs) are useful for predicting the chemical components.
Comparing the latent variable plot against the root-mean-square error (RMSE) showed that the error
value dropped at the fourth latent variable (Figure 6b). Therefore, it was concluded that only four
latent variables were essential in the PLSR model for obtaining a good prediction accuracy with a
lower error rate, while avoiding the risk of under-fitting or over-fitting the model.
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In contrast to PLSR, an examination of the RMSC value is also essential for optimizing the
SVR parameters. Figure 7 presents the SVR-parameter optimization in the form of a counter-plot.
The counter-plot displays the C and γ parameters against the RMSE values. Grid searching, as a
recommended process, was applied to tune the parameter sets (C and γ). Here, the RMSC value was
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calculated for each combination of C and γ for every grid point; the grid point providing the smallest
RMSE value is the best combination of the parameter sets. It can be seen that the grid marked with an
arrow shows the lowest error for both parameters.Appl. Sci. 2019, 9 FOR PEER REVIEW  10 
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3.4. Chemical Component Prediction

Once the parameters were optimized for both the PLSR and SVR models, the optimized parameters
with the lowest RMSC were used to predict the chemical components of the meat samples. In this study,
the prediction model for the meat data was also contaminated by the outliers; it was perhaps caused by a
wrong system response, variability in the measurements, or experimental error. Therefore, identifying
and excluding outliers from the data is significant, to prevent false data predictions. To detect outliers
in the data, a widely used 3σ rule was applied, by removing values exceeding ±3σ [31,32]. Figure 8
presents an example of the outliers’ impact on the fat-prediction accuracy in the sirloin samples. For the
fat prediction, the calibration data exhibited a strong correlation and a low error rate (R2c: 0.83; RMSEC:
2.81%) between the measured and predicted values (Figure 8a). However, for the prediction data set,
the correlation value decreased and the model error increased (R2p: 0.69; RMSEC: 4.08%), due to the
presence of outliers in the data. The outliers were identified by observing the leverage values against the
standard residual values (Figure 8b), where some data surpassed the limit of ±3σ; they were considered
outliers and excluded. After excluding outliers from the data, the prediction accuracy was improved with
R2p of 0.81 and RMSEC: 2.95% (Figure 8c). A similar method was used for outlier detection in the other
samples and the best results are presented here.

Data from the sirloin samples were subjected to moisture and fat content prediction. Compared
with the PLSR model, the SVR model showed superior moisture content prediction with R2 of 0.84 and
RMSEP of 2.48% (Figure 8d); the accuracy was decreased for the protein content prediction (Figure 8e).

For the turkey data, the SVR model revealed a similar accuracy of R2 > 0.80 with a lower error rate
for the fat and moisture prediction (Figure 9a,b); however, the accuracy fell again for the protein-content
prediction (Figure 9c). A reduction in accuracy could be observed because the region from 458 to
950 nm did not provide the significant information about the protein content. Previous authors also
observed moderate accuracy for the protein content prediction in the 400 to 1000 nm region [24].
Both the PLSR and SVR models accurately determined the chemical components in the tenderloin
samples. However, in contrast to the PLSR model, the SVR model provided higher accuracies with
lower prediction errors for both the calibration and prediction sets. For all the measured parameters,
the SVR model exhibited R2p > 0.84 with RMSEP < 2%, and a bias close to the error values (Figure 10).
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The overall chemical parameter prediction results from both analysis approaches are given in
Table 2. Among all of the preprocessing methods, the SNV preprocessed data performed superior for
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chemical component prediction. As our results were compared with previous meat quality research
based on hyperspectral and NIR spectroscopy [14,24,33], the results presented from our system showed
a limited prediction accuracy. Furthermore, the error rate was higher (RMSEP > 1%) than the previous
recordings (previous recordings the SEP or RMSEP < 1% and R2 > 90 for moisture, fat, and protein
prediction). It is obvious that the previous researchers applied expensive and high-resolution sensors
for the meat measurements. However, considering the currently expensive use of HSI technique in
the meat industry this system paves the way for small scale industries and big companies. Later,
we have also compared the performance of multispectral system with our laboratory based HSI system.
Compared with the result of multispectral imaging and HSI in Tables 2 and 3, the HSI performed
superior for chemical prediction with all variables, more specifically for sirloin and tenderloin samples.
However, except for protein prediction in sirloin and turkey samples, the multispectral imaging
showed a reasonable performance for other parameters using only a few wavebands. In addition,
the errors for the multispectral system were higher compared with HSI: 8% higher for tenderloin,
29% for sirloin; and 25% for moisture, 36% for fat, and 91% protein. However, in future work,
we will able to optimize our system with higher accuracy and fewer errors by incorporating higher
resolution LEDs with emission wavelengths in the NIR range. Moreover, to provide the optimal
sensor performance, the working LED set, that is, the LED number and wavelengths, should be
adopted to each case individually to take the respective chemical component and optical properties
of the sample into account. We believe that a significant technical simplification of the LED-based
multispectral imaging system, compare to conventional HSI system and commercial multispectral
imaging systems, should result in a dramatic reduction of the devices prices without minimal reduction
of the performance.

