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Abstract: Wheat is one of the main grain species as well as one of the most important crops, being
the basic food ingredient of people and livestock. Due to the importance of wheat production scale,
it is advisable to predict its yield before harvesting. However, the current models are built solely
on the basis of quantitative data. Therefore, the aim of the work was to create three multicriteria
models for the prediction and simulation of winter wheat yield, which were made on the basis of
extended quantitative and qualitative variables from field research in the year period 2008–2015.
Neural networks with MLP (multi-layer perceptron) topology were used to build the following
models, which can predict and simulate the yield on three dates: 15 April, 31 May, and 30 June. For
this reason, they were designated as follows: QQWW15_4, QQWW31_5, and QQWW30_6. Each
model is based on a different number of independent features, which ranges from 19 to 25. As a result
of the conducted analyses, a MAPE (mean absolute percentage error) forecast error from 6.63% to
6.92% was achieved. This is equivalent of an error ranging from 0.521 to 0.547 t·ha−1, with an average
yield of 6.57 ton per hectare of cultivated area. In addition, the most important quantitative and
qualitative factors influencing the yield were also indicated. In the first predictive range (15 April), it
is the average air temperature from 1 September to 31 December of the previous year (T9-12_PY).
In the second predictive range (31 May) it is the sum of precipitation from 1 May to 31 May, and in
the third (30 June) is the average air temperature from 1 January to 15 April of the year (T1-4_CY).
In addition, one of the qualitative factors had a significant impact on the yield in the first phase-the
type of forecrop in the previous year (TF_PY). The presented neural modeling method is a specific
extension of the previously used predicting methods. An element of innovation of the presented
concept of yield modeling is the possibility of performing a simulation before harvest, in the current
agrotechnical season. The presented models can be used in large-area agriculture, especially in
precision agriculture as an important element of decision-making support systems.

Keywords: winter wheat yield; artificial neural networks; yield prediction; yield simulation; MLP
network; sensitivity analysis; precision agriculture; machine learning
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1. Introduction

For many years, scientists from all over the world have been creating and are still improving
plant yield models [1]. Yield simulation models based on growth processes have become more and
more evident in the last decades mainly in studies on the impact of climate on agricultural production.
Their usefulness is significant in understanding the relationship between genotype, environment
and management to aid decision-making in farms, including cultivars selection, sustainable farm
management, and economic planning [2]. Yield models are imperfect approximations to the real
interactions between biotic and abiotic factors, designed mainly as tools that provide useful information
to farmers, researchers, and policy-makers [3]. Predictive models allow users to simulate a potential
yield depending on agrotechnical and weather conditions. This is an important element of precision
farming, which allows simulation of the expected yield before harvest, and consequently to optimize
the entire production process [4]. Therefore, plant yield models are applied in order to create prognostic
tools that can be an important element of decision support systems [5]. Projecting the quantity and
quality of yields of various cultivars of plants is very important as it affects the planning of the entire
production process, including: Application of proper production means, decision-making, transport,
storage, and risk management [6,7]. The ability of the simulation model to capture the historical
variability of cereal yields has shown that it can serve as a basis for indicating the usefulness of yield
models among interested parties [2]. Plant production is strongly determined by the course of weather
conditions during vegetation, which can often be intense and lead to strong fluctuations, caused by
continuous climate change in the world. Climate change is a threat to increasing food production in
some regions [8]. Therefore, the integration of meteorological data and cultivation data is an important
element in the produced models [9,10].

There are many methods of analyzing yield components that can be used to implement the task.
Techniques such as analysis of variance, Pearson correlation coefficient, multiple regression, and path
analysis are usually used to analyze yield components [11]. The main problem of regression models is
that they are unable to explain the non-linear and complex relationship between the yield and their
components [12]. To overcome this problem, in recent years, agricultural scientists have used artificial
intelligence (AI) tools, such as artificial neural networks (ANN), genetic expression programming
(GEP), and the adaptive neuro-fuzzy interference system (ANFIS) [10,13–17]. One of the most common
types of ANNs that are used in biological research is the multi-layer perceptron (MLP) [12,18–20]. MLP
is an ANN model of the feed-forward type, which consists of the input layer, the hidden layer and
the output layer. The MLP has many layers connected to each other, and each node is a neuron with
a non-linear activation function. Perceptron calculates a single result from multiple inputs, creating
a linear combination according to its inputs, and then determines the result using the non-linear
transfer function [21]. Plant yield prediction methods based on combining images using remote sensing
methods are also gaining popularity. The normalized differential vegetation index (NDVI) is the most
commonly used in this type of analysis [22–24]. However, many researchers use a unifying theory,
the Golden Rule of forecasting—a conservative theory. A cautious prediction is consistent with the
combined knowledge of both present and the past. To be conservative, the forecasters must search and
use all knowledge relevant to the problem, including knowledge about the methods used for the given
situation [25].

