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Abstract: Multi-attribute recognition is one of the main topics attaining much attention in the
pattern recognition field these days. The conventional approaches to multi-attribute recognition has
mainly focused on developing an individual classifier for each attribute. However, due to rapid
growth of deep learning techniques, multi-attribute recognition using multi-task learning enables
the simultaneous recognition of more than two relevant recognition tasks through a single network.
A number of studies on multi-task learning have shown that it is effective in improving recognition
performance for all tasks when related tasks are learned together. However, since there are no specific
criteria for determining the relationship among attributes, it is difficult and confusing to choose a good
combination of tasks that have a positive impact on recognition performance. As one way to solve this
problem, we propose a multi-attribute recognition method based on the novel output representations
of a deep learning network which automatically learns the exclusive and joint relationship among
attribute recognition tasks. We apply our proposed method to multi-attribute recognition of facial
images, and confirm the effectiveness through experiments on a benchmark database.

Keywords: multi-attribute recognition; multi-task learning; facial attributes; joint probability
distribution; relationship among attributes

1. Introduction

Attribute recognition, which is the problem of finding the hidden factors composing the attributes
from a given input and recognizing the pattern of attributes, is one of the main topics receiving
large attention in the field of pattern recognition. Along with the development of machine learning
technologies, for extracting various attributes from a single dataset, the demands for recognizing
multiple attributes from one input has also increased, which is called multi-attribute recognition.
Though the classic approaches to attribute recognition have been applied to develop a well-designed
system for a single attribute [1–6], multi-attribute recognition requires more sophisticated machine
learning methods such as deep network and multi-task learning.

Multi-task learning is one of the transfer learning methods that improves recognition performance
of each task by training more than two related tasks simultaneously in a single network [7]. The concept
of multi-task learning is to find common features that can be beneficial to each task. Through multi-task
learning, it is expected that a system capable of recognizing and analyzing various attributes is
achieved, along with performance improvement and computational cost reduction. In this regard,
multi-task learning plays an important role in multi-attribute recognition. However, as mentioned
in [7], multi-task learning does not always guarantee the performance improvement of all tasks, and
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the tasks to be learned together should be related to each other. Both [8,9] also reported that the
key of improving performance of all tasks by multi-task learning is selecting tasks that are related to
each other.

Many conventional studies of multi-attribute recognition [10–13] have a limitation in that they
do not take into account the mutual relationship between attributes, assuming that the attributes are
independent of each other. In real world problems, however, attributes are conceptually related to
each other. For instance, a person wearing a skirt is more likely to be a woman than a man. This means
that a task recognizing a person’s attire can positively affect a gender recognition task. Thus, through
applying the relationship among attributes to multi-attribute recognition, it is expected that recognition
performance will improve.

There have been several studies on multi-attribute recognition using multi-task learning, but
most of them have been data-dependent. The deep learning based method for recognizing pedestrian
attributes introduced by Dang et al. [14] is dependent on the portion of data and does not take into
account the relationship between attributes. Hand and Chellappa [15] introduced a multi-column
CNN(Convolutional Neural Network) that adopt implicit and explicit attribute relationships for facial
attribute classification. Though it considers the relationship between attributes, it is only applicable to
specific facial attributes since it requires prior knowledge on the relationship between input area and
attributes for region-based grouping.

In this paper, we propose two multi-attribute recognition methods which use a novel output
representation of a deep network based on the relationship among attributes. For considering exclusive
relationship among attributes, we first compose the recognition tasks by grouping the attributes
that are in a mutually exclusive relationship. For example, based on the fact that the attribute of
“male” is mutually exclusive to the attribute of “female”, we compose a task for “gender recognition”.
Similarly, using the fact that identity of each subject is also exclusive to the identities of other subjects,
“identity recognition” can also be composed as single task. Through the grouping process, we obtained
a number of recognition tasks such as gender recognition, expression recognition, race recognition
and so on. Furthermore, in an attempt to conduct all the tasks in a single deep neural network, we
exploit multi-task learning techniques with specific consideration for the mutual relationship among
the individual tasks. By using our proposed output representation of the deep network, we expect the
network to learn the joint probability distribution among the related tasks. The proposed method is
then applied to facial attribute recognition problem to check the performance of five facial attribute
recognition tasks: Identity, gender, race, age, and expression on a benchmark database.