Table 2. Chemical component prediction in meat samples based on multispectral imaging with
standard normal variate (SNV) preprocessing method.

Calibration Prediction
Sample Parameter Analysis n R2c RMSEC n R2p RMSEP LV

Sirloin
Fat

PLSR/SVR

34 0.81/0.99 2.76/0.57 14 0.81/0.89 2.95/2.12 4
Moisture 34 0.90/0.93 2.03/1.76 14 0.70/0.84 2.77/2.48 7
Protein 34 0.46/0.96 4.65/1.26 14 0.06/0.63 5.33/2.65 3

Turkey
Fat 28 0.89/0.97 4.10/2.25 12 0.80/0.82 4.53/4.01 6
Moisture 28 0.74/0.96 5.55/2.46 12 0.74/0.85 5.59/3.86 3
Protein 28 0.69/0.99 2.83/0.49 12 0.48/0.69 3.51/2.73 4

Tenderloin
Fat 35 0.93/0.96 1.07/0.75 15 0.84/0.95 1.15/0.84 6
Moisture 34 0.90/0.91 0.97/0.93 14 0.84/0.85 1.33/1.19 7
Protein 34 0.83/0.94 1.73/1.05 14 0.83/0.88 1.89/1.52 3

RMSEC and RMSEP values are in %; n = Total number of samples used for model development.

Table 3. Chemical component prediction in meat samples based on hyperspectral imaging (his) with
SNV preprocessing method.

Calibration (n = 35) Prediction (n = 15)
Sample Parameter Analysis R2c RMSEC R2p RMSEP LV

Sirloin
Fat

PLSR/SVR

0.89/0.97 1.25/0.57 0.87/0.96 1.74/1.09 4
Moisture 0.92/0.96 1.75/1.11 0.74/0.88 2.52/1.61 6
Protein 0.90/0.91 0.69/0.68 0.87/0.89 0.94/0.89 3

Turkey
Fat 0.92/0.96 4.40/2.88 0.84/0.91 5.82/4.18 4
Moisture 0.89/0.97 3.57/1.79 0.88/0.94 4.77/3.24 5
Protein 0.74/0.95 2.52/1.12 0.60/0.92 3.51/1.58 4

Tenderloin
Fat 0.94/0.99 0.64/0.30 0.92/0.96 1.11/0.71 3
Moisture 0.92/0.99 0.77/0.29 0.87/0.88 1.04/1.17 7
Protein 0.88/0.96 1.38/0.76 0.76/0.91 2.34/1.47 7

RMSEC and RMSEP values are in %; n = Total number of samples used for model development.
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4. Conclusions

A low-cost and non-destructive multispectral imaging system comprised of a monochrome
camera and LED light sources was developed and investigated to examine the possibility to assess
the meat quality attributes. The performance of the established models for moisture, fat, and protein
content of three meat categories demonstrates that the developed system has good potential to be an
alternative to the expensive commercial HSI or spectroscopy. Although the prediction accuracy for
tenderloin was outstanding, the model accuracies for protein content for sirloin and turkey meat were
relatively low. This might be because the best wavelength region (458–580 nm) selected in this study
was not sufficiently sensitive for protein content determination. The spectral range still needs to extend
to the NIR region (beyond 1000 nm) to increase the sensitive for chemical component measurement.
Apart from this, the present study illustrates that the developed multispectral imaging system with
optimal LED wavebands for meat quality analysis was promising and low-priced compared with
existing devices. Further, the developed system can easily be adopted in small-scale meat industries
that lack quality-control tests for their products.