Models created for the prediction of crop yields are most often based on numerical data. This
approach is most often generalized because it allows the use of many different methods of linear and
nonlinear modeling. However, there are cases in which this approach is insufficient, then the following
qualitative or quantitative-qualitative data are applied. Many researchers show that combining
different types of predictions leads to the better results than using only one method [26,27]. Combining
the prediction model is also the subject of literature using various innovative hybrid methods that
show the superiority of combining yield forecasts in relation to particular methods [28].

Similar models are presented in the paper [10], but they concern the forecasting of yield of another
species, i.e., winter rape. The same forecast dates were proposed in this paper, but the forecasting models
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were based solely on quantitative data. Other works with models: Quantitative data: Measurement
of NDVI and SAVI (Soil-adjusted vegetation index) vegetation indices. Al-Gaadi et al. [29] applied
the linear regression method to create a mathematical description of potato yielding and to show
the relationship between actual and predicted yields based on remote sensing measurements. In the
work Al-Hamed and Wahba [30] artificial neural networks were used to forecast potato yields on
the basis of energy inputs incurred in Saudi Arabia. Input variables: Human labor energy, machine
energy, diesel oil, fertilizers, pesticides, seeds, and irrigation were typically quantitative variables.
Potato yield was assumed to be a dependent variable. All values were calculated per one hectare of
crop and transformed into energy forms enabling the analysis. There are no studies in which both
quantitative and qualitative data are used to construct predictive models. This is mainly due to the
fact that most of the models are based on classical methods, which significantly limit the full use of
linguistic (qualitative) variables.

Wheat is one of the main grain species as well as one of the most important cultivated crops is
the basic food product of people and livestock. It is grown mainly in Europe, Canada, Russia, and
the United States. Global cereal production in 2017 amounted to 2,980,174,798 tons, with the share of
wheat production 771,718,579 tons, which is more than 25% of the global cereal production. In the
European Union, cereal production in 2017 was 307,061,987 tons, with the share of wheat production
150,224,838 tons, which accounts for almost 49% of EU production. In contrast, the volume of Polish
wheat production amounted to 11,665,702 tons and accounts for almost 8% of EU production with an
average yield of 48.7 dt per hectare of growing area. The total wheat cultivation area in Poland in 2017
was 2,391,853 ha [31].

Bearing in mind the above, the authors of the following work have undertaken a task to develop
new multi-criteria (on the basis of prediction date), hybrid (on the basis of data type) winter wheat
yield models that will use quantitative and qualitative data by means of artificial neural networks. The
purpose of this work is to build three independent models built on the basic data obtained from each
farm, i.e., on weather and agrotechnical information. It is assumed that each model will be based on 19
basic independent features, while subsequent models will be created based on additional data from
subsequent prediction dates, i.e., 15 April, 31 May, and 30 June. All data was obtained from cultivated
fields of winter wheat and mobile meteorological stations. It has been assumed that the generated
models will have a MAPE (mean absolute percentage error) value below 7%.

2. Materials and Methods

Creating multicriteria prediction neural models was performed by collecting data in the period
2008–2015 of winter wheat from cultivation area located in Poland, in the central and south-western
part of Greater Poland, with emphasis on districts of Poznań (52◦24′29.759” N 16◦56′0.672” E), Kościan
(52◦5′10.77” N 16◦38′41.998” E), and Gostyń (51◦53′5.762” N 17◦0′47.829” E; Figure 1). For the
construction and verification of model, data from 301 fields were collected (Table 1). The following
information constituted a database for the creation of predictive neural models with two sets, A and
B. Set A (255 fields) makes up the data for model building from 2008–2014, whereas set B (45 fields)
includes only 2015, which was not used in the model, but was used for model validation.

