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Abstract: In order to prevent ship collisions, it is important to understand the behavior of navigators
that leads to these collisions. The main cause of marine accidents in the Republic of Korea is attributed
to navigator error, particularly in collisions. Hence, reducing navigator error is a key issue that needs
to be addressed to prevent accidents. However, the lack of objective measure to quantify navigator
error remains a challenge. The purpose of this study is to develop an objective identification of a
navigator’s behavior in a collision encountering situation. Two behavior models for the success
and failure of collision avoidance are developed by collecting participants’ actions, using a ship
maneuvering simulator within a given scenario. These maneuvering behavior models are validated in
terms of their discrimination powers. The results show that maneuvering behavior is clearly identified
in the data processing and model development phases. The proposed behavior models are expected
to provide a better understanding of how navigators behave to help reduce collision accidents.

Keywords: maritime accidents; maneuver behavior identification; ship collision; collision avoidance;
ship maneuvering simulator

1. Introduction

Understanding how navigators behave when they are involved in a ship collision is crucial
for preventing collision accidents caused by human error, which remains a major cause of shipping
incidents [1–3]. In relation to this, behavior models of navigators who operate in complex, high-risk
domains are of great value because of high losses due to navigator failure [4,5]. To ensure the safety of
maritime transportation, scientific measures must be taken to respond to and prevent various types
of maritime accidents, instead of having ambiguous anticipations of possible human errors [6–8].
Although international rules have been reinforced by International Maritime Organization (IMO) to
avoid navigator error, the accident caused by human error continues to this day [3,8]. Recently, the
causes of accidents were induced by a model to assist with accident prevention, and the concept of
accident causes found in the researchers’ models was explained and discussed; however, none is yet
generally accepted [9]. Human error is continually quoted as the source of an accident. However, the
solution is thought to change its role in people or systems, and it is not really simple. Human error
must link human behavior through the process [10]. Based on a recent assessment [11], navigator error
was involved in 79% of accidents in the Republic of Korea over the last five years, and inappropriate
behavior accounted for 49% of all maritime accidents [12]. Although most maritime accidents were
suspected to be related to navigator error, evidence of navigator error has not yet been explored
objectively [13]. Most existing assessments of a navigator’s maneuvering behavior depend on indirect
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data collection methods, such as diaries, surveys, and questionnaires [14–16]. For example, Cordon
et al. used a sample of 141 officers to investigate human errors of navigators via a survey of the
importance of a navigator’s behavior [17], and classify ship bridge work as a criterion for situational
awareness for preventing navigator’s error from occurring [18]. The use of such indirect approaches
entails a subjective limitation for accurate observation of the maneuvering behavior of navigators
during navigation. This limitation could be addressed using more objective data collection measures
of a navigator’s behavior. In relation to this, the authors of this study previously proposed an
identification model of lookout activity using kinetic sensors [19]. However, there is still a lack of
studies that investigate a navigator’s behavior to measure maneuvering activity patterns in a ship
collision environment.

The purpose of this study is to establish a navigator’s behavior model for ship maneuvering using a
ship maneuvering simulator in a collision-encountering situation. The proposed maneuvering behavior
model employed 100 senior cadets at a maritime university in the Republic of Korea. In the given
navigation scenarios, the participants performed maneuvering behavior to avoid collisions between
ships. The maneuvering histories collected by the simulator system were utilized to develop two
behavior models—i.e., the success and failure models for collision avoidance—which were validated
in terms of their discrimination powers. The main contributions of this study are the following: a
scientific research framework for the investigation of a navigator’s error from his/her behavior for
ship collision avoidance, and objective evidence of how a navigator maneuvers a ship in water using
control devices.