Author Contributions: L.M.K., J.L. and J.B. performed the experiments; L.M.K. and S.L. analyzed the data; L.M.K.
and B.-K.C. wrote the paper.

Funding: This research was partially supported by Samsung Electronics Co., Ltd and by a grant from the
collaborative research project Program (No. PJ011815), Rural Development Administration, Republic of Korea.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Xazela, N.; Hugo, A.; Marume, U.; Muchenje, V. Perceptions of Rural Consumers on the Aspects of Meat
Quality and Health Implications Associated with Meat Consumption. Sustainability 2017, 9, 830. [CrossRef]

2. Xiong, Z.; Sun, D.-W.; Pu, H.; Gao, W.; Dai, Q. Applications of emerging imaging techniques for meat quality
and safety detection and evaluation: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 755–768. [CrossRef]
[PubMed]

3. Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat
products: An overview. Meat Sci. 2014, 98, 361–371. [CrossRef] [PubMed]

4. Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near infrared reflectance spectroscopy to
predict meat and meat products quality: A review. Meat Sci. 2009, 83, 175–186. [CrossRef] [PubMed]

5. Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle
fiber characteristics. Meat Sci. 2013, 95, 828–836. [CrossRef] [PubMed]

6. Kadim, I.T.; Mahgoub, O.; Al-Marzooqi, W.; Annamalai, K. Prediction of Crude Protein, Extractable
Fat, Calcium and Phosphorus Contents of Broiler Chicken Carcasses Using Near-infrared Reflectance
Spectroscopy. Asian Australas. J. Anim. Sci. 2005, 18, 1036–1040. [CrossRef]

7. Kucha, C.T.; Liu, L.; Ngadi, M.O. Non-Destructive Spectroscopic Techniques and Multivariate Analysis for
Assessment of Fat Quality in Pork and Pork Products: A Review. Sensors 2018, 18, 377. [CrossRef] [PubMed]

8. Narsaiah, K.; Jha, S.N. Nondestructive methods for quality evaluation of livestock products. J. Food Sci. Technol.
2012, 49, 342–348. [CrossRef] [PubMed]

9. Ahmed, M.R.; Yasmin, J.; Lee, W.H.; Mo, C.; Cho, B.K. Imaging Technologies for Nondestructive
Measurement of Internal Properties of Agricultural Products: A Review. J. Biosyst. Eng. 2017, 42, 199–216.

10. Mo, C.; Lim, J.; Kwon, S.W.; Lim, D.K.; Kim, M.S.; Kim, G.; Kang, J.; Kwon, K.-D.; Cho, B.K. Hyperspectral
Imaging and Partial Least Square Discriminant Analysis for Geographical Origin Discrimination of White
Rice. J. Biosyst. Eng. 2017, 42, 293–300.

11. Qin, J.; Kim, M.S.; Chao, K.; Cho, B.-K. Raman Chemical Imaging Technology for Food and Agricultural
Applications. J. Biosyst. Eng. 2017, 42, 170–189.

12. Wang, W.; Paliwal, J. Near-infrared spectroscopy and imaging in food quality and safety. Sens. Instrum. Food
Qual. Saf. 2007, 1, 193–207. [CrossRef]

http://dx.doi.org/10.3390/su9050830
http://dx.doi.org/10.1080/10408398.2014.954282
http://www.ncbi.nlm.nih.gov/pubmed/25975703
http://dx.doi.org/10.1016/j.meatsci.2014.06.025
http://www.ncbi.nlm.nih.gov/pubmed/25017317
http://dx.doi.org/10.1016/j.meatsci.2009.04.016
http://www.ncbi.nlm.nih.gov/pubmed/20416766
http://dx.doi.org/10.1016/j.meatsci.2013.04.044
http://www.ncbi.nlm.nih.gov/pubmed/23702339
http://dx.doi.org/10.5713/ajas.2005.1036
http://dx.doi.org/10.3390/s18020377
http://www.ncbi.nlm.nih.gov/pubmed/29382092
http://dx.doi.org/10.1007/s13197-011-0286-3
http://www.ncbi.nlm.nih.gov/pubmed/23729854
http://dx.doi.org/10.1007/s11694-007-9022-0


