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Abstract: Recently, we combined a contour-detection network and a fully convolutional Siamese
tracking network to initialize a new start-up of vehicle tracking by clicking on the target,
generating a contour proposal template instead of using a fixed bounding box. Tests on the
OTB100 and Defense Advanced Research Projects Agency (DARPA) datasets proved that our
method outperformed the state of the art and effectively solved the partial-occlusion problem.
However, the current Siamese tracking method uses the target in the first frame as a template
during the whole tracking period, and leads to the failed tracking of target deformation. In this
paper, we propose a new template-update method and reconstruct the whole tracking process with
a template-updating module. To be specific, the innovative adaptive template-updating module is
comprised of a neural contour-detection network and a target-detection network. Experiment results
on the DARPA dataset prove that our new tracking algorithm with the template-updating strategy
prominently improved tracking accuracy regarding the deformation condition.
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1. Introduction

Visual-object tracking is one of the most fundamental problems in computer vision and has
attracted much attention in recent years. A wide range of applications relies on tracking methods such as
human-motion analyses [1], robotic services [2], human–computer interactions [3], and surveillance [4].
In this paper, we focus on single-object tracking with the target given in the first frame, which is the
most common scenario of tracking.

There are two aspects to improve target-locating precision and tracking robustness in
existing tracking methods. One is to design effective algorithms of either generative [5–8] or
discriminative [9–15] models; the other is to optimize target representation by extracting both
conventional handcrafted features and deep convolutional features. As a result, complicated tracking
algorithms or features improve performance but simultaneously increase computational complexity.
However, the most difficult and significant problem in tracking application is to balance performance
and speed. Unlike state-of-the-art DCF methods such as LADCF [16] and MFT, which fuse
multiresolution and multifeature to improve performance on rank and sacrifice algorithm speed,
Siamese tracking-network [17–23] approaches obtain balanced accuracy and speed. To be specific,
GOTURN [18], SiamFC [19], and RASNet [20] transfer traditional tracking tasks from a target-searching
and regressing process into a similarity-comparing function and complete tracking in each frame
within a fixed amount of time. DSiam [7] adopts online target-variation transformation and
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background-suppression transformation, which make DSiam adapt target changes while excluding
background interference.

There are three problems that should be addressed, even though these Siamese tracking approaches
have balanced speed and accuracy: first of all, most of these Siamese network trackers are not able
to update the templates. On the one hand, their simple fixed models [17–20,23] guarantee high
tracking speed; on the other hand, they sacrifice better adapting to target-appearance deformation.
Second, the performance of most Siamese tracking networks cannot be guaranteed, especially with
cluttered backgrounds, because of the interference of semantic backgrounds. In other words,
conventional bounding-box inputs are not able to separate background distractions. Last, out-of-view
and full-occlusion conditions are still great challenges due to the local-search strategy that is employed
by most Siamese trackers.

Our contributions are threefold: (1) We designed and implemented the whole Siamese tracking
system with an adaptive template-updating strategy. Single-point initialization, on the one hand,
took advantage of our contour templates over conventional bounding-box templates; on the other
hand, it achieved the function of our start-up in the system. (2) We designed and combined a target-and
a contour-detection network to compose our template-update network that was able to adaptively
update templates according to different conditions. (3) Our method achieved leading performance
regarding vehicle video images in both the OTB100 and the Defense Advanced Research Projects
Agency (DARPA) dataset.

2. Related Work

In this part, we introduce our related work from the following aspects: Section 2.1,
Siamese Network; Section 2.2, Template Update; and Section 2.3, Shape-Adaptive Template.

2.1. Siamese Network

Recently, Siamese networks have been widely utilized in many visual-tracking tasks. A Siamese
network has two branches, and each of them encodes different features into another representation
domain and are then compared with each other by fusing with a specific tensor. Finally, a single output
is produced to display results such as similarity. Siamese networks have balanced accuracy and speed
because they transfer traditional visual tracking from searching tasks to comparison tasks.