2. Materials and Methods

The research framework of this study is presented in Figure 1. In the data processing phase
(Phase 1), logged histories were obtained from ship maneuvering simulations. Then, maneuvering
features were detected and sequence data were created to model maneuvering behavior. In the model
development phase (Phase 2), maneuvering behavior models for the success and failure of collision
avoidance were developed through model comparison.
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2.1. Data Collection

2.1.1. Experiment Configuration

Logged histories were collected in the ship maneuvering simulator using the simulator system
manufactured by Kongsberg digital AS (K-sim Polaris ship’s S-bridge simulator) [20]. The Kongsberg
simulator is a promising ship-handling training system, which uses maneuvering devices (i.e., steering
wheel and engine telegraph), information display of navigation equipment (i.e., electronic chart,
information system, and radar), and body-movement calculation software for a ship interacting with
a user. Moreover, the Kongsberg simulator provides a human–machine interaction logging system
between a user and a ship’s body movement. The logged data can be acquired in the form of an Excel
file containing ship maneuvering histories as a time series with two-second intervals. The experimental
configuration with the Kongsberg simulator is illustrated in Figure 2. Figure 3 shows a simulation
scene by a participant in the simulation scenarios, where collision avoidance action was required, as
illustrated in Figure 4. In the simulation, two ships were used, i.e., a Tanker ship (length of 226 m) as
the own ship (OS) and a passenger ship (length of 260.8 m) as the target ship (TS). Table 1 shows the
specifications and initial conditions of ships used in the simulations.
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Table 1. Specifications and initial conditions of ships used in the simulations.

Classification Factor

Ship Type

Tanker
(Own Ship)

Cruise
(Target Ship)

Specifications

Length overall (m) 226.0 260.8
Breadth (m) 36.6 31.5

Maximum rudder angle (◦) ±45.0 ±45.0
Maximum engine power

(MW)
13.507 8.441

Maximum speed (m/sec) 8.7 11.8

Initial conditions
Position (x, y) (0, 0) (3446.57, 2168.69)
Heading (◦) 90.0 180.0

Speed (m/sec) 6.7 11.8

2.1.2. Experiment Protocol

In the ship maneuvering simulations, 100 senior cadets at Mokpo National Maritime University
participated in the study; their characteristics are shown in Table 2. These participants had taken
maritime training courses for three and a half years at IMO-accredited maritime educational institutions,
and have been in a merchant’s vessel for more than a year. Also, all participants used the Kongsberg’s
simulator for at least 80 h. To determine the appropriate sample size, the minimum sample size for the
appropriate learning ability must be determined [21]. The dichotomous endpoint is a binary code:
collision or not. The result was a minimum sample size of 122 persons (α ≤ 0.05, power = 0.8).

Table 2. Participant characteristics.

Characteristic Mean (SD)

n 100
Female/male 8/92
Age (year) 22.6 (1.2)

Onboard experience (year) 0.9 (0.2)
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Table 3 shows the simulation procedure with the following three steps: 3 min of scenario
explanation in step 1, 10 min of familiarity with the simulator in step 2, and about 5 min of simulation
(ends when a collision occurs) in step 3. From the ship maneuvering simulation, the logged history data
for the 100 participants were obtained; then the navigator’s actions to avoid a collision were detected.
To detect behavior actions, two types of behaviors, device and route control, were introduced. Device
control refers to the use of rudder or engine. On the other hand, route control refers to the control of
deviation or distance of the closest point of approaches (dCPA). The navigator’s behavior was detected
with four behavior features, i.e., rudder use, engine use, controlled deviation, and controlled dCPA.
The types of behavior and their features are summarized in Table 4. Each behavior and its features
assume that the navigator maneuvers the ship in accordance with international regulations for the
prevention of collisions (COLREG) [22], as illustrated in Figure 5. Normally, ship maneuvering is
implemented through the ship’s heading and course, controlled by a rudder, as well as the ship’s speed,
controlled by an engine. When the navigator uses control devices (i.e., rudder and engine), there is a
significant time delay between the ordered value and the response value of the devices. This time delay
is a key characteristic caused by fluid pressure on the rudder and the hull [23]. Thus, ship maneuvering
requires manipulative techniques of control devices. In order to avoid collisions along the designed
route, the deviation between the vessel and the designed ship’s route should be small, and the dCPA
must be secured enough for collision avoidance. The closest point of approaches (CPA) represents
an estimated point at which the distance between two objects (i.e., the OS and TS), where at least
one is moving, reaches a minimum value. Thus, ship maneuvering for collision avoidance requires a
technique to control the ship’s route in addition to the device control technology. In this study, the
maneuvering behavior model of the navigator was constructed using four behavior features mentioned
above, and MATLAB 2008 (Mathworks, Natick, MA, United States) was used for the computations.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 17 
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Table 3. Simulation procedures.

