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Featured Application: Singulation of objects in a cluttered living room environment to enhance
the grasping and identification capabilities of a robot manipulator. Singulation of objects in
autonomous assembly by robot manipulator.

Abstract: This paper presents a scattering-based technique for object singulation in a cluttered
environment. An analytical model-based control scattering approach is necessary for controlled
object singulation. Controlled scattering implies achieving the desired distances between objects
after collision. However, current analytical approaches are limited due to insufficient information
of the physical environment properties, such as the coefficient of restitution, coefficient of friction,
and masses of objects. In this paper, this limitation is overcome by introducing a technique to learn
these parameters from unlabeled videos. For the analytical model, an impulse-based approach is
used. A virtual world simulator is designed based on a dynamic model and the estimated physical
properties of all objects in the environment. Experiments are performed in a virtual world until
the targeted scattering pattern is achieved. The targeted scattering pattern implies that all objects
are singulated. Finally, the desired input from the virtual world is fed to the robot manipulator to
perform real-world scattering.

Keywords: object singulation; clutter environment; dynamic estimation; impact mechanics; physics
engine; dynamic manipulation

1. Introduction

Robot grasping is well enough developed for a structured environment [1,2]. However, interaction in
unstructured environments is quite a tedious task for robots. Different techniques have been proposed for
object manipulation in cluttered environments, such as data driven approaches [3] and using a hierarchy
of supervisor for online learning from demonstration [4,5].

In robot manipulation, the objects can be moved from initial position to goal position through
quasi-static or dynamic manipulation. The object singulation can be achieved by either pushing
(quasi-static manipulation method) or scattering (dynamic manipulation method) the objects. In this
paper, the methodologies are developed for object singulation, considering the dynamic manipulations.
Object singulation assists grasping objects in a cluttered environment by creating fewer obstacles and
more clearance for the robot end effector. Especially, when objects are close to each other or come
into contact, it is hard for the robot to grasp an individual object without separating it from other
objects. That is why it is sometimes necessary to scatter objects by hitting them with a manipulator for
a short period of time to facilitate a grasping operation. Such cluttered environments can be found in
our living rooms, as shown in Figure 1a. The task will be identifying objects, grasping, and finally
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rearranging them at their original locations. The singulation of objects will help in identification and
grasping of objects. Another emerging issue is the autonomous assembly by a robot manipulator.
Lego parts based assembly example is shown in Figure 1b. Many objects are mixed together, and the
robot performs the object singulation and then should identify different parts in sequence in real-time,
grasp it, and complete the assembly.
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Figure 1. Potential applications of singulation: (a) Living room; (b) LEGO parts-based assembly by a
robot manipulator.

Different methodologies of object singulation are employed by using a pushing motion in cluttered
environment [6–10]. Eitel et al. [7] proposed a neural network-based approach to separate unknown
objects in clutter through favorable push actions. By performing selective pushes, Hermans et al. [8]
proposed a method for separating an unknown number of objects by disambiguating potential object
boundaries. Dogar et al. [11] used a push-grasping technique to enhance the grasping capabilities of
the robot by introducing the concept of capture region.

Standard model-based approaches are also applied for object singulation [12–14] in a cluttered
environment. The model-based approaches require knowledge of physical properties of the
environment. Without any prior knowledge, the estimation of the physical properties is a challenging
task. However, the physical properties can be estimated by processing the recorded video of dynamic
interaction of objects along with the analytical model. Wu et al. [15,16] proposed a technique to acquire
physical properties of objects from unlabeled videos. However, this technique is not directly applicable
for an object singulation application.

Impulse model-based methodologies are introduced for the robot and environment interaction
applications [17–19]. By extending those methodologies, we propose an analytical model based
scattering technique for object singulation in a controlled manner. Controlled scattering implies
achieving a desired distance among objects after collision as shown in Figure 2. The robot performs
scattering by hitting the object nearest to the gripper. As a result, the nearest object collides with
the surrounding objects and makes it easy for the robot to pick up the target object. In this paper,
an impulse-based model is used for analytical modeling of the environment. A robot manipulator will
be used as a means of impulse given to the object. The problem of physical properties estimation is
overcome by using a vision-based technique. A virtual world simulator is developed to perform a
controlled scattering without disturbing the real-world environment.