2.2. Template Update

In real-world environments, many recent algorithms have achieved great success in visual-object
tracking [24–31]. These algorithms were able to solve the problems of several types of
appearance changes in the target, for instance, pose variations, occlusion, and illumination changes.
However, if these changes are very extreme, most of the methods may fail to track the target. An example
of false tracking caused by vehicle turning is shown in Figure 1. Test images are from the DARPA
dataset’s video sequence “egtest03”.
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In order to track targets with severe appearance changes, some methods [5,32,33] update the target
template over time to improve tracking accuracy. The most common template-updating strategies either
update every single frame, or update with a fixed number of frame intervals. These template-updating
tracking algorithms assume that the current updated template can describe the target better than any
other templates in previous frames. However, this assumption sometimes may face the following
problem. Typically, the template is updated based on tracking results according to the current frame.
While trackers are not able to precisely track the target, tracking results include errors that force the
template to be incorrectly updated. As a result, the updated template is not able to accurately describe
the current target and eventually causes the tracker to fail.

Obviously, the aforementioned simple template-update methods are not able to satisfy our needs
in tracking applications. For one case, when a tracking object is partially shielded by other disturbing
objects, such as a tank shielded by a tree, traditional bounding-box template updating treats part
of the tree over the tank as a tracking object and introduces interference. To avoid background
clutter and template pollution, two template-updating strategies are required. First, instead of simply
updating every fixed frame, we need to let the tracker know the most appropriate opportunity to
update the template. This strategy can not only reduce template-pollution risks, but also reduce
computational complexity of frequent useless template updating. Another beneficial strategy is to
reserve backup templates; once the current template is not able to match the target, the backup ones
may play a significant role. This strategy can effectively improve the robustness of tracking algorithms.

2.3. Shape-Adaptive Template

Visual-target detection and tracking are two basic and challenging problems in computer vision.
They are highly correlated in most tasks, and the input provided by detection can guide tracking
and enhance its performance. At the same time, the precise solution of a detection problem provides
reliable observation results for tracking.

There are a variety of target-detection methods with a bounding-box output. Some recent
algorithms are introduced in the work of Pont Tuset et al. and Hosang et al. [34,35]. These methods
are inspired by the requirements of target detection or tracking, and have been widely used in many
applications. However, compared with object-contour detection, the disadvantage of these bounding
boxes is that results are inaccurate, and targets cannot be precisely located. In contrast, the results of
object-contour detection clearly show the shape and precise position of the target. Using target contour
instead of a bounding box to detect or track not only helps improve accuracy, it also tells the system
what the target might be according to its shape.

Figure 2 shows an example of the results of the bounding-box and the object-contour
recommendation methods: the results of the bounding-box recommendation method are a rough
window, while the results of the object-contour recommendation method are fine pixels.
Obviously, the results of the object-contour method contain most target information and least
background information compared with the results of the bounding-box method. In the process of
feature extraction, background information in the bounding box is tracked as target information.
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In our system, cameras are on aircrafts or Unmanned Aerial Vehicles (UAVs) that are far away
from the target, so the initial target is very small in most cases. In addition, most applications
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currently used for real-time tracking start with the manual cropping of the bounding box on the
target, and it is impossible to generate appropriate boundaries as ground truth in public datasets.
In this case, we needed to make our tracker smarter to distinguish between targets and backgrounds.
Therefore, we propose a method [36] to extract shape-adaptive templates from targets and track them
using a fully convoluted Siamese network. Unlike most startups that use initial bounding boxes in
tracking, our requirement was to select the target in real-time video by clicking on the target on the
monitor screen. Once someone clicks on any part of the object, tracking information is automatically
learned by the system. In particular, our system automatically detects and segments the contours
of selected objects at the semantic level. Then, target features are extracted from the contour model
without background information. In other words, we let the tracker know which object to track, not the
bounding-box area.

3. Our Approach

Our main idea was to design a target-tracking network based on the artificial selection of objects
in real-time video. Unlike most current tracking methods that run high scores in public datasets
based on accurate ground-truth initialization, our network needed to achieve optimal performance
in our real-time systems. In this section, we introduce our approach in three parts: system design,
adaptive template-updating strategy, and Siamese tracking network.