Meteorological data for the research area, such as air temperature, precipitation, and period, were
collected from Davis stationary and mobile meteorological stations close to the research area—Kórnik,
Gola, Turew, Piotrowo, and Stary Gołębin.

Neural predictive models took into account three dates in a calendar year: 15 April,
31 May, and 30 June. The models were named in the following way: QQWW15_4
(QuantitativeQualitativeWinterWheat15_April), QQWW31_5, and QQWW30_6. The independent
variables that influence crop yields could be easily accessed by agricultural producers (Table 2).
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Table 1. The number of arable fields of winter wheat divided into two sets, A and B.

Set A Set B

Year 2008 2009 2010 2011 2012 2013 2014 2015

Number of fields 37 34 36 51 15 30 52 46Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 16 
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Figure 1. Research area.

The following model of winter wheat yield prediction makes it possible to forecast and simulate
expected yields directly before harvesting, in the current agricultural year.

The data collected to build and verify the correctness of the models were the basis for the
development of software, commissioned by farms located in Poland (Greater Poland), using fields
covered by their own research. Specific prediction dates used in the models, i.e., 15.04, 31.05, and 30.06,
were proposed by agronomists working in the area. The use of unambiguous calendar year dates
is more practical from the point of view of agricultural production. The proposed prediction dates
make it much easier to monitor winter wheat yielding. Moreover, they are selected in such a way as to
reflect as much as possible the key stages of vegetation in typical years, i.e., 15.04—the shooting phase,
31.05—the earing phase, and 30.06—the beginning of full maturity.

2.1. Method of Constructing Neural Models

For the creation of neural models, the independent variables were chosen so that each neural
network used a different number of independent variables from Tables 1 and 2.

For the selection of network topology and learning method, network’s ability to approximate
and generalize was accounted for, basing on network quality measures. By using the Statistica v7.1
(StatSoft Inc., Tulsa, OK, USA) the testing of networks with different architectures was carried out. With
an automatic network designer (AND) each of the models QQWW15_4, QQWW31_5, and QQWW30_6
tested 20,000 networks per each. Network selection was performed based on the best parameters of
network quality determination.

The set of empirical data was divided randomly into a learning set, a validation set, and a test set.
The sets’ sizes included the learning set—211 cases; validation set—45 cases; and testing set—45 cases.
The proportion of sets was 70%, 15%, 15% that considered the number of studied fields.
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Table 2. Data structure in neural prediction models.

Symbol Unit of
Measure Variable Name Model

QQWW15_4
Model

QQWW31_5
Model

QQWW30_6 The Scope of Data

Quantitative Data

R9-12_PY mm The sum of precipitation from 1 September to 31
December of the previous year + + + 63–234

T9-12_PY ◦C The average air temperature from 1 September to 31
December of the previous year + + + 4.9–9.4

R1-4_CY mm The sum of precipitation from 1 January to 15 April of
the current year + + + 59–185

T1-4_CY ◦C The average air temperature from 1 January to 15
April of the current year + + + −0.4–4.9

R4_CY mm The sum of precipitation from 1 April to 30 April of
the current year − + + 8.7–60.4

T4_CY ◦C The average air temperature from 1 April to 30 April
of the current year − + + 5.9–12.2

R5_CY mm The sum of precipitation from 1 May to 31 May of the
current year − + + 14.2–132.5

T5_CY ◦C The average air temperature from 1 May to 31 May of
the current year − + + 11.8–16.2

R6_CY mm Total precipitation from 1 June to 30 June of the
current year − − + 15–121

T6_CY ◦C The average air temperature from 1 June to 30 June of
the current year − − + 14.2–19.6

N_LY kg ha−1 The sum of N fertilization-autumn in the
previous year + + + 0–100

N_CY kg ha−1 The sum of N fertilization-spring in the current year + + + 68–359

P2O5_CY kg ha−1 The sum of P2O5 fertilization in the current year + + + 0–82

K2O_CY kg ha−1 The sum of K2O fertilization in the current year + + + 0–151

MGO_CY kg ha−1 The sum of MgO fertilization in the current year + + + 0–46

SO3_CY kg ha−1 The sum of SO3 fertilization in the current year + + + 14–115

CU_CY g ha−1 The sum of Cu fertilization in the current year + + + 10–138

MN_CY g ha−1 The sum of Mn fertilization in the current year + + + 40–360

ZN_CY g ha−1 The sum of Zn fertilization in the current year + + + 9–226

DOF_PY t ha−1 The dose of organic fertilizer in the previous year + + + 0–36

Qualitative Data

KOF_PY word The kind of organic fertilizer in the previous year + + +
No, Livestock manure,

Chicken manure.