In Section 3, a generalized impulse model is introduced. Section 4 describes a methodology
to acquire motion parameters such as distance, time, velocity, and accelerations from unlabeled
recorded videos. These parameters are used in a dynamic model to learn the physical properties
such as mass ratio, coefficient of restitution, coefficient of friction. In Section 5, a virtual world
simulator is designed to perform the controlled scattering. Once the controlled scattering is achieved
in virtual world, the manipulator will be commanded to perform the scattering similar to virtual
world. Finally, a quantitative evaluation is performed in Section 6 by measuring the distance among
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objects in the real and virtual world to evaluate the performance of the proposed scattering method
and exactness of the estimated physical properties.
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2. Methodology

In robot manipulation, there are two different methods to move objects from initial position to
final position, such as prehensile and non-prehensile methods. In prehensile manipulation, the method
is to grasp an object and move to final position. On the other hand, in non-prehensile manipulation,
the object can be moved to goal position by pushing, throwing, or striking. Furthermore, non-prehensile
manipulation methods are mainly divided into two categories, such as quasi-static and dynamic
methods [20]. In quasi-static manipulation, an object is always in contact with a manipulator and
motions are assumed slow enough to neglect the inertial effect, such as pushing [21] and sliding [22].
The quasi-static manipulation is not suitable for limited workspace and in some applications where
manipulations of an object demand higher speed. On contrary, in the dynamic manipulation, the object
continues its motion after losing contact with manipulator. In the dynamic manipulation, the motion
of the object is determine by the motion of manipulator and its dynamic characteristics after losing
contact. This paper deals with singulation of objects in cluttered environment based on dynamic
manipulations, where impulsive motions are used to scatter the object to achieve the desired distance
among objects after scattering. Practically, it is difficult to control the moving object with impulsive
actions to an exact location however, it still useful for object singulation application as the targets are
not that stringent.

In this paper, 115 videos were collected by performing the collision of single object and multiple
objects with a manipulator. By processing these unlabeled videos, certain parameters are observed
such as travel distance of each object after collision, travel time, velocities before/after collision,
and acceleration of each object. Furthermore, using these observed motion parameters, physical
properties of all objects being involved in the collision can be estimated. Based on these physical
properties, a virtual world simulator is designed to perform a controlled scattering. In control scattering,
the maximum and minimum distance is controlled between objects after collision to ensure that all
objects are singulated. The initial position of objects is observed from the real world and is given as
an input to the virtual world along with measured physical properties. The distance between objects
is a function of manipulator colliding velocity. In the virtual world, the velocity of manipulator is
controlled based on the feedback error (between measured distance and desired distance) until the
desired distance among objects is achieved. Once the goal is achieved in virtual world, the same
desired velocity input is given to the real world and then controlled scattering is performed.

3. Impulse Modeling

In this section, the analytical impulse based methodology is developed considering the dynamic
manipulation of objects. During scattering, the impulse is propagated from robot manipulator to the
objects involved in scattering. Accordingly, it is important to develop a model considering the collision
between the robot manipulator and object, and between objects.
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3.1. Collision between Manipulator and Object

The scattering environment is shown in Figure 3. The incremental change in relative linear
velocities of two colliding bodies (here, a robot and a colliding body) can be calculated if the coefficient
of restitution (e) is known [23]:

(∆vI − ∆venv)
Tn = −(1 + e)(vI − venv)

Tn, (1)

where the coefficient of restitution (e) ranges from 0 to 1 correspond to perfectly inelastic to elastic
collision. vI and venv are the absolute linear velocities of the robot and colliding body (environment),
respectively. ∆vI and ∆venv are the velocity increments of robot manipulator and the colliding body
after the impact, respectively. The inverse dynamic model of the robot manipulator with respect to
independent joint set is given as follows [24]:

Ta = [Iaa]
..
ϕa +

.
ϕ

T
a [Paaa]

.
ϕa + ga −

[
GI

a

]T
Fext, (2)

where [Iaa] and [Paaa] denotes the inertia matrix and inertial power array with respect to independent
joint set, respectively.