3.1. System Design

We propose utilizing our method in an intelligent real-time tracking system that can be remotely
operated and monitored. In this system, images are taken in a timely manner by cameras on aircraft in
the sky, and our targets are vehicles on land. Once the system is started, users can manually select the
tracking target by clicking on it on the monitor screen. Then, the system automatically learns which
object to track by detecting contours and abstracting semantic information according to the position of
the initial point. After extracting target features, our system begins to track targets through features
in the following frames and saves target features as a high-confidence template. If the similarity
between template and tracking object is smaller than a threshold due to target deformation or occlusion,
which suggests that the initial template is not able to precisely match object features in the current
frame, our system updates the template with strategies that are discussed further down. While the
tracker fails or finishes processing all images in a video sequence, the system finishes its task as well.
A brief flowchart of the whole system is shown in Figure 3.
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3.2. Adaptive Template-Updating Strategy

Our template-update network comprises two separate networks: a contour- and a target-detection
network. The main framework is shown in Figure 4.
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The contour-detection network is also individually used in the shape-adaptive template-generating
process in the first frame. In detail, a filling algorithm started with a manually selected point is used to
build the template at the output of the contour-detection network. Once the system needs to update
the template in the following frame according to the result of the template-update network, the output
of the contour-detection network can be reused for further processing. Specifically, the filling algorithm
takes the central point of the tracking result in the current frame as the starting point to complete the
contour generation of a new template.

3.2.1. Contour-Detection Network

The VGG-16 network has high depth and density (16 convolution layers and stead-1 convolution
kernels), and it is widely used in classification tasks because of its easy training and fast convergence.
Therefore, we used the VGG-16 network structure to extract contour features. In order to detect edges,
we made some modifications to our contour-detection network. First, we removed all fully connected
layers. Next, we deleted the last max pool layer. Third, the output terminal was connected with
a refinement module. In detail, conv1–conv5 with max pooling in the VGG-16 network were taken as
our front end, which is good at extracting features; then, we modified the back end to enable our network
to extract contour information. This idea was generated from the five side-output layers of a normal
holistically nested edge-detection (HED) network: the lower layer captures more spatial details,
but lacks sufficient semantic information; on the contrary, the deeper layer encodes more abundant
semantic information but lacks spatial details. In our task, we needed to reduce the interference of
useless background information and abstract target contours. Therefore, we employed the deeper-layer
features to formulate our template. However, especially in the deeper layers, side outputs suffer more
from the problem of thick boundaries in HED networks. Consequently, output boundaries require
refinement in order to generate clear and accurate object contours. In addition, the final outputs need
to be resized to their original size by up-pooling and deconvolution. To get the best performance in
convolution process, we chose the smallest convolution filter (3 × 3) with the stride of one pixel that
can capture left/right, up/down, and central motion; max pooling was performed with stride 2 over
a 2 × 2 pixel window. The configuration of each convolutional layer and the max pooling layer in our
contour-detection network is summarized in Table 1.

Table 1. Receptive field and stride size of each layer. RF, receptive field; C, convolution; P, pooling.

Layer C1 P1 C2 P2 C3 P3 C4 P4 C5

RF size 5 6 14 16 40 44 92 100 196
Stride 1 2 2 4 4 8 8 16 16

The output of our contour-detection network was a binary image with edge information. We first
used the flooding-filling method in OpenCV to generate a connected region to represent the location
of the target we chose from the contour map. Next, we could further generate object masks on the
basis of the previous stage. The mask set background information to zero, and the selected object
was segmented from the original image. Its feature could be extracted as the target template without
background information. Finally, the drift problem of the bounding box in complex or deceptive
backgrounds was successfully solved. The benefits of using shape-adaptive templates instead of
conventional bounding-box region templates were discussed in Section 2.2, and the shape-adaptive
template-generating process is illustrated in Figure 5.
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3.2.2. Target-Detection Network

Target detection is another hotspot issue in computer vision. For our real-time system, we only
focused on one-stage target-detection algorithms, which have a higher speed. As one of the most
advanced target-detection methods, YOLOv3 [37] can detect targets of different scales with high
accuracy. Tiny YOLOv3 sacrifices detection accuracy, especially for small targets through channel
pruning, in order to improve detection speed. However, in our task, most targets were small. To avoid
loss of contextual information, we utilized a “dilated module” inspired by dilated convolution [38] to
expand the receptive fields. The comparison of the receptive fields between a convolution network
and a dilated convolution network is summarized in Table 2.