2. Multi-Attribute Recognition Using Exclusive and Correlated Relationships

In this section, we introduce the proposed multi-attribute recognition methods in sequence.
At each step, a detailed explanation of a network structure for the novel output representation and a
modified cross-entropy error are introduced.

2.1. Single Task Learning for Exclusive Attributes

As the first step to consider attribute relationship in multi-attribute recognition, we took an
approach of grouping attributes based on their mutually exclusive relationship. Two attributes are said
to be mutually exclusive when they cannot be satisfied at the same time. For example, a facial image,
cannot satisfy both male and female attributes at the same time, and these two attributes are grouped
together. In this manner, all the attributes were grouped into several groups, we treated each group
as a single recognition task. Accordingly, the activation function of output nodes and corresponding
target needed to be redefined. In this section, we describe the learning for a single task, and then
extend it to multiple tasks in the next section.

When a group of M attributes A1, A2, . . . , AM are composed by a mutually exclusive relationship,
task T can be defined to assign each input to one of the attributes, which corresponds to one of M output
nodes of the learning network. The network structure for the single task T using output representation
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of an exclusive relationship is shown in Figure 1. Given an input data xn the target output for mth
output node yn

m(m = 1, . . . , M) needs to satisfy the conditions:
∑M

m=1 yn
m = 1 and yn

m ∈ {0, 1}. In order
to design a network satisfying the conditions, the output value of mth output node fm(xn,θ) is defined
by using softmax activation function, which can be written as

fm(xn) =
eum∑M
i=1 eui

, (1)

where um denotes the weighted sum of input to the mth node. For training the network, we can use the
conventional cross-entropy error function for the multi-class classification problem, which is written as

Ece(θ) = −
N∑

n=1

M∑
m=1

yn
m ln fm(xn,θ) , (2)

where N is the number of training data, and θ is the vector of all weight parameters in the network.
Although this is the conventional setting for multi-class classification, it should be noted that the group
of mutually exclusive attributes can only satisfy the underlying assumption, and thus our proposed
grouping process is important in recognizing various attributes in a single network.Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 13 
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2.2. Multi-Task Learning for Independent Attributes

As the next step, in order to learn multiple tasks at the same time, the conventional cross-entropy
error function for single task is extended to multiple tasks. Figure 2 illustrates the network for training
two tasks at the same time. Let us assume that we have T classification tasks Tt(t = 1 . . . T), and each
task Tt is composed of Mt mutually exclusive attributes Atm(t = 1, . . . , T, m = 1, . . . , Mt). We assign
one output node for each attribute so that the whole network for T tasks has

∑T
t=1 Mt output nodes.

The target value of mth output node for tth task can be denoted as yn
tm and satisfies the conditions:

Mt∑
m=1

yn
tm = 1 (t = 1, . . . , T) , yn

tm ∈ {0, 1} . (3)

In order to satisfy these conditions, the output value of the node corresponding to attribute Atm is
defined by using a task-wise softmax activation function such as

ftm(xn) =
eutm∑Mt
i=1 euti

, (4)
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where un
tm is the weighted sum of input injected to the output node for the attribute Atm when an input

xn is given. Since the softmax function is applied not to all the output nodes but to the task-wise group,
we also need to modify the conventional cross-entropy error function so that summation is applied
task-wisely, which can be written as