LF_PY word The field liming in the previous year + + + Yes, No.

ST_PY word The soil tillage in the previous year + + +
Aggregate cultivator,
Shallow tillage, Deep

tillage, Ploughing.

KSD_PY word The kind of sowing date in the previous year + + + Early, Optimal, Tardy.

TF_PY word The type of forecrop in the previous year + + +

Winter rapeseed, Winter
wheat, Winter triticale,

Winter barley, Spring barley,
Sugar beet, Potatoes,
Alfalfa, Sunflower,
Mustard, Maize.

“+”—the variable exists in the model, “−”—the variable does not exist in the model.

2.2. Methodology for Validating the Neural Models

With the use of the automatic network designer, each model was evaluated by considering data
from Statistica (StatSoft Inc., Tulsa, OK, USA) software, namely the standard deviation, mean error,
error deviation, mean absolute error, deviation quotient, and correlation. By considering the smallest
value of the mean absolute error and the largest value of the correlation, the best model was chosen.

By comparing data from set B with the predictions from set A, the predictive ability of the
constructed neural models was assessed using ex post measures of the prediction error.

The following errors were calculated on the basis of past data, namely predictions that were
out-of-date and the corresponding current values of the predicted variable. In such a case, the prediction
error is the difference between the observed and predicted value.

Validation of the constructed models was carried out by investigating last year’s data of the
study (2015) as well as 46 fields of winter wheat. However, the following data was not taken into
consideration in the construction of the neural models. The evolution of the prediction quality was
done by using the available methodology in the literature [10,12,32–35].
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• RAE—relative approximation error;

RAE =

√√∑n
i = 1(yi − ŷi)

2∑n
i = 1(yi)

2 . (1)

• RMS—root mean square error;

RMS =

√∑n
i = 1(yi − ŷi)

2

n
. (2)

• MAE—mean absolute error;

MAE =
1
n

n∑
i = 1

∣∣∣yi − ŷi
∣∣∣. (3)

• MAPE—mean absolute percentage error;

MAPE =
1
n

n∑
i = 1

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣× 100%, (4)

where,

n—number of observations,
yi—actual values obtained during research,
ŷi—values given by the model.

For better visualization of dependency between observed and predicted yield, graphs were created
showing relations for each prediction date.

2.3. Neural Network Sensitivity Analysis

The sensitivity of neural networks under construction was carried out in order to check which
of the examined independent features was the most beneficial variable for winter wheat biological
yields. By removing a specific input variable (independent trait) from the model the influence on the
neural network total error can be observed, which allows to determine the significance (on the output
variable, i.e., yield) of individual independent features. For this purpose, two indicators were used.
Error quotient—the ratio of error to error obtained by all independent features—the larger this value,
the greater is the importance of the given trait. If it is less than 1, it might be removed from the model
in order to improve its quality, although this is not obligatory. Rank shows in numerical terms the
ordering of the features by decreasing error, a rank of 1 indicates the network’s greatest importance.

3. Results

As a result of the analyses, each neural model was chosen for each prediction date. Basic
information on the quality of QQWW15_4, QQWW31_5, and QQWW30_6 is given in Table 3. The
general structure of the designed neural network model is presented in Figure 2.

To determine the quality of prediction, computations applied for ex post methods were performed,
using the Formulae (1)–(4). The results are given in Table 4.

In the next step, graphs were plotted showing the relationship between the actual and
predicted yield for each date. Figure 3 presents relationship for QQWW15_4, QQWW31_5, and
QQWW30_6 respectively.
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Table 3. The quality and structure of the neural models produced.

QQWW15_4 QQWW31_5 QQWW30_6

Neural network
structure

MLP
19:35-20-13-1:1

MLP
23:38-16-8-1:1

MLP
25:39-16-9-1:1

Learning error 0.0579 0.0721 0.0781

Validation error 0.0707 0.0564 0.0664

Test error 0.1517 0.0835 0.0996

Mean 6.5785 6.5785 6.5785

Standard deviation 1.5707 1.5707 1.5707

Average error 0.0164 0.0285 −0.0029

Deviation error 0.7188 0.8624 0.8952

Mean Absolute error 0.5041 0.6635 0.6802

Quotient deviations 0.4576 0.5491 0.5722

Correlation 0.8896 0.8386 0.8201
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Table 4. Measures prediction ex post of analyzed neural models.