Table 2. Comparison of receptive fields, kernel sizes, and strides between convolutional network and
dilated convolutional network of each layer.

Convolutional
Network Layer 0 1 2 Dilated Convolutional

Network Layer 0 1 2

RF size 3 5 7 RF size 3 7 15
Kernel size 3 × 3 3 × 3 3 × 3 Kernel size 3 × 3 3 × 3 3 × 3

Stride 1 1 1 Stride 1 1 1
Dilated rate 1 2 4

The “passthrough module” was added to combine target location information in the lower layers
and semantic information in the higher layers. To be specific, the features of the lower layers contained
more fine-grained information, which helps to locate small targets. Therefore, we used a passthrough
layer with stride 2 that transformed the feature map from 2N × 2N × C to N × N × 4C. The function of
the passthrough layer is explained in Figure 6.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 16 

Table 2. Comparison of receptive fields, kernel sizes, and strides between convolutional network and 
dilated convolutional network of each layer.  

Convolutional Network Layer 0 1 2 Dilated Convolutional Network Layer 0 1 2 
RF size 3 5 7 RF size 3 7 15 

Kernel size 3 × 3 3 × 3 3 × 3 Kernel size 3 × 3 3 × 3 3 × 3 
Stride 1 1 1 Stride 1 1 1 

    Dilated rate 1 2 4 

The “passthrough module” was added to combine target location information in the lower layers 
and semantic information in the higher layers. To be specific, the features of the lower layers 
contained more fine-grained information, which helps to locate small targets. Therefore, we used a 
passthrough layer with stride 2 that transformed the feature map from 2N × 2N × C to N × N × 4C. 
The function of the passthrough layer is explained in Figure 6. 

 
Figure 6. Passthrough-layer function: black circles with numbers indicate pixel in feature map before 
and after going through passthrough layer. 

Finally, we obtained similar accuracy with YOLOv3, and similar speed with tiny YOLOv3. The 
details and experiment results are available in previous work [40] from our team. 

3.2.3. Template-Update Strategy 

We set the greatest response on the heat map as the criterion for strategic decision. When the 
greatest response was smaller than our threshold, it indicated that the similarity between the tracked 
target in the current frame and the template was low. There were mainly two kinds of conditions in 
our application scenarios that could lead to this phenomenon: deformation and occlusion. When the 
target is deformed, such as when a vehicle makes a turn, updating the template is necessary because 
previous templates may not be suitable for the same object from another view angle; on the contrary, 
when a target is temporarily occluded, such as when a vehicle passes through the jungle and is 
shielded by trees, updating the template during occlusion is not needed and may cause template 
pollution because of shield interference. Therefore, our system needs to differentiate between these 
two conditions and decides whether to update the template or not. Examples of deformation and 
occlusion in tracking are shown in Figure 7. 

Figure 6. Passthrough-layer function: black circles with numbers indicate pixel in feature map before
and after going through passthrough layer.

Finally, we obtained similar accuracy with YOLOv3, and similar speed with tiny YOLOv3.
The details and experiment results are available in previous work [39] from our team.
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3.2.3. Template-Update Strategy

We set the greatest response on the heat map as the criterion for strategic decision. When the
greatest response was smaller than our threshold, it indicated that the similarity between the tracked
target in the current frame and the template was low. There were mainly two kinds of conditions in
our application scenarios that could lead to this phenomenon: deformation and occlusion. When the
target is deformed, such as when a vehicle makes a turn, updating the template is necessary because
previous templates may not be suitable for the same object from another view angle; on the contrary,
when a target is temporarily occluded, such as when a vehicle passes through the jungle and is
shielded by trees, updating the template during occlusion is not needed and may cause template
pollution because of shield interference. Therefore, our system needs to differentiate between these
two conditions and decides whether to update the template or not. Examples of deformation and
occlusion in tracking are shown in Figure 7.
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Figure 7. Results during (a) deformation and (b) occlusion. Bottom, tracking result in origin frame; top
left, cropped image showing partial enlarged detail of tracking result; top right, corresponding heat
map denoting similarity. Green boxes, ground truth; red, tracking results.