Emce(θ) = −
N∑

n=1

T∑
t=1

Mt∑
m=1

yn
tm ln ftm(xn,θ) , (5)

where T is the number of tasks and Mt is the number of attributes in tth task.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 13 
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This extension to multi-task learning from single task learning for a group of exclusive attributes
is limited in the sense that it only utilizes the mutual relationship between attributes, and does not
consider the relationship between tasks. The simple summation of the task-wise cross-entropy function
defined by Equation (5) is derived by the assumption that the tasks are not correlated and the target
random vectors yt = [yt1 . . . ytMt ] (t = 1 . . . T) are mutually independent to each other. However, this
strong assumption does not seem plausible in real world applications. For example, it can be easily
assumed that the two random vectors of two tasks for recognizing the attributes of eye color and the
attributes of hair colors are closely related note that a person with blond hair often has blue eyes.
Moreover, these two recognition tasks are also associated with race recognition tasks in that Caucasians
are likely to have blond hair with blue eyes. As mentioned in [7], the mutual relationship between
tasks can make some influence on the performance in each task, we can expect to get better recognition
performance by multi-task learning considering the relationship between tasks. Nevertheless, it is
hard to define the relation in the learning model since this relationship is quite data-specific. In the
next section, we propose an approach to overcome this difficulty.

2.3. Multi-Task Learning for Mutually Correlated Attributes

In order to consider mutual dependency between tasks in a multi-task learning process, we
propose a novel definition of network output, which can represent joint probability of multiple
random vectors. By calculating the joint probability among random variables, we can figure out the
proportional or inverse relationship among variables. Let us take a simple example of dual task learning.
When there are two tasks, T1 and T2, with exclusive attributes

{
A11, . . . , A1M1

}
and

{
A21, . . . , A2M2

}
respectively, in which the target value is given by two binary random vectors y1 =

[
y11 . . . y1M1

]
and

y2 =
[
y21 . . . y2M2

]
, we try to design an output layer for representing the joint probability of the random
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vectors, P(y1, y2). From the fact that y1 and y2 are binary vectors in which only one element can be 1
at one time, we can define a joint random vector z1,2 that represents M1×M2 different combination
of the values, and we can assign an output node to represent each possible combination. Thus,
the proposed network has M1×M2 output nodes, and we denote the value of each output node as
fm1m2(x,θ)(m1 = 1, . . . , M1, m2 = 1, . . . , M2). Accordingly, the target value zm1m2 is determined by the
value of y1 and y2 such as

zm1m2 =

{
1 i f y1m1 = 1, y2m2 = 1

0 otherwise
. (6)

Note that z is the M1×M2 dimensional random binary vector satisfying the condition:
∑M2

j=1
∑M1

i=1 zi j = 1.
In order to train this target vector efficiently, the output values, fm1m2(m1 = 1 . . .M1, m2 = 1 . . .M2) of
the network need to be defined by using a softmax function such as

fm1m2(xn) =
eum1m2∑M2

j=1
∑M1

i=1 eui j
, (7)

where um1m2 is the weighted sum of input injected to the corresponding output nodes. The cross-entropy
error for the proposed joint representation is then defined as

EJCE(θ) = −
N∑

n=1

M2∑
m2=1

M1∑
m1=1

zn
m1m2

ln fm1m2(xn,θ) . (8)

This can be directly extended to the case for more than two tasks {T1, . . . , TT} so as to obtain

EJCE(θ) = −
N∑

n=1


MT∑

mT=1

. . .
M1∑

m1=1

zn
m1m2...mT

ln fm1m2...mT (xn,θ)

 , (9)

where the random vector z with M1 × . . .×MT elements is defined as

zm1m2...mT =

{
1 i f yimi = 1 for all i = 1 . . .T

0 otherwise
. (10)

Figure 3 shows the network model for multi-task learning with a joint random vector. Although the
proposed representation of the output node needs a greater number of output nodes than the
conventional multi-task learning, it can increase the representational flexibility of the network so that
it enables it to learn various joint relationships between tasks. When the training of the network
is completed, the classification for each task can be done by calculating marginal probability of the
obtained joint probability fm1m2(x,θ), which can be written as

P(y1m1 = 1) =
∑M2

m2=1 fm1m2(x,θ),

P(y2m2 = 1) =
∑M1

m1=1 fm1m2(x,θ).
(11)

Then we assign the class of the current input x to the node with the maximum marginal probability for
each task.
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3. Multi-Attribute Recognition of Facial Images

