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Abstract: Recently, there is increasing interest in identifying benign and malignant nodules by using
ultrasound diagnostic technology, which should be helpful to release patients with benign thyroid
nodules from suffering unnecessary needle biopsy. In this work, fractal analysis was investigated
for the capability of differentiating benign from malignant thyroid nodules during ultrasonography.
The B-mode images for 57 patients with suspicious thyroid nodules were captured, followed by
ultrasound-guided needle aspiration. The region of interests (ROIs) were subsequently selected from
ultrasound images. Then, fractal analysis was performed to extract fractal texture features, and derive
the fractal dimension of ROI. The results showed that a significant difference was observed between
benign and malignant thyroid nodules (p < 0.05), by comparing this parameter based on independent
nonparametric Mann-Whitney U test. It suggested that fractal dimension is a helpful feature for
distinguishing thyroid nodules. In addition, fractal analysis of the B-mode image can provide a
reliable reference for tissue typing in ultrasound diagnosis.
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1. Introduction

Thyroid nodules are a common clinical problem, particularly in iodine-deficient areas [1,2].
Though many people have nodules, they are asymptomatic, only 3–7% nodules harbor thyroid
cancer [3,4]. However, the prevalence discovered by ultrasound (US) diagnosis increases significantly to
10–67% [4]. The majority of nodules should be benign [5], while clinical purpose of diagnosis is to detect
malignancy, which only happens to 3–7% patients with thyroid nodules. Normally, suspected nodules
must be assessed with fine needle aspiration (FNA) by collecting cells for cytological examination [6,7].
Although currently FNA is the reference standard to identify thyroid nodules, previous studies showed
FNA cytology should be indeterminate in 10–30% of thyroid nodules [8,9]. To improve diagnostic
accuracy, molecular biomarkers and gene expression, combined with FNA, have been explored in
recent years [10–14]. Though FNA can differentiate benign from malignant nodules, it can cause
physical and psychological discomfort due to its invasive procedures. Therefore, there is an urgent
need to improve ultrasound diagnostic accuracy, so as to reduce unnecessary FNA biopsies.

Although US is commonly used to identify malignant from benign nodules according to some
ultrasonic characteristics, no single ultrasound feature is reported to be adequately accurate to identify
malignant nodules. It has been indicated that an increased risk of thyroid cancer could be marked
by numerous ultrasonographic findings, i.e., calcifications, intranodular vascularity, absent halo sign,
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irregular contour, and hypo-echogenicity [15,16]. However, the mentioned features are not enough to
identify malignant nodules, since the echogenicities of thyroid nodules are complex [15]. In recent
years, ultrasound elastography has attracted much attention in detecting malignant thyroid nodules,
which is developed based on the hypothesis that a malignant lesion is stiffer than a benign one [17–20].
Although this method shows good capability for identifying malignancy in the thyroid gland, it has
been indicated that this technique is unsuitable for detecting small nodule and malignant nodule in
low-risk population [21–24].

Since backscattered US signals are affected by the shapes and spatial distribution of scatters in
tissues, it is suggested that ultrasound images follow a random dynamic pattern related to random
feature of underlying structures. Regarding the pixel intensity as the height above a plane, B-mode
images are regarded as rough surfaces. Fractal analysis is a method to assess textural patterns
according to the visualization of ultrasound images, which can reveal the randomness of tissues or
tumors. Referring to the fractal geometry, the surface intensities of ultrasound images are regarded
as fractal objects, and their characteristics can be quantitatively evaluated by using fractal dimension
(FD). Fractal dimension is a non-integer number between 2–3. Previous studies have proven that FD
assessment shows promising results in characterizations of the breast, liver, prostate lesions, bones,
and carotid plaque [25–38]. In particular, Acharya et al. have developed a computer-aided diagnostic
tool to characterize benign and malignant thyroid nodules, using some texture-based feature extraction
approaches (e.g., local binary pattern, FD, Laws texture energy, and Fourier spectrum descriptor) [39].
They reported that an accuracy higher than 98% for 20 patients could be achieved by combing texture
features with different classifiers (e.g., support vector machine, Sugeno Fuzzy, and Gaussian mixture
model). However, the specificity and sensitivity of FD parameter for thyroid nodules had not been
examined. Therefore, the present study attempts to identify malignant and benign thyroid nodules
with only fractal-geometry-based textural technique.