Procedure Description Duration (min)

Step 1 Explanation of scenario 3
Step 2 Familiarization of simulator 10
Step 3 Simulation (ends when the own

ship collides with the target ship)
5 (variable)
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Table 4. Types of behavior and behavior features used in the study.

Type of Behavior Type of Behavior Feature

Device Control Rudder use
Engine use

Route Control Controlled deviation
Controlled distance of closest point of approaches (dCPA)

2.2. Data Analysis

2.2.1. Data Processing

Data processing consists of three tasks: converting the logged history into experimental data,
detecting behavior features, and creating sequence data for behavior model development. For data
conversion, the logged histories obtained from the maneuvering simulator were converted into
experimental data, as described in Table 5. Ship maneuvering is represented by port and starboard
movement and velocity changes of the ship. Here, the navigator uses the rudder for left and right
movement, and the engine uses speed for movement [24,25]. Also, we selected four features because
the risk of collision to both vessels can be assessed by deviation and dCPA [26]. For feature detection,
using the detection rules presented in Table 6, four behavior features were detected with binary values
(0 or 1). Two features, rudder use and engine use, were detected using a rudder reference value of ±5◦

and an engine reference value of 10.13 MW. The rudder reference value is the minimum effective angle
required for ship control, and the engine reference value is 3/4 of the maximum engine power [27].
In addition, the other two features, controlled deviation and controlled dCPA, were both detected
using the same reference value of 361.6 m. The reference value was calculated as the bumper area
of OS, considering the width of the passage [28–30]. The bumper area was calculated as the room
required for collision avoidance [31,32]. Note that unlike the detection of behavior features for device
control, calculations of deviation and dCPA were required for the detection of behavioral features of
route control.

Table 5. Types of experimental data obtained from the logged histories in the simulations.

Type Description

Time Ship-handling time (seconds)

Position
Ship’s position (x, y): converted from position

(latitude, longitude) in the geographic coordination
system (ECS) to Cartesian coordinate system

Course Direction of ship’s route (◦): converted from the
azimuth in ECS to Cartesian coordinate system

Speed Ship’s speed (m/sec): Converted from knots
(mile/hour) to speed (m/sec)

Engine power Used engine power (MW)

Rudder angle Ordered rudder angle (◦)
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Table 6. Rules for the detection of four maneuvering behavior features.

Behavior Feature Rule Value Description

Device Control
Rudder Use

oRA(t) < RAre f 0 oRA(t): Ordered rudder angle at time t
RAre f : Reference angle of ±5◦oRA(t) ≥ RAre f 1

Engine Use oEP(t) < EPre f 0 oEP(t): Used engine power at time t
EPre f : Reference power of 10.13 MWoEP(t) ≥ EPre f 1

Route Control

Controlled
Deviation

Dev(t) < Devre f 0 Dev(t): Deviation1 at time t
Devre f : Reference distance of 361.6 mDev(t) ≥ Devre f 1

Controlled dCPA
dCPA(t) < dCPAre f 0 dCPA(t): dCPA2 at time t

dCPAre f : Reference distance of 361.6 mdCPA(t) ≥ dCPAre f 1
1 Calculated deviation using Equation (1); 2 Calculated distance of the closest point of approaches (dCPA) using
Equation (2).

The deviation Dev(t) at time t between the position of the OS and the designed route at the
beginning of the simulation was calculated as

Dev(t) =

√(
ψOS(x)(t) −ψPR(x)(t)

)2
+

(
ψOS(y)(t) −ψPR(y)(t)

)2
, (1)

where ψOS(x, y) is the coordinate set of the position (xOS, yOS) of the OS at time t; ψPR(x,y) = (xPR, yPR)

is the coordinate set of the estimated position of the designed route, which was calculated with the
course and speed of the OS at time t = 0.

The calculation of the distance of the CPA requires complex procedures and formulas, which have
already been reported in various references [33,34]. Using the formulas in [35], dCPA(t) was calculated
using the following procedure:

• Step 1: Let
{
ψ, ν,θ

}
be the set of position (ψ), speed (ν), and course (θ) at time t.

• Step 2: Obtain the set
{
ψOS, νOS,θOS

}
of the OS and the set

{
ψTS,νTS,θTS

}
of the TS.

• Step 3: Estimate the position of intersection points ψInter between θOS and θTS using the “navfix”
program in MATLAB 2008 (Mathworks, Natick, MA, United States). Then, let ψ̂OS be the position
of OS at ψCSP.