We applied the proposed multi-attribute recognition method to the facial attribute recognition
problem. We considered five facial attributes: Identity, expression, gender, race, and age, which will be
explained in detail later. Figure 4 shows two network structures in case of multi-task learning of race
and gender: (a) For mutually independent tasks and (b) for mutually correlated tasks.
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As shown in Figure 4, since gender has two attributes (male and female) and race has four
attributes (Caucasian, Mongolian, Negroid, and Middle-eastern), in this example, the number of
required output nodes are six for the network (a), which is designed for the mutually independent
tasks. On the other hand, the network (b) designed for the mutually correlated tasks has eight (2× 4)
output nodes. For the sake of understanding the output representation for the learning of more than
two tasks, Figure 5 shows the output representation for the case of three recognition tasks: Gender,
race, and age. Since gender has two, race has four, and age has five attributes, 40 output nodes were
required. Likewise, the number of output nodes required for learning depended on the number of
tasks to be learned together.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 13 
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We designed a convolutional neural network composed of two convolutional and max pooling
layers followed by a fully connected multilayer perceptron (MLP) that had two hidden layers, and an
output layer. The number of filter maps in convolution layers 1 and 2 were set to 64 and 32 respectively.
The number of input nodes depended on the size of input image, hidden nodes in fully connected
layers were designed as 300 which provided stable performance over all attributes through single task
learning for each attribute, and the number of output node was changeable according to the task as
described in detail in the following paragraph. The ReLU function was used in convolutional layers,
sigmoid activation in hidden layers, and the softmax function with cross-entropy error function in the
output layer [16].

4. Experimental Results

4.1. Multi-Attribute Recognition on the CMU Multi-PIE Dataset

As a benchmark database, we took CMU (Carnegie Mellon University) Multi-PIE (Pose,
Illumination, and Expressions) which is a well-known dataset with facial attributes [17]. From the
original data with more than 750,000 images of 337 subjects with some variations in pose, flash, and time,
we selected images about 30 subjects for experiment. Other than pre-labeled identity and expression
class, we manually labeled three facial attributes: Gender, race, and age for attribute recognition tasks.
The total number of labeled da ta was 23,863, of which 5086 (20%) were used for training, and the
remaining 18,777 (80%) were used for the test. The data was divided in a way that kept the composition
ratio of the attributes. The table of experimental data configuration is shown in our previous work [18].
We composed five data settings for cross validation, and conducted all the experiments on the same
30,000 epochs training for three random initializations, and obtained average results. Since we used
images for 30 individuals, we treated 30 identities as 30 different attributes for identity recognition.
Obviously, these identities were in a mutually exclusive relationship. Similarly, we treated the six
variations in facial expression as six distinct attributes. Moreover, we manually labeled two attributes
concerning gender, four different attributes concerning race (Caucasian, Mongolian, Negroid, and
Middle-eastern) according to the race category used in [19], as well as five attributes concerning age
groups (20s, 30s, 40s, 50s, 60s). Since the size of the image in the dataset varied, we resized all data to
32 × 32. Figure 6 shows the example of the Mulit-PIE data used in the experiment.
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We first grouped the mutually exclusive attributes into five tasks (identity, gender, race, age, and
expression recognition), and conducted the single task learning for each task, so as to compare the
results with the proposed multi-task learning method. We applied the proposed output representation
methods for independent and correlated relationships to various combinations of two or more tasks.

For the basis of the experiment, we conducted dual task learning for all possible combinations of
two recognition tasks. For each experiment, we implemented two different settings: (a) The output
representation for independent tasks, and (b) for correlated tasks, of which the results are shown in the
Table 1. The diagonal elements of the tables show the performance of single task learning, and the value
in the ith row and jth column represents the classification error for ith task in the dual-combination
learning of the ith task and jth task. For example, the first row indicated the error of the identity
classification when the identity task was combined with other tasks. The underlined value in each row
corresponds to the minimum misclassification rate for each task, and the shaded cells show the cases
in which improved performance was obtained by applying multi-task learning. The values in bold
imply improved performance in the comparison of two different settings (a) and (b).

Table 1. Recognition error (%) of dual task learning with independent tasks (a), and correlated tasks (b).