Model RAE (−) RMS (t ha−1) MAE (t ha−1) MAPE (%)

QQWW15_4 0.069 0.567 0.542 6.92

QQWW31_5 0.066 0.618 0.521 6.63

QQWW30_6 0.068 0.619 0.547 6.88
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Network Sensitivity Analysis

In the last step of the calculations, network sensitivity analysis was carried out for all constructed
neural models. The results of this analysis are shown in Table 5.

Table 5. Sensitivity analysis of neural networks.

Variable Model

QQWW15_4 QQWW31_5 QQWW30_6

Quotient Rank Quotient Rank Quotient Rank

R9-12_PY 1.1381 9 1.0114 13 1.0155 19

T9-12_PY 1.3673 1 1.0420 7 1.1622 2

R1-4_CY 1.2296 4 1.0070 18 1.1580 3

T1-4_CY 1.0476 13 1.0091 15 1.1720 1

R4_CY − − 1.0091 16 1.0049 23

T4_CY − − 1.0241 10 1.1572 4

R5_CY − − 1.1576 1 1.0986 6

T5_CY − − 1.1333 2 1.0670 8

R6_CY − − − − 1.0081 22

T6_CY − − − − 1.0604 10

N_LY 1.0174 19 1.0029 20 1.0027 24

N_CY 1.0417 16 1.0060 19 1.0021 25

P2O5_CY 1.0441 15 1.0847 5 1.0290 13

K2O_CY 1.1039 12 0.9975 22 1.0101 21

MGO_CY 1.1078 11 1.0109 14 1.0623 9

SO3_CY 1.0451 14 1.0289 9 1.0132 20

CU_CY 1.0307 17 1.0170 12 1.0163 17

MN_CY 1.1809 6 0.9943 23 1.0549 11

ZN_CY 1.1125 10 1.0084 17 1.1103 5

DOF_PY 1.0233 18 0.9976 21 1.0275 14

KOF_PY 1.1783 7 1.0331 8 1.0245 16

LF_PY 1.2359 3 1.0205 11 1.0268 15

ST_PY 1.2250 5 1.1155 3 1.0156 18

KSD_PY 1.1403 8 1.0588 6 1.0521 12

TF_PY 1.2590 2 1.1094 4 1.0787 7

As Figure 4 shows, the best match between the observed yield and the predicted yield can be
found in model QQWW15_4, for which the determination coefficient R2 was 0.63. The other models
slightly vary. In model QQWW31_5, the determination coefficient, R2, of 0.61 was obtained, while in
model QQWW30_6, the coefficient, R2 was 0.62.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 16 

MN_CY 1.1809 6 0.9943 23 1.0549 11 
ZN_CY 1.1125 10 1.0084 17 1.1103 5 

DOF_PY 1.0233 18 0.9976 21 1.0275 14 
KOF_PY 1.1783 7 1.0331 8 1.0245 16 
LF_PY 1.2359 3 1.0205 11 1.0268 15 
ST_PY 1.2250 5 1.1155 3 1.0156 18 

KSD_PY 1.1403 8 1.0588 6 1.0521 12 
TF_PY 1.2590 2 1.1094 4 1.0787 7 

As Figure 4 shows, the best match between the observed yield and the predicted yield can be 
found in model QQWW15_4, for which the determination coefficient R2 was 0.63. The other models 
slightly vary. In model QQWW31_5, the determination coefficient, R2, of 0.61 was obtained, while in 
model QQWW30_6, the coefficient, R2 was 0.62. 
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Figure 4. Cont.
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Figure 4. Relation between the observed and predicted yield by model: (a) QQWW15_4, (b) QQWW31_5,
and (c) QQWW30_6.