2. Materials and Methods

2.1. Imaging Colletion

The image collection used here was conducted from 24 October to 28 November 2017. A total
of 57 patients (15 men and 42 women with a mean age of 43 and a range between 18–75 years old)
with 60 thyroid nodules were enrolled in the present work. All the patients were examined with
US diagnosis and US-guided FNA, and the pathological results were used as reference standards.
The patient enrollment criteria were listed as follows: (1) no radiation history on the neck; (2) no
thyroid disease history; (3) US and FNA examinations taken for all enrolled patients.

2.2. Ethics

The study was approved by the Ethics Committee of the Jiangsu Province Hospital of TCM
(Nanjing, Jiangsu, China) and informed patient consent was waived. All the approaches used in the
present work were performed in accordance with approved guidelines.

2.3. Thyroid US Examination and US-Guided FNA

Conventional US diagnosis were carried out with Vinno 70 Doppler ultrasound system (VINNO
Technology Co., Ltd., Suzhou, China) using a 6–18 MHz high-resolution linear transducer (X6-16L).
The mechanical index was set to be 1.2, with a depth of 38 mm, a probe frequency of 10 MHz,
a thermal index of soft tissue of 0.8, and a total gain between 95 and 110. The time gain compensation
was fixed at near and far fields, and the focus was set at the image center. B-mode US was
performed by two experienced sonographers to select the region of interest (ROI) and measure
the size of thyroid lesion based on the following protocols: (1) The patients were examined in
the supine position; (2) US probe was positioned over patient’s thyroid to capture B-mode image
in longitudinal section, avoiding the trachea and blood vessels and minimizing the artifacts as
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much as possible; (3) after a static frozen image was obtained, an ROI was marked on the thyroid
lesion with a typical dimensions between 4.5 mm × 2 mm and 25 mm × 15 mm. The features of
individual thyroid nodules were characterized according to their shape, echogenicity and calcification.
Echogenicity was divided into hypo- or hyper-echoic (nodules demonstrating hypoechogenicity
comparing to surrounding thyroid parenchyma). Calcification (if present) was classified into mixed
calcifications, microcalcifications or macrocalcifications including eggshell calcifications. The shape was
measured in the transverse direction, and identified as taller or wider. All cases were thereafter assessed
with Doppler examination to evaluate the vascularization of thyroid and nodules. A qualitative
assessment of thyroid vascularization, which was labeled as either absent or present, was performed
in the present work.

Subsequent US-guided FNAs were applied under the ultrasonographic guidance by an
interventional radiologist with a 24-gauge needle. After determining the nodule’s position under
US guidance, FNA samples were obtained at least quartic inside each thyroid nodule in the US
scanning plane, and local anesthesia was applied routinely. The tissue specimen in the needle was
placed on glass slides, and then immediately put in 95% ethanol for hematoxylin eosin (HE) staining.
Histological diagnoses were made by two experienced pathologists, and the final histological result of
the FNAs was classified as either benign or malignant based on standard pathological criteria.

2.4. Fractal Analysis

The concept of fractal dimension was first introduced by Mandelbrot to describe the fractal
geometry [40,41]. Various fractal models have been developed to estimate fractal dimensions
of images, including fractal Brownian motion, box counting and fractal interpolation function
system [28,29,42]. In this study, the fractional Brownian motion model was employed to analyze
thyroid nodules, which has shown to be promising in estimating the roughness of some tissue
images [28,42]. The detailed processing procedure is described elsewhere [29]. In brief, the B-mode
images were firstly preprocessed using basic morphological operations to remove the noise imposed
on the image. The most fundamental morphological operations were dilation and erosion, which are
based on shapes. Dilation process added pixels to object boundaries in an US image, while the erosion
process removed pixels on the boundaries of objects. The number of pixels added or removed from
the objects was dependent on the shape and size of structuring element used for image processing.
Then, histogram equalization was applied to standardize the gray levels in the ultrasound images for
obtaining comparable fractal texture features and good contrast.

The fractal analysis was performed to extract the features of fractal texture. The Hurst coefficient
H for the standardized image is defined as

E[I(x2)− I(x1)] ∝ (x2 − x1)
H (1)

where x1, x2 are the position for pixels 1 and 2, respectively. I(x1) and I(x2) are the intensities of the two
pixels in the image.