• Step 4: Calculate the travel time TTOS of the OS from ψOS to ψ̂OS using νOS.
• Step 5: Calculate the position ψ̂TS of the TS at TTOS using θTS.
• Step 6: Calculate dCPA(t) between ψ̂OS and ψ̂TS at time t.
• Step 7: Iterate Steps 1 to 6 to t = T (T is simulation time) and finish.

For sequence data creation, the four behavior features mentioned above were used. The
performance levels of the device control PLDOB and the route control PLRCB were calculated as

PLDOB(n) =
1
T

T∑
t=0

(
DOBRud(n, t) + DOBEng(n, t)

)
, (2)

PLRCB(n) =
1
T

T∑
t=0

(RCBDev(n, t) + RCBdCPA(n, t)), (3)

respectively, where n is the participant number, with n = 1, 2, 3, · · ·N (N = 100); t is the simulation time
that varies for each participant; DCBRud is the detected binary value of the device control behavior for
rudder use; DCBEng is the detected binary value of the device control behavior for engine usage; RCBDev

is the detected binary value of the route control behavior with respect to the controlled deviation; and
RCBdCPA is the detected binary value of the route control behavior for the controlled dCPA.
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In the above Equations (2) and (3), all four variables were applied during the simulation time t.
However, interactions between the four variables and the maximum value of simulation time t are
raised as issues, and will be discussed in Section 4.

The performance level calculated by Equations (2) or (3) has a value between 0 and 1. A value of 1
means that the navigator’s device control and route control techniques are at a higher level compared
to zero. Using the calculated performance levels for 100 participants, behavior sequences with symbols
v =

{
Poor, Average, Excellent

}
were created, using the rules of symbolic performance levels in Table 7.

Then, the sequence data were constructed by allocating the success OSuccess and the failure OFail of
collision avoidance into the following 2 × N (N is the sequence length) matrices:

OSuccess =

[
ODCB|Success
ORCB|Success

]
and OFail =

[
ODCB|Fail
ORCB|Fail

]
,

where O(DCB|Success) ∈ v and ORCB|Success ∈ v are the device control behavior and the route control
behavior for the success of collision avoidance, respectively, while ODCB|Fail ∈ v and ORCB|Fail ∈ v are the
device control behavior and the route control behavior for the failure of collision avoidance, respectively.

Table 7. Rules for symbolic performance levels.

Performance Level Symbol Rule

Low Poor PL∗3 = 1/3
Moderate Average 1/3 <= PL∗ < 2/3

High Excellent PL∗ >= 2/3
3 Behavior performance level of the device control (PLDOB) or of the route control (PLRCB).

2.2.2. Model Development

During the model development phase, the rules of the Markov chain and its related methods were
used [36–43]. The developed behavior model λ(A, B,π) with two states and three parameters A, B,
and π is as follows:

• State transition probability distribution: A =
{
ai j

}
=

[
a11 a12

a21 a22

]
• Observation symbol probability distribution: B =

{
b j(vk)

}
=

[
b1(v1) b1(v2) b1(v3)

b2(v1) b2(v2) b2(v2)

]
• Initial state distribution: π = {πi} =

[
1 1
1 1

]
Adopting the classic model notation for a hidden Markov model (HMM) from Rabiner and

Juang [36], the HMM is characterized by five elements, namely N, M, A, B, and π. These are described
as follows. N is the number of states in the model. The individual states and the state at time t are
denoted as S = {S1, S2, · · · , SN} and qt, respectively. M is the number of observation symbols. The
individual observation symbols are denoted as V = {v1, v2, · · · , vM}. A is the state transition probability
distribution, A =

{
ai j

}
, where ai j = P

[
qt+1 = S j

∣∣∣qt = Si
]
, 1 ≤ i, j ≤ N. The term ai j represents the

transition probability from state Si to state S j, and is subject to the constrains of
∑N

j ai j = 1 and ai j ≥ 0. B

is the observation symbol probability distribution in state j: B =
{
b j(k)

}
, where b j(k) = P

[
vk at t

∣∣∣qt = S j
]
,

1 ≤ j ≤ N, and 1 ≤ k ≤M. The term b j(k) represents the probability of state j at time t with observation
symbol vk, and is subject to the constraints of

∑M
k b j(k) = 1 and b j(k) ≥ 0. Finally, π is the initial

state probability distribution π = {πi}, where πi = P[q1 = Si], 1 ≤ i ≤ N. The term πi represents the
probability of Si being the initial state at time t = 1.