[
GI

a

]
is a Jacobian matrix that relates velocity at contact point to independent

joints velocity. Ta, Fext and ga stands for joint torque vector, effective force vector, and gravity load,
respectively. Since the position and velocities are finite during the impact, consequently the term
involving integral

.
ϕ

T
a [Paaa]

.
ϕa will be zero as ∆t→ 0. Similarly, the terms involving actuation torque

Ta and gravity go to zero. Integration of (2) over contact time will yield [24]:

∆
.
ϕa = [Iaa]

−1
[
GI

a

]T
F̂ext. (3)

where F̂ext =
∫ to+∆t

to
Fextdt denotes the external impulse. The kinematic relationship between joint

velocity and contact point velocity is established as follows:

[vI] =
[
GI

a

] .
ϕa. (4)
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Finally, the velocity increment of the robot at contact point in terms of external impulses is
established as:

[∆vI] =
[
GI

a

]
[Iaa]

−1
[
GI

a

]T(
F̂ext

)
, (5)

Similarly, for the environment, the velocity increment relationship is established as:

[∆venv] = [Genv
a ][Ienv]

−1[Genv
a ]T

(
−F̂ext

)
. (6)
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Considering that there is no friction between the contacting surfaces, the impulse will always act
along the normal vector n at the contact point:

F̂ext = F̂extn. (7)

Now, by substituting Equations (5) and (6) into Equation (1), the closed form solution of the
external impulse is established as follows:

F̂ext =
−(1 + e)(vI − venv)

Tn

nT{
[
GI

a

]
[Iaa]

−1
[
GI

a

]T
+ [Genv

a ][Ienv]
−1[Genv

a ]T}n
, (8)

where the first term in the denominator is associated with the dynamics of the manipulator, while the
second term shows the dynamic contribution of environment, respectively. During scattering, after the
collision between robot and object, the object will collide with other objects in the environment. In next
section, the collision model among objects is developed.

3.2. Collision Kinematics between Objects

Consider two bodies with mass center velocities va, vb and angular velocities ωa, ωb are
approaching to each other as shown in Figure 4a. Where (ma, Ia) and (mb, Ib) denote the mass and
mass moment of inertia of body ‘A’ and body ‘B’, respectively. During collision, impulsive force F̂ext is
experienced by both bodies with equal magnitude and in opposite direction. After collision, the mass
center velocity of body ‘A’ can be expressed as follows:

v′a = va + F̂extm−1
a , (9)

Similarly for body ‘B’:
v′b = vb − F̂extm−1

b , (10)

where v′a and v′b denote the post impact mass center velocities of body ‘A’ and body ‘B’, respectively.
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Figure 4. (a) Collision model of two translating and rotating bodies. (b) Object and manipulator
collision model by considering friction. (c) Collision model among objects by considering friction.
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Similarly the post impact angular velocities can written as follows:

ω′a =ωa + I−1
a (ra × F̂ext

)
(11)

and:
ω′b =ωb − I−1

b (rb × F̂ext
)

(12)

for body ‘A’ and body ‘B’, respectively. The contact point velocities of both bodies is written as follows:

va = va +ωa × ra, (13)

and:
vb = vb +ωb × rb, (14)

where ra, and rb denote the vectors directing from the center of the objects to the point of contact p.
Finally, the Equations (9)–(14) are rearranged to find the velocity increments of both bodies in

terms of external as follows:
∆va = F̂extm−1

a +
(
ra × F̂ext

)
I−1
a × ra, (15)

and:
∆vb = F̂extm−1

b −
(
rb × F̂ext

)
I−1
b × rb, (16)

where ∆va = v′a − va and ∆vb = v′b − vb. v′a and v′b denotes the post impact velocities at contact
point of body ‘A’ and body ‘B’, respectively. Similar to Equation (8), the closed-form solution of normal
impulse is obtained as follows:

F̂ext =
−(1 + e)(va − vb) · n

m−1
a + m−1

b +
[
(ra × n)I−1

a

)
× ra + (rb × n)I−1

b ) × rb] · n
· (17)

