
applied
sciences

Review

Machine Learning and Deep Learning Methods for
Intrusion Detection Systems: A Survey

Hongyu Liu * and Bo Lang

State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China;
langbo@buaa.edu.cn
* Correspondence: liuhongyu@buaa.edu.cn

Received: 14 September 2019; Accepted: 11 October 2019; Published: 17 October 2019
����������
�������

Abstract: Networks play important roles in modern life, and cyber security has become a vital
research area. An intrusion detection system (IDS) which is an important cyber security technique,
monitors the state of software and hardware running in the network. Despite decades of development,
existing IDSs still face challenges in improving the detection accuracy, reducing the false alarm rate
and detecting unknown attacks. To solve the above problems, many researchers have focused
on developing IDSs that capitalize on machine learning methods. Machine learning methods can
automatically discover the essential differences between normal data and abnormal data with high
accuracy. In addition, machine learning methods have strong generalizability, so they are also able
to detect unknown attacks. Deep learning is a branch of machine learning, whose performance is
remarkable and has become a research hotspot. This survey proposes a taxonomy of IDS that takes
data objects as the main dimension to classify and summarize machine learning-based and deep
learning-based IDS literature. We believe that this type of taxonomy framework is fit for cyber security
researchers. The survey first clarifies the concept and taxonomy of IDSs. Then, the machine learning
algorithms frequently used in IDSs, metrics, and benchmark datasets are introduced. Next, combined
with the representative literature, we take the proposed taxonomic system as a baseline and explain
how to solve key IDS issues with machine learning and deep learning techniques. Finally, challenges
and future developments are discussed by reviewing recent representative studies.

Keywords: machine learning; deep learning; intrusion detection system; cyber security

1. Introduction

Networks have increasing influences on modern life, making cyber security an important field
of research. Cyber security techniques mainly include anti-virus software, firewalls and intrusion
detection systems (IDSs). These techniques protect networks from internal and external attacks. Among
them, an IDS is a type of detection system that plays a key role in protecting cyber security by
monitoring the states of software and hardware running in a network.

The first intrusion detection system was proposed in 1980 [1]. Since then, many mature IDS
products have arisen. However, many IDSs still suffer from a high false alarm rate, generating many
alerts for low nonthreatening situations, which raises the burden for security analysts and can cause
seriously harmful attack to be ignored. Thus, many researchers have focused on developing IDSs with
higher detection rates and reduced false alarm rates. Another problem with existing IDSs is that they
lack the ability to detect unknown attacks. Because network environments change quickly, attack
variants and novel attacks emerge constantly. Thus, it is necessary to develop IDSs that can detect
unknown attacks.

To address the above problems, researchers have begun to focus on constructing IDSs using
machine learning methods. Machine learning is a type of artificial intelligence technique that can

Appl. Sci. 2019, 9, 4396; doi:10.3390/app9204396 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/20/4396?type=check_update&version=1
http://dx.doi.org/10.3390/app9204396
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4396 2 of 28

automatically discover useful information from massive datasets [2]. Machine learning-based IDSs can
achieve satisfactory detection levels when sufficient training data is available, and machine learning
models have sufficient generalizability to detect attack variants and novel attacks. In addition, machine
learning-based IDSs do not rely heavily on domain knowledge; therefore, they are easy to design and
construct. Deep learning is a branch of machine learning that can achieve outstanding performances.
Compared with traditional machine learning techniques, deep learning methods are better at dealing
with big data. Moreover, deep learning methods can automatically learn feature representations from
raw data and then output results; they operate in an end-to-end fashion and are practical. One notable
characteristic of deep learning is the deep structure, which contains multiple hidden layers. In contrast,
traditional machine learning models, such as the support vector machine (SVM) and k-nearest neighbor
(KNN), contain none or only one hidden layer. Therefore, these traditional machine learning models
are also called shallow models.

The purpose of this survey is to classify and summarize the machine learning-based IDSs proposed
to date, abstract the main ideas of applying machine learning to security domain problems, and analyze
the current challenges and future developments. For this survey, we selected representative papers
published from 2015 to 2019, which reflect the current progress. Several previous surveys [3–5]
have classified research efforts by their applied machine learning algorithms. These surveys are
primarily intended to introduce different machine learning algorithms applied to IDSs, which can be
helpful to machine learning researchers. However, this type of taxonomic system emphasizes specific
implementation technologies rather than cyber security domain problems. As a result, these surveys
do not directly address how to resolve IDS domain problems using machine learning. For coping with
this problem, we propose a new data-centered IDS taxonomy in this survey, and introduce the related
studies following this taxonomy.