Given appropriate values of N, M, A, B, and π, the HMM can be used to generate an observation
sequence O = O1O2 · · ·OT in which each observation t is a symbol from V, and T is the number of
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observations in the sequence. Given a finite observation sequence of hidden states, all the possible
transition probabilities and symbol output probabilities can be multiplied at each transition to calculate
the overall likelihood of all the output symbols produced in the transition path up to that point.
Summing all such transition paths, one can then compute the likelihood of the HMM generating the
sequence. The compact notion λ = (A, B,π) can be used to represent the complete parameter set of the
model. With HMMs, there are three basic problems that must be addressed, namely (i) evaluation, (ii)
decoding, and (iii) learning.

The first problem is evaluation, i.e., the probability P(|λ) of the model λ = (A, B,π) producing a
given sequence O = O1O2 · · ·OT. The evaluation problem can be solved using the forward–backward
dynamic programming algorithm [37,38]. The forward variable αt( j) is defined as the probability of
the partial observation sequence O1O2 · · ·Ot and state Si at time t, given the model λ. The variable
αt( j) can be calculated recursively by (i) initializing α1(i), as in Equation (4); (ii) calculating αt+1( j), as
in Equation (5); and (iii) calculating P(|λ), as in Equation (6):

α1(i) = πibi(1), 1 ≤ i ≤ N, (4)

αt+1( j) = b j(t+1)
N∑

i=1

αt(i)ai j, 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N, (5)

P(|λ) =
N∑

i=1

αT(i) (6)

In addition, the backward variable βt(i) is defined as the probability of the partial observation
sequence from t + 1 to the final given state Si at time t, as well as the model λ. The variable βt(i)
is calculated recursively by (i) initializing βT(i), as in Equation (7); and (ii) calculating βt(i), as in
Equation (8):

βT(i) = 1, 1 ≤ i ≤ N, (7)

βt(i) =
N∑

j=1

βt+1( j)ai jb j(t+1), t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ N (8)

The second problem is decoding, i.e., determining the most probable path of hidden states given
the sequence of observations. A common means of solving this problem is the Viterbi algorithm [39,40],
which uses a forward–backward algorithm across the trellis of hidden states to find a single best-state
sequence Q =

{
q1q2 · · · qT

}
for a given observation sequence O = {O1O2 · · ·OT}. To do so, the highest

probability δt(i) along a single path at time t must be defined, which accounts for the first t observations
and ends in state Si. The probability δt(i) is defined as in Equation (9), and is calculated recursively, as
in Equation (10):

δt(i) = max
q1,q2,··· ,qt−1

P
[
q1q2 · · · qt = i, O1O2 · · ·Ot

∣∣∣λ], (9)

δt+1( j) =
[
max

i
δt(i)ai j

]
b j(t+1). (10)

The third problem is model learning, i.e., adjusting the model parametersλ = (A, B,π) to maximize
the probability P(|λ) given the observation sequence . Several methods can be used to estimate the
model parameters, the main ones being supervised learning algorithms and unsupervised learning
algorithms. A supervised learning algorithm is a maximum likelihood estimation method [41,42]
that uses observation sequences and the corresponding state sequence data, while the unsupervised
learning algorithm is a forward–backward algorithm that uses observation sequences. In the present
study, the model parameters of participant behavior are obtained using supervised learning.

Figure 6 shows a graphical representation of the two-state ergodic hidden Markov model (HMM)
used in the behavior model development. Two types of behavior models were developed in this
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study, the success model λSucess and the failure model λFail, which were trained by the sequence data
observed from the success and the failure of collision avoidance, respectively. The developed behavior
models were validated using model distance and model performance. Model distance evaluates the
dissimilarity between two models [43], while model performance measures the correct answering
percentile (%) for observations generated by the model. The model distances (MDSuccess or MDFail)
between λSucess and λFail were calculated as

MDSuccess = MD(λFail, λSuccess) =
1
T
[log P(OSuccess|λFail) − log P(OSuccess|λSuccess)],

MDFail = MD(λSuccess, λFail) =
1
T
[log P(OFail|λSuccess) − log P(OFail|λFail)]

where OSuccess is the sequence of observations generated by model λSuccess, and OFail is the sequence of
observations generated by model λFail.
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Figure 6. Graphical representation of the behavior model with a two-state ergodic hidden Markov
model (HMM).