In practical cases, for general shape objects, the impulsive force is resolved into two components:
normal to the surface and tangential to the surface. For circular objects, if the friction coefficient µ f
is negligible on the object surface, there will be only normal force directing toward the center of the
objects. The Equations (8) and (17) denote this case. However, with consideration of the surface friction,
an additional external impulse component will act along the tangential direction as shown in Figure 4b.
For the case of Figure 4c, F̂n and F̂t are normal and tangential component of impulse experienced by
the object. F̂ f is the frictional impulse, which is associated with µ f F̂n. The slipping phenomenon will
happen if F̂t is greater than µ f F̂n. The total external impulse experienced by an object will be a vector
sum of normal and tangential components, whose magnitude is given as follows:

F̂ext =
√

F̂ f
2 + F̂n2· (18)

The object experiences impulsive torque due to the frictional external component F̂ f , which is
given as follows [25]:

τ̂ = ra × F̂ f = [Ia]∆ωa, (19)

where ∆ωa denotes the change in angular velocity of the object. If F̂t impulse component is smaller
than µ f F̂n, then will be no slip and accordingly we have:

F̂ f = F̂t, (20)

where the tangential component is given as follows:

F̂t = F̂− F̂n· (21)



Appl. Sci. 2019, 9, 3536 7 of 19

However, if F̂t is larger than µ f F̂n then slip occurs and the amount of impulse transmitted along
tangential direction will be:

|F̂ f |=|µ f F̂n|t, (22)

where:
|F̂n|=|F̂| cosα, (23)

3.3. Condition for Scattering and Pushing

In this section, the condition for scattering and pushing are stated. During collision, due to
actuation of the manipulator, the change in velocity of the manipulator is small compared to change in
velocity of the object. Consider that ∆vI << ∆vinv, Equation (8) will be reduced to:

F̂ext = −(1 + e)ma(vI − va)· (24)

which implies that the velocity of the manipulator before and after collision will remain the same
(v′I = vI), where vI and v′I denotes the velocities of the manipulator before and after collision.
The velocity of the object after collision is given as follows:

va
′(to) = va(to) − (1 + e)vI· (25)

where va(to) denotes the initial velocity of the object at to before collision which is always zero in our
application. va

′(to) denotes the initial velocity of the object after collision with the robot manipulator.
Finally, the object will come to rest with the following velocity:

va
′(t) = va

′(to) − sign(v)µagt (26)

The condition for scattering and pushing is associated with relative velocities of robot manipulator
and object after collision. For the case of pushing (quasi-static manipulation), the condition states that:

v′I ≥ va(to), Object sticking (27)

Similarly for the case of scattering (dynamic manipulation), the condition will be formed as
follows:

v′I < va(to). Object sliding apart (28)

For the case of pushing (quasi-static manipulation), the object motion will be determined by the
motion of the manipulator only. Accordingly, the dynamics of the object will not affect the motion of
the object. This paper deals solely with the dynamic manipulation (scattering) of the objects, where the
motion of the object is determined by the motion of the manipulator and dynamics of the object.
Accordingly, the dynamics of the object, coefficient of friction, and coefficient of restitutions should be
known to estimate the final position of the objects.

4. Learning Physical Properties

The experimental setup is shown in Figure 5. A 4K (Sony FDR-AX30, Seoul, Korea) camera
with 60-frame rate is used to record the videos. For scattering, an Indy 7 Neuromeka robotic arm is
used (task space velocity ranges from 0 to 1 m/s). Six objects with different shapes, sizes, and masses
are used during training and experimentation. In this section, the physical properties of objects
(i.e., friction coefficient, coefficient of restitution, mass ratio of object) are estimated from the observed
parameters, such as travel distance, velocity, and acceleration of the object. The parameters are
observed through dynamic interaction of objects. A black marker is placed on each object and videos
are recorded by colliding a single object with the manipulator and two objects.



Appl. Sci. 2019, 9, 3536 8 of 19

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 19 

 

Figure 5. Experimental setup for video collection. 

Video images are converted into binary images and all connected components are labeled using 

the ‘8-connectivity’ method. Furthermore, the noise and the undesired connected region are removed. 