Given an M ×M image, H can be estimated as the slope:

log(di(k)) = H log(k) + log(c), k = 1, 2, . . . , n (2a)

di(k) =
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where c is the scaling constant and I (x, y) is the intensity of the pixel (x, y) in the image. The processing
procedure is executed by the MATLAB program (Math Works, Natick, MA, USA).

Finally, the fractal dimension (D) of this image can be obtained as follows:

D = 3− H (3)

2.5. Statistical Analysis

A two-tailed Mann-Whitney U test was carried out to evaluate whether or not the fractal
dimensions of the malignant and benign nodules were significantly different.

3. Results

3.1. Charactization of Thyroid Nodules

A total of 60 thyroid nodules were studied here, which included 23 benign (follicular adenoma,
colloid nodule, and cyst) and 37 malignant nodules (papillary carcinoma). The size of nodules ranged
between 4 to 35 mm with a mean size of 15.3 × 10.5 mm2. Table 1 lists the ultrasonographic features
of all patients. It was found that the percent of taller shapes in malignant nodules (59.5%) was much
larger than in benign nodules (21.8%). Hypoechogenicity was also a sonographic feature of malignant
nodules: The percent of hypoechogenicity of malignant nodules (81.0%) was much higher than that of
benign nodules (52.2%). No statistical difference in nodule shape was observed between the malignant
and benign nodules. The presence of calcifications of the malignant nodules (70.2%) was much higher
than of benign ones (21.7%). However, no significant difference was observed between malignant and
benign nodules with regard to the vascularity of Doppler examination.

Table 1. Features of benign/malignant thyroid nodules in US images.

Features Benign Malignant

Shape taller 5 22
wider 18 15

echogenicity hypoechoic 12 30
hyperechoic 11 7

Calcification
absent 17 11
present 5 26

Vascularity absent 18 32
present 5 5

A longitudinal B-mode image of the normal thyroid was shown in Figure 1 where homogeneous
isoechoic structure and nearly regular well-defined margins could be found in the image. Based on
the echogenicity change in B-mode ultrasonography, the pathological change of thyroid gland was
determined in clinics. Moreover, thyroid nodules could be classified by boundaries of ROI and
texture features in images. Figure 2 shows distinct ultrasound features and accordingly pathologic
findings comparing between benign and malignant lesions. A thyroid adenoma (Figure 2a) with
ultrasonographic features of hyperechoic echogenicity, no calcification, and wider shape, was benign,
finally proven by FNA findings. Its pathologic result showed that the follicular cavity is filled with
gelatinous material, and that a papillary structure is partially visible (Figure 2c). On the contrary,
hypoechoic echogenicity, microcalcification, and taller shape demonstrated a malignant papillary
thyroid carcinoma (Figure 2b), with complex branched papillaries containing fibrous vascular cores
(Figure 2d).
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Figure 2. B-mode US images and corresponding FNAs of benign and malignant thyroid nodules: (a)
B-mode image of benign thyroid nodule; (b) B-mode image of malignant thyroid nodule; (c) FNA
smears of benign thyroid nodule; and (d) FNA smears of malignant thyroid nodule.

3.2. Fractal Dimensions

The fractal analysis can evaluate the self-similarity of all B-mode images by calculating their
fractal dimensions. The process procedure for the B-mode thyroid nodule image is shown in Figure 3.
A benign thyroid nodule (9.5 mm × 5.5 mm) and a malignant thyroid nodule (8.6 mm × 8.6 mm)
were chosen to illustrate the estimation procedure. The thyroid nodule was picked up from the
B-mode image for further processing. Then, morphological operations, including erosion and dilation,
were applied to remove random noise superimposed on US image. The structuring element used in the
morphological operation was a nonflat “ball-shaped” with radius r = 3 and height h = 3. Following the
morphological operation, histogram equalization was operated to standardize the image and enhance
its features, which was necessary for further feature extraction. After the image procession, the Hurst
coefficient H can be calculated from the standardized images by Equation (2), where the parameter n
= 8. The slope of fitting line in Figure 4 was the Hurst parameters H for the two nodules in Figure 2.
Finally, the fractal dimension (D) was deduced according to Equation (3).

The fractal dimensions for all 60 thyroid nodules are given in Figure 5. A two-sample independent
nonparametric Mann-Whitney U test was applied to evaluate whether or not the fractal dimensions of
two categories were different. This test returned a parameter of p for null hypothesis that two samples
have equal median; a smaller p means the median for one sample is more different from another.
A significant difference (p < 0.05) was observed in fractal dimensions between malignant and benign
thyroid nodules.