The model performances (CRSuccess or CRFail) for MDSuccess or MDFail were calculated as

CRSuccess =
T∑

t=1

I, (I = 1, i f MDSuccess > 0),

CRFail =
T∑

t=1

I, (I = 1, i f MDFail > 0)

3. Results

3.1. Feature Detection

Figure 7 shows an example of behavior feature detection of a participant who failed to avoid a
collision. It can be seen that the participant used both the rudder and the engine for a certain period,
but the deviation and the dCPA fluctuated around their reference values (dotted lines) for 5 min. The
feature detections for all participants (n = 100) are shown in Figure 8, which were observed from 47
who were successful in collision avoidance and 53 who failed to avoid collision. Figure 9 shows the
percentile (%) of behavior performance levels divided into two types: successful collision avoidance
and failed collision avoidance. Analysis of the “excellent” levels in these two types showed that
Figure 9a,c show 51.66% and 72.34%, respectively, for successful collision avoidance, while Figure 9b,d
show 5.66% and 3.77%, respectively. From the results of Figure 9, it was found that the percentile
of “excellent” levels in the successful behavior was about 10 to 20 times higher than that of the
unsuccessful behavior. Thus, the sequence data constructed from the behavior feature detection have a



Appl. Sci. 2019, 9, 3114 11 of 17

behavior feature that can clearly distinguish between success and failure of collision avoidance. Using
the sequence data shown in Figure 8, two behavior models divided into the success and failure of
collision avoidance were constructed.
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3.2. Model Validation

The developed behavior models were validated in terms of model distance and model performance.
Table 8 provides answers to the following questions: given two HMMs, the failure model λFail and
the success model λSuccess, what is a reasonable measure of the similarity of the two models? An
important key point here is similarity criteria. Even though the two models, λFail and λSuccess, look
very different, a statistical equivalent of the model can occur. Distance measures D(λFail, λSuccess)

or D(λSuccess, λFail) between models λFail and λSuccess have a dissimilarity concept with respect to
model distance. Several interpretations of the model distance exist in terms of such as cross entropy,
divergence, and discrimination of information [28,35]. The MDSuccess is a measure result of how well
the model λFail matches observations generated by model λSuccess, relative to how well model λSuccess
matches observations generated by itself. Also, MDFail is a measure result of how well model λSuccess
matches observations generated by model λFail, relative to how well model λFail matches observations
generated by itself.

Table 8. Comparison results of two models in terms of model distance and model performance.

Classification Measurement Variable Mean (SD)

Model distance
MDSuccess = D(λFail, λSuccess) −2.60 (2.68)

MDFail = D(λSuccess, λFail) −1.69 (1.54)

Model performance CRSuccess 0.7871
CRFail 0.9434

Table 8 shows the validation results by comparing the two models. Note that a larger model
distance indicates greater discernibility of the model. Meanwhile, model performance increases as
the model distance increases. The log likelihood (−1.69) of MDSuccess was about 1.5 times larger than
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the log likelihood (−2.60) of MDFail. Thus, dissimilarity was greater for the failure model than that
for the success model. As a result, the failure model shows that the degree of dissimilarity with the
success model is larger than the success model, but more closely matches the observations generated
by the model itself. This result implies that the failure model has a higher predictive power of behavior
observed compared to the success model. The reason why the failure model has higher discriminative
power than the success model will be discussed in Section 4.

As the result of model distance, the percentile of model performance was 78.71% for the success
model and 94.34% for the failure model.

3.3. Behavior Analysis

The maneuvering behavior of a navigator was analyzed using two behavior models, i.e., a success
model of collision avoidance and a failure model of collision avoidance. Figure 10 shows the transition
probability of two states for both models. The analysis results of both models are summarized
as follows.
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collision avoidance.