Data objects are the most basic elements in IDS. Data objects carry features related to attack
behaviors. Feature types and feature extraction methods differ among different data elements, causing
the most appropriate machine learning models to also differ. Therefore, this survey thoroughly analyzes
the data processed in cyber security and classifies IDSs on the basis of data sources. This taxonomy
presents a path involving data–feature–attack behavior–detection model, which is convenient for
readers to find study ideas for particular domain problems. For example, this taxonomic system can
answer the following problems: (1) What features best represent different attacks? (2) What type of data
is most suitable for detecting certain attacks? (3) What types of machine learning algorithms are the best
fit for a specific data type? (4) How do machine learning methods improve IDSs along different aspects?
These problems appeal to cyber security researchers. Finally, the challenges and future development
of machine learning methods for IDS are discussed by summarizing recent representative studies.

The rest of this paper is organized as follows: Section 2 introduces the key concepts and the
taxonomy of IDS. Section 3 introduces the frequently used machine learning algorithms in IDS, their
metrics, and common benchmark datasets. Section 4 classifies IDS according to data sources and sums
up the process of applying machine learning to IDSs. Section 5 discusses the challenges and future
directions of machine learning-based IDSs, and Section 6 concludes the paper.

2. Concept and Taxonomy of IDS

For an IDS, an intrusion means an attempt to access information about computer systems or
to damage system operation in an illegal or unauthorized manner. An IDS is a computer-security
application that aims to detect a wide range of security violations, ranging from attempted break-ins
by outsiders to system penetrations and abuses by insiders [6]. The main functions of IDSs are to
monitor hosts and networks, analyze the behaviors of computer systems, generate alerts, and respond
to suspicious behaviors. Because they monitor related hosts and networks, IDSs are typically deployed
near the protected network nodes (e.g., the switches in major network segments).

There are two types of IDS classification methods: detection-based method and data source-based
methods. Among the detection-based methods, IDSs can be divided into misuse detection and

Appl. Sci. 2019, 9, 4396 3 of 28

anomaly detection. Among the data source-based methods, IDSs can be divided into host-based
and network-based methods [7]. This survey combines these two types of IDS classification methods,
taking the data source as the main classification consideration and treating the detection method as
a secondary classification element. The proposed taxonomy is shown in Figure 1. Regarding detection
methods, the survey concentrates on machine learning methods. We introduce how to apply machine
learning to IDS using different types of data in detail in Section 4.

IDS

Source of data

Detection
methods

Host-based
IDS

Network-based
IDS

Log-based
detection

Packet-based
detection

Flow-based
detection

Session-based
detection

Misuse
detection

Anomaly
detection

Machine
learning

Time series

Statistical
model

Pattern
matching

Expert system

Finite-state
machine

Combine of
rule-based system

Feature
engineering

Text analysis

Packet parsing

Payload analysis

Feature
engineering

Deep learning

Traffic grouping

Statistical
feature

Sequence
feature

Figure 1. Taxonomy system of IDS.

2.1. Classification by Detection Methods

Misuse detection is also called signature-based detection. The basic idea to represent attack
behaviors as signatures. The detection process matches the signatures of samples using a signature
database. The main problem in constructing misuse detection systems is to design efficient
signatures. The advantages of misuse detection are that it has a low false alarm rate and it reports
attack types as well as possible reasons in detail; the disadvantages are that it has a high missed
alarm rate, lacks the ability to detect unknown attacks, and requires maintaining a huge signature
database. The design idea behind anomaly detection is to establish a normal behavior profile and
then define abnormal behaviors by their degree of deviation from the normal profile. Thus, the key
to designing an anomaly detection system is to clearly define a normal profile. The benefits of
anomaly detection are strong generalizability and the ability to recognize unknown attacks, while its
shortcomings are a high false alarm rate and an inability to provide possible reasons for an abnormality.
The main differences between misuse detection and anomaly detection are listed in Table 1.

Appl. Sci. 2019, 9, 4396 4 of 28

Table 1. Differences between misuse detection and anomaly detection.