Suspicious nodules, which are likely to be malignant, can be identified earlier before FNA by
setting a certain threshold for FD. The receiver operating characteristic (ROC) curves analysis was
applied using MATLAB program (Math Works). The calculated result is shown in Figure 6. The optimal
threshold 2.164 was then determined by Jordan index. The area under the curve (AUC) analysis for
the threshold was 0.792, and the sensitivity and specificity were 64.9% and 86.9%, respectively.
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4. Discussion

The aim of the present work was to explore if the fractal analysis could be used to identify
benigh nodules from malignant ones. The fractal dimensions for the two kinds of thyroid nodules
were estimated based on fractal Brownian motion. The calculation results showed that the fractal
dimensions of the benign nodules are generally higher than those of malignant ones (Figure 5).
A similar phenomenon was observed by Chen et al. [29]. Significant difference was noticed in fractal
dimension between B-mode images of the malignant and benign thyroid nodules with an independent
nonparametric Mann-Whitney U test (p < 0.05) (Figure 5). Fractal analysis was performed to classifying
breast US images and other organs and has shown promising results [27–29]. Our experimental results
proved that the fractal analysis could be used as a useful tool to extract the texture properties of
thyroid nodules.

The AUC value in Figure 6 was 0.792, and corresponding specificity and sensitivity were 86.9%
and 64.9%, respectively. Clearly, the single-parameter FD cannot be claimed as a wonderful diagnostic
tool to assess thyroid nodules. Therefore, a combination of other features (e.g., texture, morphology,
and so on) should be helpful for improving the classification accuracy and also be more adaptable for
clinical diagnoses of different types of tissues. For instance, Acharya et al. reported that an accuracy
higher than 98% was achieved for 20 patients with the combination of texture features with different
classifiers [39]. More efforts will be made in the future to explore the combination of FD with other
features, and with the help of multi-feature extraction methods.

In this work, the size of nodules ranged between 4.5 × 2 mm2 to 25 × 15 mm2, and more than
50% of them were small nodules (<10 mm). Compared with the conventional US diagnostic method
and elastography [20,21], the fractal analysis was helpful to determine whether or not a small nodule
is suspicious for malignancy. Therefore, fractal dimension might be used to improve the classification
performance of existing technology.

Of course, there are some limitations in the current work. First, since the ROI of thyroid nodule
was determined by two senior sonographers, the results might have been affected by their subjective
assessment. Thus, in future studies, computer-aided adaptive algorithms are needed to automatically
select the ROI with greater objectivity. Second, all the US images studied in this work were obtained
from daily diagnosis, without specific conditions set for the patients. The signal-to-noise ratio (SNR) of
US images may vary between individual patients. In this case, referring to the methods introduced in
a previous work [29], morphology and histogram equalization were applied to achieve noise filtering,
shape simplification, and gray level standardization. However, these imaging processing methods
were still too general to deal with complicated issues. Therefore, better noise reduction and US image
enhancement should be explored in our future work. Meanwhile, since the size of the thyroid nodules
varied in a broad range, here we only calculated the FD globally. In our future work, more efforts
will be made to explore an appropriate method to estimate D locally. Moreover, there are many other
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models that exist to evaluate the FD, such as box counting, fractal interpolation function system,
and area measurement [28,42,43], while only the fractional Brownian motion model was employed in
the present work. In the future, more assessment methods should be tested and compared to find an
optimal model and parameters for a typical case, so that better performance of FD analyses can be
achieved in classifying benign and malignant lesions in different organs.

5. Conclusions

In conclusion, a method was proposed to estimate thyroid nodules with fractal analysis,
which includes the following steps: (1) Preprocess the B-mode images by using basic morphological
operations in order to minimize the noise imposed on US image, (2) apply histogram equalization to
standardize gray levels in the ultrasound images for obtaining comparable fractal texture features and
good contrasts, (3) apply the fractal analysis to extract fractal texture features, and (4) derive fractal
dimension D of the image. The results of the current work are in good agreement with FNA results.
With this approach, suspicious nodules, which might be malignant, can be identified earlier before
FNA by setting a certain threshold. Therefore, this method could be developed as a useful tool for
US diagnosis of thyroid diseases, which should be helpful for identifying suspicious nodules so that
unnecessary FNA could be avoided for benign nodules.
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