Finally, to find the centroid of objects, blob analysis is applied to detect the connected objects in the 

frame by defining the minimum and maximum blob area. Once the frame rate and centroid of the 

objects are known in each frame, we can find the travel distances, velocities, and accelerations of the 

objects from the videos. Figure 6 illustrates the observed parameter from video, when two objects (A 

and C) collide with manipulator. At t = 1.5 s (first collision), the robot collides with object A and at t 

= 1.68 s (second collision), the object A collide with the object C. 

 
(a) 

 
(b) 

Sensor

Objects

Robotic Arm

Ẑ Ŷ
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Figure 5. Experimental setup for video collection.

Video images are converted into binary images and all connected components are labeled using
the ‘8-connectivity’ method. Furthermore, the noise and the undesired connected region are removed.
Finally, to find the centroid of objects, blob analysis is applied to detect the connected objects in the
frame by defining the minimum and maximum blob area. Once the frame rate and centroid of the
objects are known in each frame, we can find the travel distances, velocities, and accelerations of the
objects from the videos. Figure 6 illustrates the observed parameter from video, when two objects
(A and C) collide with manipulator. At t = 1.5 s (first collision), the robot collides with object A and at
t = 1.68 s (second collision), the object A collide with the object C.
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Figure 6. Setup, objects, and observed parameters from collision of two objects. (a) Setup and
object involved in scattering application. (b) Observed displacements. (c) Observed velocities.
(d) Observed accelerations.

4.1. Coefficient of Friction

Assume that an object with mass m moves with acceleration a on table surface with coefficient of
friction µ. For sliding objects, the direction of the friction is opposite to the direction of the velocity of
the object. Accordingly, ma = −sign(v).mµg holds. The coefficient of friction between each object and
surface of table is expressed either by:

a = −sign(v).µg, (29)

or as its integrated form:

x(t) = x(to) + v(to)t−
1
2

sign(v).µgt2. (30)

The distance travelled by objects and acceleration after collision is shown in Figure 6b,d, respectively.
Five videos are taken for each object by creating collisions with the manipulator. The coefficients
of frictions are calculated by using Equation (29). The average value of the coefficient of friction,
with standard deviation, is given in Figure 7.
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Figure 7. Physical properties. Average value and standard deviation of coefficient of friction of four
objects shown in Figure 5a.

4.2. Coefficient of Restitution

A coefficient of restitution is associated with type of material of two objects involved in a collision.
During the scattering process, after an object is hit by the manipulator, it collides with other objects in
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the environment. Furthermore, the impulse applied by the manipulator is propagated to all objects
involved in the collision. To model all collisions, the value of e (coefficient of restitution) between
the manipulator and each object and between each object and all other objects should be known.
The colliding velocity of the robot manipulator is known. Furthermore, by using the observable
parameters (velocity of the object, before and after collision) from the video images, the value of (e)
between manipulator and each object is calculated from the following relation:

va
′
− va = −

F̂ext

ma
= −(1 + e)vI· (31)

Next, the value of coefficient of restitution (e) between objects is calculated. The velocities of
objects before and after collision was observed from videos by colliding each object with all other
objects (one by one) as shown in Figure 6c. Based on these observed velocities, the coefficient of
restitution between objects A and B is calculated as follows:

e =
(v′a − v′b)
(vb − va)

. (32)

Similarly, the value of (e) is estimated among other objects and. For estimation of (e), five videos of
each scenario were recorded. The average values of estimated coefficient of restitutions with standard
deviation are shown in Figure 8.
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Figure 8. Coefficient of restitution: Average value and standard deviation. M stands for manipulator.

4.3. Mass Ratio of Objects

In this section, analytical methodology is provided to estimate the masses of the objects. In dynamic
manipulation, the motion of the objects is determined based on both the dynamic characteristic of
the objects and motion of the manipulator. Accordingly, it is important to infer mass properties of
the objects to model their motion after impulsive actions. Like other physical properties, the masses
ratio of objects are also estimated based on observed parameters and combining with analytical model.
Substitution of Equation (17) into Equation (15) will yield:

∆va =
−(1+e)(va−vb)·n

1+ma
mb

+2[(ra×n)2/r2
a+(rb×n)2/r2

b ·
ma
mb

]
· n+

ra ×
−(1+e)(va−vb)·n

2r−2
a

(
1+ma

mb

)
+[(ra×n)2+(rb×n)2

·r2
a /r2

b ·
ma
mb

]
· n× ra,

(33)
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Similarly, the substitution of Equation (17) into Equation (16) will yield:

∆vb =
−(1+e)(va−vb)·n

1+
mb
ma +2[(ra×n)2/r2

a ·
mb
ma +(rb×n)2/r2

b ]
· n−

rb ×
−(1+e)(va−vb)·n

2r−2
b

(
1+

mb
ma

)
+[(ra×n)2

·r2
b/r2

a ·
mb
ma +(rb×n)2]

· n× rb,
(34)

where all parameters except the ratio of masses ( mb
ma

, mb
ma

) are already known. The velocities before/after
collision are observed from the videos and the coefficient of restitutions are already estimated. Thus, it is
inferred from the above equations that the change in velocities of two objects being involved in collision
is associated with ratio of masses of two objects. That is, there exists infinite solutions for ma and mb,

which implies that the equations can be written in form of [x y]
(

ma

mb

)
= 0, where x and y are known

values. It is noted that the ratio of the masses is always the same no matter what equation is analyzed.
That solution will be enough to model the object’s trajectory after collision even though the true masses
are unknown. Figure 9 denotes the average values and standard deviation of mass ratio of each object
relative to other objects.
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4.4. Exactness of Estimated Parameters

The accuracy of a virtual world simulator is directly related to the estimation of physical
properties. Accordingly, it is critical to analyze precisely, how these physical properties are estimated.
Practically, the ground truth of frictional coefficient varies even on one surface, which makes the
impulsive actions difficult to control the moving objects on an exact location. However, for object
singulation application, the impulsive actions can still provide useful motions as the target kinematic
constraint are not so restrictive. Except the true value of masses of all objects (i.e., ma = 143g,
ma = 8g, mc = 112g, md = 9g, me = 61g, m f = 16g,), the true values of two other estimated
physical properties such as coefficient of friction and coefficient of restitution, are unknown.
However, the coefficient of restitution is being used while estimating the mass ratios of objects
as given in Equations (33) and (34). Accordingly, the error between estimated and real values of the
mass ratio depicts the trueness of the mass ratio and coefficient of restitutions of objects. The percentage
error between real/estimated mass ratios is less than 10% as calculated in Table 1. Accordingly, it is
inferred that the estimated mass ratios and coefficient of restitutions are precise enough to make
virtual world for scattering application. The exactness of the coefficient of friction and coefficient of
restitutions between object and manipulator can be analyzed based on the real-time performance of
the proposed methodology. In Section 6, the results are quantitatively compared by measuring the
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distance among objects in real world and virtual world, after the collision. The error among distances
depicts the exactness of estimated coefficient of friction.

Table 1. Percentage error between mass ratio of the true value and the estimated value.

Objects ma/ma ma/mb ma/mc ma/md mb/mb mb/md mc/mb mc/md ma/me

Error % 3.47 6.15 4.8 6.9 1.7 10 2.5 6.5 3.13

Objects me/mb mc/me me/md ma/mf mf/mb mc/mf mf/md me/mf

Error % 7.7 2.91 0.79 8.75 5.98 1.05 3.14 6.17

5. Scattering Algorithm and Experimentation

In this section, the developed analytical methodology is verified by performing the scattering
experiments. We use six different objects with distinct physical properties, such as mass, coefficient of
restitution, coefficient of friction, and shape, for object singulation experiment. The objects singulation
is performed based on the proposed scattering algorithm. Once all the physical properties of the
objects are identified, we can integrate them in a physics engine to design a virtual world simulator to
perform controlled scattering. We conducted scattering experiments in the virtual world to scatter
objects in a desired manner. First of all, it is necessary to define a scattering index that can be used as a
measure of scattering performance. Here, we need to provide some constraints to the scattering task:

(i) Initially, we assumed that all objects are placed together.
(ii) The distance among objects after scattering does not go beyond the given workspace. Maximum

and minimum distances (Smin, Smax) are given.
(iii) Hitting strategy: Among objects, the first priority is to hit the largest object in the cluster for an

initial collision to scatter all objects. The reason for hitting the largest object is to provide enough
impulse to drive out other smaller objects.