After analyzing the characteristics of both conditions, we proposed an updating strategy that
decided by the results of two separate networks: a contour- and a target-detection network. If the
target had obvious appearance changes from one frame and activated the template-update network,
both networks would output corresponding results within a neighboring target area, and a new
appearance model would be generated. It needs to be denoted that our tracking method with
shape-adaptive templates is able to deal with partial-occlusion conditions because there is less
background interference compared with the traditional bounding-box template. Only severe occlusion
may cause similarity low enough to activate the template-update network. Under severe occlusion
conditions, the contour- and target-detection networks are not able to get consistent results in most
cases. Figure 8 shows outputs from our template-updating network regarding the deformation and
occlusion conditions.
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In Figure 8a, which was under deformation, the target vehicle in the center of image and its
contour were simultaneously detected, while in Figure 8b, which was under occlusion, neither the
more severe shielded vehicle nor its contour were detectable. In order to improve the robustness of our
system and avoid unknown conditions that may lead to false tracking, we preserved the template in
the first frame, which was manually selected and had the highest confidence. This highest confidence
template was utilized as a backup template to match with the search region during each template
update except for the first time.

3.3. Siamese Tracking Network

For most Siamese tracking networks, such as GOTURN and SiamFC, the first step is to zoom in on
and crop input target images in the absence of target-feature information. In this process, when a target
moves out of the bounding box, it is beneficial to add a margin to the context, but at the same time,
this may lead to target-size reduction and the introduction of more background information. Siam FC
is better than GOTURN for three reasons: first, its fully convoluted network structure makes offline
training data highly identifiable; second, SiamFC uses a strictly supervised heat map rather than
a recommended regression. Finally, the accuracy of the fusion tensor is improved by using a correlation
layer as the fusion tensor, to which the success of correlation-based methods on visual-target tracking
is owed. GOTURN uses regression results in the previous frame and updates the template in each
frame, while SiamFC generates the template from basic facts in the first frame that in our system can
be manually selected by operators. Feature similarity between template and search area is calculated
by correlation operation, and a similarity heat map is generated. The highest response in the heat
map represents the location of the target center in the next frame. In summary, the system realizes the
tracking function from frame to frame.

Figure 9 shows the architecture of our Siamese tracking network: First, the full convolutional
network takes template and search area as inputs, respectively, and outputs features for the template
and search area. Then, the heat map is generated through correlation of the similarity between template
and search-area features. Last but not least, the target is tracked in the search area according to the
highest response on the heat map.
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Figure 9. Architecture of our Siamese tracking network.

Configurations on kernel sizes and strides of convolutional layers in the Siamese network are
summarized in Table 3. It needs to be noted that there are response-normalizing and intervening
pooling layers connected to the outputs of the first two convolutional layers.

Table 3. Kernel sizes and strides in our Siamese network.

Layer C1 C2 C3 C4 C5

Kernel size 11 × 11 × 3 5 × 5 × 48 3 × 3 × 256 3 × 3 × 192 3 × 3 × 192
Stride 4 8 16 16 16

4. Experiments and Results

Our template-updating network and Siamese tracking network were implemented based on
the TensorFlow framework for Python with OpenCV 2.7. We had already run our Siamese tracking
network on public dataset OTB100 and compared it with nine other tracking methods. In this part. we
selected eleven vehicle videos in the OTB100 dataset: Car1, Car2, Car4, Car24, BlurCar1, BlurCar2,
BlurCar3, BlurCar4, Suv, CarScale, and CarDark. Following the instruction of the OTB100 benchmark,
the precision plots and success plots of one-pass evaluation (OPE) were plotted. Then, our Siamese
tracking network with an adaptive template-updating strategy was tested on images taken at Eglin
Air Base during the DARPA Video Verification of Identity (VIVID) program. This experiment set
was performed by comparing the performance of our Siamese tracking network with or a without
template-updating strategy. The image resolution in this experiment set was 640 x 480. From five video
sequences (egtest01, egtest02, egtest03, egtest04, and egtest05), we chose 5000 images constituting
our datasets for testing. All the above experiments were tested on a server with a TITAN X GPU and
3.5 GHz CPU.

4.1. OTB100 Results

We created a group label for these vehicle videos and modified the initialization part of our
Siamese tracking network for tests because our requirement for the task was different from that in the
OTB100 challenge. In detail, we used the center point of each bounding box according to the ground
truth instead of our initialization point.