Appl. Sci. 2019, 9, 912 14 of 15

13. Qu, J.H.; Liu, D.; Cheng, J.H.; Sun, D.W.; Ma, J.; Pu, H.; Zeng, X.A. Applications of Near-infrared Spectroscopy
in Food Safety Evaluation and Control: A Review of Recent Research Advances. Crit. Rev. Food Sci. Nutr.
2015, 55, 1939–1954. [CrossRef] [PubMed]

14. Kandpal, L.M.; Lee, H.; Kim, M.S.; Mo, C.; Cho, B.K. Hyperspectral reflectance imaging technique for
visualization of moisture distribution in cooked chicken breast. Sensors 2013, 13, 13289–13300. [CrossRef]
[PubMed]

15. Naganathan, G.K.; Grimes, L.M.; Subbiah, J.; Calkins, C.R.; Samal, A.; Meyer, G.E. Visible/near-infrared
hyperspectral imaging for beef tenderness prediction. Comput. Electron. Agric. 2008, 64, 225–233. [CrossRef]

16. Balage, J.M.; da Luz e Silva, S.; Gomide, C.A.; Bonin Mde, N.; Figueira, A.C. Predicting pork quality using
Vis/NIR spectroscopy. Meat Sci. 2015, 108, 37–43. [CrossRef] [PubMed]

17. ElMasry, G.; Sun, D.-W.; Allen, P. Non-destructive determination of water-holding capacity in fresh beef by
using NIR hyperspectral imaging. Food Res. Int. 2011, 44, 2624–2633. [CrossRef]

18. De Marchi, M.; Penasa, M.; Cecchinato, A.; Bittante, G. The relevance of different near infrared technologies
and sample treatments for predicting meat quality traits in commercial beef cuts. Meat Sci. 2013, 93, 329–335.
[CrossRef] [PubMed]

19. Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of minced beef adulteration with
turkey meat by UV–vis, NIR and MIR spectroscopy. LWT Food Sci. Technol. 2013, 53, 225–232. [CrossRef]

20. Tøgersen, G.; Arnesen, J.F.; Nilsen, B.N.; Hildrum, K.I. On-line prediction of chemical composition of
semi-frozen ground beef by non-invasive NIR spectroscopy. Meat Sci. 2003, 63, 515–523. [CrossRef]

21. Lohumi, S.; Lee, S.; Lee, H.; Kim, M.S.; Lee, W.H.; Cho, B.K. Application of hyperspectral imaging for
characterization of intramuscular fat distribution in beef. Infrared Phys. Technol. 2016, 74, 1–10. [CrossRef]

22. Feng, C.H.; Makino, Y.; Oshita, S.; García Martín, J.F. Hyperspectral imaging and multispectral imaging
as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art
research advances. Food Control 2018, 84, 165–176. [CrossRef]

23. Panagou, E.Z.; Papadopoulou, O.; Carstensen, J.M.; Nychas, G.-J.E. Potential of multispectral imaging
technology for rapid and non-destructive determination of the microbiological quality of beef filets during
aerobic storage. Int. J. Food Microbiol. 2014, 174, 1–11. [CrossRef] [PubMed]

24. Barbin, D.F.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive determination of chemical composition
in intact and minced pork using near-infrared hyperspectral imaging. Food Chem. 2013, 138, 1162–1171.
[CrossRef] [PubMed]

25. Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics, 1st ed.; CRC Press:
Boca Raton, FL, USA, 2009; p. 321.