(iv) How to hit the largest object: This is based on a central impact to simplify the number of
parameters. Other than that, the number of parameters needed to estimate the physical properties
are increased.

(v) Magnitude of the velocity: In terms of deciding the magnitude of colliding velocity, it is based on
the scattered distances among objects. We conducted simulations several times until all objects
satisfied the condition of scattering.

(vi) Direction of the robot motion: The direction of robot motion is selected considering the ability of
the manipulator to generate impulse in certain direction. Kim et al. [26] proposed the normalized
impact geometry to analyze the impulse generation ability of the manipulator. Figure 10 shows
the generalized impulse geometry for the robot manipulator, which is constructed based on
the impulse model of Equation (8). Figure 10b,c shows the maximum and minimum impulse
direction for four different configurations. The direction of robot motion is decided to apply the
maximum impulse. However, in some cases the largest object is surrounded by other objects
in clutter and not accessible for initial collision with the robot manipulator. In this scenario,
the direction of robot motion is decided to maximize the external impulse without considering
the constraint (iii).

(vii) The scattering index is set as the average distance among objects. It can be expressed as:

smin ≤

M∑
i=1

M∑
j=i+1

‖ri − r j‖

N
< smax, where N = MC2, (35)

subject to the distance constraint between objects i and j:

‖ri − r j‖ ≥ dmin(i , j), (36)
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where ri is the mass center of ith object in plane. N and M are the number of objects and the
number of connection of objects, respectively. Equation (35) implies the average distance among
all objects and Equation (36) implies that distance between two consecutive objects should be
grater or equal to dmin. The additional constraint of Equation (36) is included to make sure that
all objects are apart from each other.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 19 
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Identification and visual segmentation of objects in a cluttered environment were important
research issues. However, thanks to recent developments in deep learning techniques, the performance
of semantic segmentation and instance segmentation algorithms [27–29] has improved significantly.
Moreover, some of them provide open source code [30] to help other researchers to train their own
datasets. Therefore, with the techniques mentioned above, it is straightforward to identify and segment
objects in an image for robotic grasp. However, since this paper concentrated solely on the mechanic
issue, we are currently assuming that locations of all parts are already known. Considering the recent
development of segmentation, we believe that our methodology can be easily extended to scenarios
that require object identification and segmentation processes.

The scattering algorithm is explained in Figure 11. The initial positions of all objects are obtained
from the real world and are fed to the virtual world. Then, the scattering experiment is performed in
the virtual world until the desired distances among objects are achieved as defined in Equations (35)
and (36). DAFUL [31] software, made of Virtual Motion Co., was employed in the virtual world
simulations. Here, a feedback routine is employed to minimize the error between the desired distance
and current distance by updating the colliding velocity of the robot manipulator. Once the error is
within the allowed range, the objects are singulated. Finally, that same desired velocity will be given as
the input to the robot manipulator and real-time scattering is performed. During experimentation,
the minimum distance among objects is set as dmin = 90 mm. The average maximum and minimum
maximum distance is set as Smin = 150 mm, Smax = 900 mm. Once all physical parameters are estimated,
based on the ratio of masses and coefficient of restitutions, the change in velocity is calculated by using
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Equations (33) and (34). Finally, Equation (30) is employed to calculate the travel distance of each
object after collision. All estimated physical parameters will be used in this process. The scattering
results between two objects are shown in Figure 12. Figure 12 shows two scenes; one from the virtual
world and the other from the real world. Figure 12b shows the results after scattering. It was found
from scattering experiment that the objects are singulated after controlled scattering and the results
of singulation are similar in both cases. Figures 13 and 14 demonstrate the case of three objects by
considering the circular and general shapes, respectively.
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Figure 12. Scattering experiments for singulation of two objects: (a) before collision; (b) after collision.
Manipulator velocity: 0.4 m/s.