Misuse Detection Anomaly Detection

Detection performance Low false alarm rate; High missed
alarm rate

Low missed alarm rate; High false
alarm rate

Detection efficiency High, decrease with scale of
signature database Dependent on model complexity

Dependence on domain
knowledge

Almost all detections depend on
domain knowledge

Low, only the feature design
depends on domain knowledge

Interpretation
Design based on domain
knowledge, strong interpretative
ability

Outputs only detection results,
weak interpretative ability

Unknown attack detection Only detects known attacks Detects known and
unknown attacks

As shown in Figure 1, in detection method-based taxonomy, misuse detection includes pattern
matching-based, expert system, and finite state machine-based methods. Anomaly detection includes
statistical model-based, machine learning-based, and time series-based methods.

2.2. Classification by Source of Data

An advantage of a host-based IDSs is that it can locate intrusions precisely and initiate responses
because such IDSs can monitor the behaviors of significant objects (e.g., sensitive files, programs
and ports). The disadvantages are that host-based IDSs occupy host resources, are dependent
on the reliability of the host, and are unable to detect network attacks. A network-based IDS is
usually deployed on major hosts or switches. A majority of network-based IDSs are independent
of the operating system (OS); thus, they can be applied in different OS environments. Furthermore,
network-based IDSs are able to detect specific types of protocol and network attacks. The drawback is
that they monitor only the traffic passing through a specific network segment. The main differences
between host-based IDS and network-based IDS are listed in Table 2.

Table 2. Differences between host-based and network-based IDSs.

Host-Based IDS Network-Based IDS

Source of data Logs of operating system or
application programs Network traffic

Deployment Every host; Dependent on operating
systems; Difficult to deploy Key network nodes; Easy to deploy

Detection efficiency Low, must process numerous logs High, can detect attacks in real time

Intrusion
traceability

Trace the process of intrusion
according to system call paths

Trace position and time of intrusion
according to IP addresses and timestamps

Limitation Cannot analyze network behaviors Monitor only the traffic passing through
a specific network segment

As shown in Figure 1, a host-based IDS uses audit logs as a data source. Log detection methods are
mainly hybrids based on rule and machine learning, rely on log features, and use text analysis-based
methods. A network-based IDS uses network traffic as a data source—typically packets, which are the
basic units of network communication. A flow is the set of packets within a time window, which reflects
the network environment. A session is a packet sequence combined on the basis of a network
information 5-tuple (client IP, client port, server IP, server port, protocol). A session represents
high-level semantic information of traffic. Packets contain packet headers and payloads; therefore,
packet detection includes parsing-based and payload analysis-based methods. Based on feature

Appl. Sci. 2019, 9, 4396 5 of 28

extraction, flow detection can be divided into feature engineering-based and deep learning-based
methods. In addition, traffic grouping is a unique approach in flow detection. Based on whether
sequence information is used, session detection can be divided into statistical feature-based and
sequence feature-based methods.

3. Common Machine Learning Algorithms in IDS

3.1. Machine Learning Models

There are two main types of machine learning: supervised and unsupervised learning. Supervised
learning relies on useful information in labeled data. Classification is the most common task in
supervised learning (and is also used most frequently in IDS); however, labeling data manually is
expensive and time consuming. Consequently, the lack of sufficient labeled data forms the main
bottleneck to supervised learning. In contrast, unsupervised learning extracts valuable feature
information from unlabeled data, making it much easier to obtain training data. However, the detection
performance of unsupervised learning methods is usually inferior to those of supervised learning
methods. The common machine learning algorithms used in IDSs are shown in Figure 2.

Machine
learning model

Shallow model

Deep learning
model

Supervised
learning

Unsupervised
learning

SVM

KNN

Naïve Bayes

Logistic
regression

Decision tree

K-means

Supervised
learning

Unsupervised
learning

GAN

DBN

DNN

CNN

RNN

RBM

Autoencoder

LSTM

Bi-RNN

GRU

Sparse
Autoencoder

Stacked
Autoencoder

Denoising
Autoencoder

ANN

Figure 2. Taxonomy of machine learning algorithms.

Appl. Sci. 2019, 9, 4396 6 of 28

3.1.1. Shallow Models

The traditional machine learning models (shallow models) for IDS primarily include the artificial
neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), naïve Bayes,
logistic regression (LR), decision tree, clustering, and combined and hybrid methods. Some of these
methods have been studied for several decades, and their methodology is mature. They focus not only
on the detection effect but also on practical problems, e.g., detection efficiency and data management.
The pros and cons of various shallow models are shown in Table 3.

Table 3. The pros and cons of various shallow models.