26. Xiao, H.; Sun, K.; Sun, Y.; Wei, K.; Tu, K.; Pan, L. Comparison of benchtop fourier-transform (FT) and protable
grating scanning spactrometers for determination of total soluable solid contents in single grape berry (Vitis
vinifera L.) and calibraiton transfer. Sensors 2017, 17, 2693.

27. Coen, T.; Saeys, W.; Ramon, H.; De Baerdemaeker, J. Optimizing the tuning parameters of least squares
support vector machines regression for NIR spectra. J. Chemom. 2006, 20, 184–192. [CrossRef]

28. Thissen, U.; Üstün, B.; Melssen, W.J.; Buydens, L.M.C. Multivariate Calibration with Least-Squares Support
Vector Machines. Anal. Chem. 2004, 76, 3099–3105. [CrossRef] [PubMed]

29. Kandpal, L.M.; Lohumi, S.; Kim, M.S.; Kang, J.-S.; Cho, B.K. Near-infrared hyperspectral imaging system
coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sensors Actuators B Chem.
2016, 229, 534–544. [CrossRef]

30. ElMasry, G.; Sun, D.W.; Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and
tenderness of fresh beef. J. Food Eng. 2012, 110, 127–140. [CrossRef]

31. Chen, D.; Shao, X.; Hu, B.; Su, Q. Simultaneous wavelength selection and outlier detection in multivariate
regression of near-infrared spectra. Anal. Sci. 2005, 21, 161–166. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/10408398.2013.871693
http://www.ncbi.nlm.nih.gov/pubmed/24689758
http://dx.doi.org/10.3390/s131013289
http://www.ncbi.nlm.nih.gov/pubmed/24084119
http://dx.doi.org/10.1016/j.compag.2008.05.020
http://dx.doi.org/10.1016/j.meatsci.2015.04.018
http://www.ncbi.nlm.nih.gov/pubmed/26021598
http://dx.doi.org/10.1016/j.foodres.2011.05.001
http://dx.doi.org/10.1016/j.meatsci.2012.09.013
http://www.ncbi.nlm.nih.gov/pubmed/23098602
http://dx.doi.org/10.1016/j.lwt.2013.01.027
http://dx.doi.org/10.1016/S0309-1740(02)00113-4
http://dx.doi.org/10.1016/j.infrared.2015.11.004
http://dx.doi.org/10.1016/j.foodcont.2017.07.013
http://dx.doi.org/10.1016/j.ijfoodmicro.2013.12.026
http://www.ncbi.nlm.nih.gov/pubmed/24441020
http://dx.doi.org/10.1016/j.foodchem.2012.11.120
http://www.ncbi.nlm.nih.gov/pubmed/23411227
http://dx.doi.org/10.1002/cem.989
http://dx.doi.org/10.1021/ac035522m
http://www.ncbi.nlm.nih.gov/pubmed/15167788
http://dx.doi.org/10.1016/j.snb.2016.02.015
http://dx.doi.org/10.1016/j.jfoodeng.2011.11.028
http://dx.doi.org/10.2116/analsci.21.161
http://www.ncbi.nlm.nih.gov/pubmed/15732477


Appl. Sci. 2019, 9, 912 15 of 15

32. Liu, Z.; Cai, W.; Shao, X. Outlier detection in near-infrared spectroscopic analysis by using Monte Carlo
cross-validation. Sci. China Ser. B Chem. 2008, 51, 751–759. [CrossRef]

33. Tøgersen, G.; Isaksson, T.; Nilsen, B.N.; Bakker, E.A.; Hildrum, K.I. On-line NIR analysis of fat, water and
protein in industrial scale ground meat batches. Meat Sci. 1999, 51, 97–102. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11426-008-0080-x
http://dx.doi.org/10.1016/S0309-1740(98)00106-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Meat Samples 
	Instrumentation and Image Acquisition 
	Light-Emitting Diode (LED) Wavebands Selection 
	Image Acquisition 
	Reference Measurements 
	Spectral Extraction and Correction 
	Data Analysis 

	Results and Discussion 
	Selection of Optimal Wavebands Using Hyperspectral Imaging (HSI) Data 
	Spectral Characteristics of Meat Samples 
	Model-Parameter Optimization 
	Chemical Component Prediction 

	Conclusions 
	References