According to the requirement of our system, we only tested the OPE metric. Figure 10 shows the
precision plots and the success plots of OPE.
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Figure 10. Results of different trackers on vehicle videos in OTB100: (a) one-pass evaluation (OPE)
precision plots; (b) OPE success plots.

As can be seen from Figure 10, our shape-adaptive template method achieved the best performance
between the 10 trackers. The distance accuracy and overlap accuracy in OPE are shown in Figure 10a,b,
respectively. It is noteworthy that we compared the central accuracy scores of the success rate under
the 20-pixel threshold because, in our system center, accuracy is the most important, and most target
sizes in our scenarios were about 20 to 40 pixels. In the experiment, our method achieved a success rate
of 0.892 on distance accuracy of the 20-pixel threshold, and 0.738 on overlap accuracy. Our method
achieved the best performance for both methods: in terms of distance accuracy, our method was 9.9%
better than SiamFC, which ranked second, and in terms of overlap accuracy, our method was better by
10.0% as well.

4.2. DARPA Dataset Results

4.2.1. Qualitative Evaluation

As mentioned earlier, the images in our program were taken from airborne-sensor platforms that
were far away from targets. This led to a low resolution and small-size targets. Therefore, similar datasets
collected by DARPA were utilized for our testing. Images on the left-hand side below are results
for the Siamese tracking network without template updating on the DARPA datasets; ones on the
right-hand side are results for our Siamese tracking with an adaptive template-updating strategy on
the same frames.

Figure 11 are the results of two different sequences of video images from the DARPA dataset.
To be specific, images in Figure 11a–c are from video sequence “egtest02”, and images in Figure 11d–f
are from video sequence “egtest03”. In Figure 11a,d, both of the tracking vehicles were making a turn
and this lead to target deformation. These appearance changes could not match previous templates
with high similarities according to the heat maps. As a result, the left images in Figure 11b,c,e,f
show that the tracker without template-updating failed to track the target, while the right images
in the corresponding group prove that our latest method was able to solve the problem through
template updating.
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Figure 11. Results on images in datasets taken by the Defense Advanced Research Projects Agency
(DARPA): (a–f) are six groups of comparison results on the DARPA dataset between the Siamese
tracking methods without or with adaptive template-updating strategy. Bottom image in each group,
tracking result in origin frame; top left, cropped image showing partial enlarged detail of tracking result;
top right, corresponding heat map denoting similarity. Green boxes, ground truth; red, tracking results.

4.2.2. Quantitative Evaluation

We calibrated and recorded the result deviations of SiamFC, our Siamese tracking network, and our
Siamese tracking network with a template-updating strategy, respectively. In this set of experiments,
we only compared the centering error of the different methods in each video sequence because, in our
application, center precision was the most significant and could have had serious consequences.
We calculated the centering error between the tracking results and the calibrated ground-truth centers
every 10 frames for the three different methods, outlined in Figure 12. It is worth noting that the target
size in the first four video sequences was about 20 to 40 pixels, and in the video sequence, 5 was about
100 pixels. In most frames, the central error of our method was less than 10 pixels. This deviation could
be tolerated as long as the detected target center was still in the actual target location. When faced with
challenges such as occlusion or deformation, our Siamese tracking with adaptive template-updating
strategy had the least mistakes during the tracking process. The ‘success of updating templates in
our latest method generated some spikes that can be seen in the results of video sequences 3 and 5.
Overall, the average centering error of our latest method was much lower than that of the others.
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5. Conclusions

In this paper, we first analyzed the advantages and drawbacks of recent tracking methods and
argued that Siamese tracking approaches, balancing accuracy and speed, are the most suitable
for our requirements. After that, we designed and implemented the whole system with an
innovative template-update network by modifying and combining a contour-detection network
and a target-detection network to track in real time using contour templates instead of a conventional
bounding-box template. Experiment results showed that our latest Siamese tracking with adaptive
template-updating strategy was able to improve performance regarding occlusion and deformation
problems in object tracking. The whole system is suitable for single-rigid-object tracking in real time.
For multiple objects or nonrigid-object real-time tracking, there is still further work to be done.
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