(a) Identity Expression Gender Race Age

Identity 0.48 0.40 0.43 0.52 0.46

Expression 9.68 11.48 10.86 10.97 10.42

Gender 0.16 0.61 0.77 0.33 0.24

Race 0.27 0.67 0.48 0.78 0.34

Age 0.46 1.30 0.67 0.73 1.12

(b) Identity Expression Gender Race Age

Identity 0.48 0.98 0.50 0.52 0.51

Expression 9.29 11.48 10.88 10.94 10.50

Gender 0.13 0.61 0.77 0.28 0.23

Race 0.23 0.83 0.47 0.78 0.36

Age 0.40 1.68 0.66 0.64 1.12
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As shown in Table 1, it is difficult to say that multi-task learning can always improve the
performance in all attribute recognition, which corresponds with the arguments in [7]. However,
we can still see that dual task learning can improve the performance in many cases (the shaded
cells), which supports the empirical efficiency of multi-task learning reported in many practical
applications [8,9]. Further, we can also see that the different tendency in the performances of settings (a)
and (b). The setting (a) generally gave slight improvement compared to single task learning, whereas
the setting (b) showed more apparent discrepancy in the performance gains and losses. This tendency
can be expected from the theoretical property of the joint representation setting, in which the learning
model is free from the strong independency assumption. In the experiment of expression and other
tasks, expression itself was always improved in performance from both methods, but it did not help
the performance of other recognition tasks when learning a joint relationship. Thus, expression is
likely to improve the performance of other tasks when learning as an independent task rather than
correlated task. In the experiment of identity and other tasks, identity always helped to improve the
performance of other tasks, whereas identity itself did not get a positive effect by other tasks when
learning a joint relationship. This seems to be due to a lack of data compared to the increasing number
of nodes required. Therefore, it seems appropriate to consider identity as an independent task in
order to get the performance improvement on all tasks. In particular, we found that gender, race, and
age were complementarily related to each other which is marked with a red box. Thus, we further
examined how expression and identity affected the learning of multiple tasks by sequentially adding
them to the multi-attribute recognition problem with three (gender, race, and age) recognition tasks so
as to find an optimal combination for the multi-attribute recognition of faces.

Table 2 shows the recognition performances of five facial attributes under several output
representation settings. G, R, A, E and I are simplified representations of the tasks: Gender, race,
age, expression, and identity, respectively. The symbol ‘+’ means that tasks are combined with the
assumption that tasks are independent of each other. Another symbol ‘*’ represents the proposed joint
representation method for mutually correlated tasks. Bold numbers with underline denote the best
performance for the specific tasks. The values in gray cells indicate the best recognition performance
among the multi-attribute recognition experiments with the same type and number of tasks.

Table 2. Recognition error (%) of five facial attributes under different representation methods.

Representation Method Identity Expression Gender Race Age

Single task learning 0.48 11.48 0.77 0.78 1.12

G+R+A - - 0.17 0.26 0.47

G*R*A - - 0.16 0.25 0.47

E+G+R+A - 10.30 0.24 0.24 0.50

E+G*R*A - 9.51 0.14 0.21 0.36

E*G*R*A - 9.52 0.30 0.46 0.79

I+G+R+A 0.49 - 0.15 0.19 0.41

I+G*R*A 0.45 - 0.13 0.20 0.37

I+E+G+R+A 0.46 10.35 0.14 0.19 0.39

I+E+G*R*A 0.36 9.56 0.10 0.17 0.29
I+E*G*R*A 0.47 9.65 0.18 0.26 0.44

From Table 2, multi-attribute recognition using proposed output representation methods gave
better performance for most of the attributes compared to those of single task learning. When training
complementarily related three attributes (gender, race, and age) at the same time, the performance of all
tasks was much improved compared to the result of dual task learning, and learning with a correlated
relationship showed better performance than an independent relationship. In the experiment of
learning expression, gender, race, and age together, the best performance was obtained when regarding
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expression as an independent task and the other three attributes were correlated (E+G*R*A in Table 2),
and this is consistent with what was revealed in the previous dual task (Table 1) and three task
experiments. For the next step, we combined identity with gender, race, and age recognition. As with
the results from Table 2, we could confirm that identity, as an independent task, helped overall
recognition performance of three other recognition tasks, which is also consistent with the results in
the previous experiments. The reason why we did not conduct the joint relationship learning with
identity and other tasks is that the number of output nodes becomes too large when a novel output
node is created for the joint representation which may lead to overfitting the problem. Lastly, we
implemented multi-task learning with five tasks all together by applying the appropriate combination
of the output representation methods, and confirmed that we can get a considerable performance
improvement on all attributes except for expression. Through the whole experiment, we found the best
output representation for multi-attribute recognition of facial images, and confirmed our proposed
output representation methods can improve the performance of all recognition tasks when properly
combining them.