Algorithms Advantages Disadvantages Improvement Measures

ANN
Able to deal with
nonlinear data;
Strong fitting ability

Apt to overfitting; Prone to
become stuck in a local
optimum; Model training is
time consuming

Adopted improved optimizers,
activation functions, and loss
functions

SVM

Learn useful
information from
small train set; Strong
generation capability

Do not perform well on big
data or multiple
classification tasks; Sensitive
to kernel function
parameters

Optimized parameters by particle
swarm optimization (PSO)[8]

KNN

Apply to massive
data; Suitable to
nonlinear data; Train
quickly; Robust to
noise

Low accuracy on the
minority class; Long test
times; Sensitive to the
parameter K

Reduced comparison times by
trigonometric inequality; Optimized
parameters by particle swarm
optimization (PSO) [9]; Balanced
datasets using the synthetic
minority oversampling technique
(SMOTE) [10]

Naïve Bayes Robust to noise; Able
to learn incrementally

Do not perform well on
attribute-related data

Imported latent variables to relax
the independent assumption [11]

LR

Simple, can be
trained rapidly;
Automatically scale
features

Do not perform well on
nonlinear data; Apt to
overfitting

Imported regularization to avoid
overfitting [12]

Decision
tree

Automatically select
features; Strong
interpretation

Classification result trends to
majority class; Ignore the
correlation of data

Balanced datasets with SMOTE;
Introduced latent variables

K-means

Simple, can be
trained rapidly;
Strong scalability;
Can fit to big data

Do not perform well on
nonconvex data; Sensitive to
initialization; Sensitive to the
parameter K

Improved initialization method [13]

Artificial Neural Network (ANN). The design idea of an ANN is to mimic the way human brains
work. An ANN contains an input layer, several hidden layers, and an output layer. The units in
adjacent layers are fully connected. An ANN contains a huge number of units and can theoretically
approximate arbitrary functions; hence, it has strong fitting ability, especially for nonlinear functions.
Due to the complex model structure, training ANNs is time-consuming. It is noteworthy that ANN
models are trained by the backpropagation algorithm that cannot be used to train deep networks.
Thus, an ANN belongs to shallow models and differs from the deep learning models discussed
in Section 3.1.2.

Support Vector Machine (SVM). The strategy in SVMs is to find a max-margin separation
hyperplane in the n-dimension feature space. SVMs can achieve gratifying results even with small-scale
training sets because the separation hyperplane is determined only by a small number of support
vectors. However, SVMs are sensitive to noise near the hyperplane. SVMs are able to solve linear

Appl. Sci. 2019, 9, 4396 7 of 28

problems well. For nonlinear data, kernel functions are usually used. A kernel function maps the
original space into a new space so that the original nonlinear data can be separated. Kernel tricks are
widespread among both SVMs and other machine learning algorithms.

K-Nearest Neighbor (KNN). The core idea of KNN is based on the manifold hypothesis. If most
of a sample’s neighbors belong to the same class, the sample has a high probability of belonging to
the class. Thus, the classification result is only related to the top-k nearest neighbors. The parameter k
greatly influences the performance of KNN models. The smaller k is, the more complex the model
is and the higher the risk of overfitting. Conversely, the larger k is, the simpler the model is and the
weaker the fitting ability.

Naïve Bayes. The Naïve Bayes algorithm is based on the conditional probability and the
hypothesis of attribute independence. For every sample, the Naïve Bayes classifier calculates the
conditional probabilities for different classes. The sample is classified into the maximum probability
class. The conditional probability formula is calculated as shown in Formula (1).

P(X = x|Y = ck) =
n

∏
i=1

P(X(i) = x(i)|Y = ck) (1)

When the attribute independence hypothesis is satisfied, the Naïve Bayes algorithm reaches the
optimal result. Unfortunately, that hypothesis is difficult to satisfy in reality; hence, the Naïve Bayes
algorithm does not perform well on attribute-related data.

Logistic Regression (LR). The LR is a type of logarithm linear model. The LR algorithm computes
the probabilities of different classes through parametric logistic distribution, calculated as shown in
Formula (2).

P(Y = k|x) = ewk∗x

1 + ∑K−1
k ewk∗x

(2)

where k = 1,2...K − 1. The sample x is classified into the maximum probability class. An LR model is
easy to construct, and model training is efficient. However, LR cannot deal well with nonlinear data,
which limits its application.

Decision tree. The decision tree algorithm classifies data using a series of rules. The model is tree
like, which makes it interpretable. The decision tree algorithm can automatically exclude irrelevant and
redundant features. The learning process includes feature selection, tree generation, and tree pruning.
When training a decision tree model, the algorithm selects the most suitable features individually
and generates child nodes from the root node. The decision tree is a basic classifier. Some advanced
algorithms, such as the random forest and the extreme gradient boosting (XGBoost), consist of multiple
decision trees.