Finally, the proposed technique was successfully applied and verified by considering the four
objects in the environment. Figures 15 and 16 show the results of singulation in real and virtual
world for circular shape and general shape objects, respectively. As mentioned before, the impulsive
actions-based dynamic manipulation of objects makes it difficult to locate an object exactly on target.
However, it is inferred from Figures 12–16 that the dynamic manipulation can be successfully applied
for object singulation application and performance of virtual world and successful implementation in
the real world is satisfactory.



Appl. Sci. 2019, 9, 3536 15 of 19

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 19 

 

(b) 

Figure 12. Scattering experiments for singulation of two objects: (a) before collision; (b) after collision. 

Manipulator velocity: 0.4 m/s. 

 

(a) 

 

(b) 

Figure 13. Scattering experiments with three objects by considering circular shapes only: (a) before 

collision; (b) after collision. Manipulator velocity: 0.5 m/s. 

 

(a) 

 

(b) 

Figure 14. Scattering experiments for singulation of three objects by considering general shapes: (a) 

before collision; (b) after collision. Manipulator velocity: 0.4 m/s. 

 

(a) 

Virtual world Real world

Virtual world Real world

Virtual world Real world

Virtual world Real world

Real worldVirtual world

Virtual world Real world
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collision; (b) after collision. Manipulator velocity: 0.5 m/s.
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(a) before collision; (b) after collision. Manipulator velocity: 0.5 m/s.

6. Quantitative Analysis

In this section, the real and virtual world results are compared to evaluate how exactly the physical
properties are estimated. We measured the distance among all objects after singulation in the virtual
world and real world. The quantitative data is shown in Figure 17. Figure 17a–c denote the comparison
of real/virtual world’s distance for the case of two objects and three objects singulation, respectively.
Similarly, the distance comparison of real/virtual world for the case of four objects is shown in Figure 17d,e.
There is a small error, which is expected because we are using the average value of estimated parameters,
and ground truth of the friction coefficient varies even on one surface [13]. The error is comparatively
grater for the case of general shape objects. This is because, for circular shaped objects, the contact
direction is always toward the center. It is confirmed that the distance between any two objects is
greater than dmin = 90 mm and that the condition given in Equation (35) is also satisfied in all cases.
Conclusively, the proposed scattering algorithm was found to be effective to analyze and control the
scattering behavior of objects being singulated by collision with a robot manipulator. The Supplementary
Material (entitle Singulation of objects in virtual and real world) is a video clip that demonstrates the
whole procedure of training the physical properties of objects and scattering experiments.
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Figure 17. The quantitative analysis between real world and virtual world. A comparison between
real/virtual world distances among all objects. (a) Two-object singulation; (b) three-object singulation
by considering the circular shape only; (c) three-object singulation by considering the general shape
of objects; (d) four-object singulation considering the circular shape only; (e) four-object singulation
considering the general shape of objects.
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7. Conclusions

In this paper, a scattering technique for object singulation in a cluttered environment is proposed.
The main idea was to design a virtual world simulator based on the estimation of physical properties of
the environment. In order to obtain physical properties of the objects, an impulse-based approach was
used along with image processing technique to acquire observable parameters from videos. A virtual
world simulator was employed to perform scattering in a desired manner. Finally, the effectiveness of
the proposed scattering algorithm was verified through real-world scattering experiments.

It will be difficult to perform model-based object singulation for complex-shaped objects with
a non-uniform pressure distribution. Our future aim is to combine the analytical model with deep
learning. The neural networks will be trained based on the simulations of a virtual world for the
general shape of objects (circular, triangular, cube). By performing enough training of scattering
patterns, we can perform scattering of complex-shaped objects in the virtual world, which are not being
used during training. Finally, the virtual world input will be fed to the robot to perform real-world
object singulation.

Another ongoing work is developing an analytical model to distinguish pushing and scattering.
In the real world, objects are singulated through physical contact between the object and manipulator.
However, due to conditions of contact, such as the strength and speed of interaction, material
properties, or environment friction, contact between the object and manipulator may be maintained
or not. If contact is maintained during motion, it is the case of pushing (quasi-static manipulation].
Other than that, the resulting behavior will be complete separation, as in the case of scattering
(dynamic manipulation). Developing a relevant analytical model would facilitate analysis and control
singulation of objects.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/17/3536/s1,
Video S1: Singulation of objects in virtual and real world.
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