4.2. Analysis of Toy Problem

The method of learning independent relationships was based on the assumption that tasks were
independent of each other, and the method of learning joint relationships uses the strong assumption
that the tasks are related to each other. For further analysis on the difference between independent
representation and joint representation, we conducted a simple experiment using the MNIST (Modified
National Institute of Standards and Technology) dataset. For a task that uses binary classifying
numbers, we chose two numbers (five and nine) among ten digits of MNIST data, and gave binary
labels 1 and 0 respectively. For another task of noise recognition, we added some gaussian noise with
σ = 0.2 to original images, and assigned binary label 1 if an image was noisy, and 0 otherwise. Figure 7
shows the example images of MNIST data. In Figure 7, the images from the top and second row
indicate that 50% of images are noisy for each digit, we call this dataset p50. The third and fourth rows
indicate that 10% of “5” images and 90% of “9” images are noisy, which is denoted as p10. Likewise,
we made 10 different datasets by changing the portion of noise image in the “5 ” digit class from 10%
to 90%. Note that, the portion of noise image in the “9” class changes from 90% to 10%, and thus, the
total ratio of noisy data is always 50% of total data. The number of training data is 10,000, and 1000 for
test data for each set. Experiments were conducted on the nine datasets and compared to change of
performance. The network structure consisted of two convolutional and max pooling layer followed
by one fully connected layer with 50 hidden nodes. For each experiment, we set the learning rate
as 0.01, batch size as 1000, and used 50 epochs training. For each dataset, the learning was done for
20 random initializations to get average performance.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 13 
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Figure 8 shows the change of classification rate of digit recognition tasks. When the ratio of noisy
data to original data was even (p50), which means two tasks are independent, our proposed method for
correlated tasks was worse than those for independent tasks. On the contrary, when the discrepancy
of noisy data portion between two digit classes became large, the joint representation showed
better performance than the independent representation. We can also observe that the performance
improvement in the p10 and p90 sets was less than that in the p20 and p80 sets. This phenomena may
be due to the limited size of data in a specific joint class, such as “digit 5” and ”noisy” class in the p10
set and “digit 9” and “noisy” class in the p90 set.
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5. Conclusions

In this paper, we propose an overall design for various attribute recognition using multi-task
learning of deep networks. Whereas conventional multi-attribute recognition method does not consider
a mutual relationship between attributes and regards each of them as independent random values, we
proposed to design an output representation of the learning network considering their relationships.
For a given set of various attributes, we first used their exclusive relationship, and made groups for all
the attributes into several tasks which was a simple extension of the conventional attribute recognition
method. In addition, with an assumption that tasks were in dependent relationships, we considered
joint relationships among tasks, so that the network could learn dependency among recognition tasks.
Based on the results of applying two proposed methods to facial attribute recognition, we verified that
the proper combination of these two methods can bring considerable improvement on the recognition
performance of multi-attribute recognition.

On the other hand, we need to note that the necessary number of output nodes for the proposed
joint representation increases rapidly as the number of attributes to be recognized increases. Moreover,
learning exclusive and joint relationship can adversely affect performance if tasks are uncorrelated, and
there is also a risk of overfitting when data is insufficient. Therefore, although our proposed method
should be solved by designing a learning model using prior knowledge among attributes and tasks,
there is no standard for how to properly combine two methods, which will remain our future work.
Finally, though we have focused on the multi-attribute recognition for facial images, the proposed
method can be applied to general multi-attribute recognition problems such as attribute recognition of
pedestrians, cars, and so on as shown in the simple experiment for digit images.
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