First, for the success model, the probability (0.7273) of transition from state 1 to state 2 was about
2.7 times larger than that from state 2 to state 1 (probability of 2.655). On the other hand, for the failure
model, the probability (0.6269) of transition from state 2 to state 1 was about 2.8 times larger than that
from state 1 to state 2 (probability 0.2211). As results, we found that the two key features; (i) navigators
who succeeded in collision avoidance showed that the device control behavior was predominantly
transitioned to route control behavior, and (ii) navigators who failed in collision avoidance showed
that the route control behavior was predominantly transitioned to device control behavior.

Second, for the success model, the self-transition probability (0.7345) of state 2 is about 2.7 times
larger than that of state 1 (probability of 0.2727). On the other hand, for the failure model, the
self-transition probability (0.7789) of the state 1 is about 2.1 times larger than that of state 2 (probability
of 0.3731). From these results, we found that (i) navigators who succeeded in collision avoidance
showed a self-transition predominance of the route control behavior, and (ii) navigators who failed to
avoid the collision showed a self-transition predominance of the device control behavior.

In the above results, the behavior of the navigators was clearly identified for both successful
and unsuccessful collisions. The reason why the success and failure models have different transition
characteristics will be discussed in Section 4.

4. Discussion

This study was conducted for developing a collision encountering situation in a simulator using
a navigator’s behavior model for ship maneuvering. The main contribution of this study is the
development of success and failure models to investigate navigator errors from behavior on ship
collision avoidance. As mentioned in Section 2.2.1, four variables—rudder, engine, planned route
control, and dCPA control—have been applied for the performance level calculation during the
simulation time. The reason why these four variables were applied during the simulation time can



Appl. Sci. 2019, 9, 3114 14 of 17

be explained as follows. First, planned route tracking and dCPA control require both rudder and
engine use. Second, changing the vessel course for planned route tracking can lead to a change in
dCPA. Third, changing the ship course for dCPA control can cause changes in planned route tracking.
As in these three explanations, the four variables have mutual influences. Thus, in this study, the
four variables are used in the performance level calculation during simulation time. Moreover, as
mentioned in Section 2.2.1, the maximum time estimate for calculating performance levels has been an
issue. Unfortunately, the maximum time required to calculate performance levels is not known [36].
The reason for this is that depending on the given situation, the possibility of a performance level
varies. Thus, in this study, a collision-prone scenario is applied to the simulation experiment. A study
on the estimation of the optimal time required to calculate the performance level was left as a future
research work.

As mentioned in Section 2.2.2, the failure model had higher discriminative power than the success
model. This can be interpreted as follows. Since collision avoidance failure was determined after a
normal navigational situation, both models had normal navigation situations [44–46]. In particular,
the success model reflects more of the normal navigation situation compared to the failure model.
Thus, the failure model can be interpreted as having greater discriminative power than the success
model. On the other hand, as mentioned in Section 3.3, different transition characteristics were found
between the success and failure models. This can be interpreted as follows. In ship maneuvering,
device control technology and route control techniques have complementary characteristics [47,48].
Successful route control requires a high level of device control technique. Also, the device control effect
can be confirmed in a short amount of time compared to the route control effect, and effective route
control requires long boarding experience and knowledge. Hence, this results in differences in transfer
characteristics for the models.

It is important to distinguish between measurements in this real-field environment and
measurements in virtual reality. The real-field environment was practically difficult due to time
and cost [24]. Because this is the reason for the use of virtual reality, the results are expected to be
real-field [49]. For the same reason, it is necessary to perform additional verification, because it is
an experiment in which the participants of the experiment are aimed at the reserve navigator. Also,
the rudder and engine have been used for the analysis of ship’s course-keeping control in maritime
fields [50], but we propose an analysis method for the error of the navigator divided by device control
behavior and route control behavior.

This problem in ship control techniques has been raised previously in ship navigation, and it is
about whether the technique comes first or experience [51,52]. This will be the subject of further research.

5. Conclusions

The results of the proposed maneuvering behavior models showed that the behavior of navigators
was clearly identified for both the success and failure of collision avoidance. The proposed behavior
models provide a better understanding of how a navigator behaves during collision-encountering
situations, which can be applied to research of human error patterns for the prevention of navigational
accidents, by showing harmful behavior patterns of the navigator. Future work will examine the
association between a navigator’s behavior patterns and maritime accidents by precisely anticipating
possible navigator errors, in order to prevent maritime accidents.
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