4. Discussion

Plant yield prediction is based on historical empirical data, which most often appear in the form
of quantitative data, such as anthropogenic, climatic, and geomorphological factors. Such a large
number of variables necessary to generate a properly functioning prognostic model causes problems
with choosing an appropriate modeling method. In addition, some data can be obtained only from
specific researches [36], however it can only be used for scientific purposes. Therefore, in the following
work, the authors created three predictive neural models that give the possibility of their use in the
current agrotechnical season before harvesting. These models are based on data available for each
farmer and are based on two types of data: Quantitative and qualitative. This is a new approach to
problems in the prediction of crop yields. The assumption was made that MAPE for each generated
predictive model would be lower than 7%. It was assumed that the correct functioning of the created
neural models will be verified by comparing the obtained predicted with the observed wheat yields in
the last (2015) year of the study.
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The neural modeling method used for performance of nonlinear tasks gives better results compared
to classic statistical methods [11,37]. A common problem in the neural network of plant yield prediction
is the selection of the appropriate network topology. From the literature sources [10,33], the MLP
network, also known as multilayer perceptron, is most commonly used in terms of forecasting. In this
work, three models based on the above type of network were created: QQWW15_4, QQWW31_5, and
QQWW30_6. Each of the models was based on quantitative and qualitative data, which were 19, 23,
and 25 independent variables respectively, with each model having five qualitative variables (Table 2).

Four ex post error measures were used in the work, i.e., relative approximation error (RAE), root
mean square error (RMS), mean absolute error (MAE), and mean absolute percentage error (MAPE).
They were used to determine the quality of models and to determine the errors of winter wheat yield
prediction. Table 4 presents the error values of the ex post measures for all created neural models. The
most commonly used indicators characterizing prediction error values include MAPE [10,34,38–42].
The lowest MAPE values were obtained for the QQWW31_5 neural model based on the MLP network
of the 23:38-16-8-1:1 structure, which was 6.63%. Bearing in mind the critical level of MAPE at a
complex level of up to 7%, the results obtained for all models were highly satisfactory, as they ranged
up to 6.92% (for the QQWW15_4 model).

After all the calculations were completed, a network sensitivity analysis was performed for all
the generated neural models. The meteorological data (Table 5) obtained the highest rank 1 for all
networks. The result was similar to those obtained in earlier studies [35]. The following shows that the
weather factors T9-12_PY, T1-4_CY, and R5_CY had the greatest impact on the winter wheat yield.
The occurrence of optimal temperatures in the autumn season decided on the proper pullulation and
preparation of plants to inhibit vegetation. However, appropriate thermal conditions that prevail
during winter guarantee proper overwintering and good preparation of plants into spring vegetation.
The appearance of any temperature anomalies during these periods may lead to a reduction in yield [43].
Another significant factor was the sum of rainfall from 1 May to 31 May the actual year. This period was
a phase of critical water demand for winter wheat—from the beginning of shooting to the beginning of
earing [44]. Water shortage results in a poor increase of assimilation organs and poor ear formation.
Maintaining optimal thermal conditions during this period leads to the proper formation of subsequent
development phases by plants and good grain yield. In the model QQWW31_5 and QQWW30_6, rank
2 was obtained by T9-12_PY and T5_CY. An interesting fact is that the QQWW15_4 model determined
the TF_PY feature in the second position—the type of forecrop in the previous year. It follows that the
applied technology and level of fertilization was properly adapted to the nutritional needs of winter
wheat and was based on the real level of micro and macro elements in the soil. Only the QQWW15_4
model showed the second feature in the second position, which might mean that the left remains of
forecrop in soil had a positive influence on the initial winter wheat growth process. Their beneficial
effect was related by the inhibition of weed germination and the development of soil microorganisms,
enriching the soil with nutrients, and scarifying the arable layer [45].

When comparing the values of the predicted yield to the observed yield (Figure 4), a similar match
to each model was found—the R2 was 0.61–0.63 making it acceptable.

5. Conclusions

The results of analyses presented in the work showed that multicriteria prediction neural models
based on quantitative and qualitative data were a good tool for making forecasts and simulations of
winter wheat crop before harvesting. Obtained results of MAPE, which did not exceed 7%, should be
considered as very good. Most of the results obtained in the work, which were based on the analysis of
network sensitivity, were consistent with the results of other authors’ works, indicating the dominant
influence of the course of meteorological conditions on the yield of plants—winter wheat as well. The
presented models can be used in precision agriculture as an element of decision support systems.

Further research should be carried out to optimize models in three directions. First—focusing on
the reduction of independent features while maintaining low MAPE level. Second—obtaining data
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from more fields and from areas with different soil and climatic conditions. Third—performing a detail
research of how the yield of winter wheat changes in different meteorological conditions prevailing
during the growing season.
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