Clustering. Clustering is based on similarity theory, i.e., grouping highly similar data into the
same clusters and grouping less-similar data into different clusters. Different from classification,
clustering is a type of unsupervised learning. No prior knowledge or labeled data is needed for
clustering algorithms; therefore, the data set requirements are relatively low. However, when using
clustering algorithms to detect attacks, it is necessary to refer external information.

K-means is a typical clustering algorithm, where K is the number of clusters and the means is the
mean of attributes. The K-means algorithm uses distance as a similarity measure criterion. The shorter
the distance between two data objects is, the more likely they are to be placed in the same cluster.
The K-means algorithm adapts well to linear data, but its results on nonconvex data are not ideal.
In addition, the K-means algorithm is sensitive to the initialization condition and the parameter K.
Consequently, many repeated experiments must be run to set the proper parameter value.

Ensembles and Hybrids. Every individual classifier has strengths and shortcomings. A natural
approach is to combine various weak classifiers to implement a strong classifier. Ensemble methods
train multiple classifiers; then, the classifiers vote to obtain the final results. Hybrid methods are
designed as many stages, in which each stage uses a classification model. Because ensemble and hybrid

Appl. Sci. 2019, 9, 4396 8 of 28

classifiers usually perform better than do single classifiers, an increasing number of researchers have
begun to study ensemble and hybrid classifiers. The key points lie in selecting which classifiers to
combine and how they are combined.

3.1.2. Deep Learning Models

Deep learning models consist of diverse deep networks. Among them, deep brief networks
(DBNs), deep neural networks (DNNs), convolutional neural networks (CNNs), and recurrent
neural networks (RNNs) are supervised learning models, while autoencoders, restricted Boltzmann
machines (RBMs), and generative adversarial networks (GANs) are unsupervised learning models.
The number of studies of deep learning-based IDSs has increased rapidly from 2015 to the present.
Deep learning models directly learn feature representations from the original data, such as images
and texts, without requiring manual feature engineering. Thus, deep learning methods can execute
in an end-to-end manner. For large datasets, deep learning methods have a significant advantage
over shallow models. In the study of deep learning, the main emphases are network architecture,
hyperparameter selection, and optimization strategy. A comparison of various deep learning models
is shown in Table 4.

Table 4. Comparison of various deep learning models

Algorithms Suitable Data Types Supervised or
Unsupervised Functions

Autoencoder Raw data; Feature vectors Unsupervised Feature extraction; Feature
reduction; Denoising

RBM Feature vectors Unsupervised Feature extraction; Feature
reduction; Denoising

DBN Feature vectors Supervised Feature extraction;
Classification

DNN Feature vectors Supervised Feature extraction;
Classification

CNN Raw data; Feature vectors;
Matrices Supervised Feature extraction;

Classification

RNN Raw data; Feature vectors;
Sequence data Supervised Feature extraction;

Classification

GAN Raw data; Feature vectors Unsupervised Data augmentation;
Adversarial training

Autoencoder. An autoencoder contains two symmetrical components, an encoder and a decoder,
as shown in Figure 3. The encoder extracts features from raw data, and the decoder reconstructs the
data from the extracted features. During training, the divergence between the input of the encoder and
the output of the decoder is gradually reduced. When the decoder succeeds in reconstructing the data
via the extracted features, it means that the features extracted by the encoder represent the essence of the
data. It is important to note that this entire process requires no supervised information. Many famous
autoencoder variants exist, such as denoising autoencoders [14,15] and sparse autoencoders [16].

Appl. Sci. 2019, 9, 4396 9 of 28

Error

Raw data Reconstructed data

Encoder Decoder

Features

Figure 3. The structure of an autoencoder.

Restricted Boltzmann Machine (RBM). An RBM is a randomized neural network in which units
obey the Boltzmann distribution. An RBM is composed of a visible layer and a hidden layer. The units
in the same layer are not connected; however, the units in different layers are fully connected, as shown
in Figure 4. where vi is a visible layer, and hi is a hidden layer. RBMs do not distinguish between
the forward and backward directions; thus, the weights in both directions are the same. RBMs are
unsupervised learning models trained by the contrastive divergence algorithm [17], and they are
usually applied for feature extraction or denoising.

h1 h2 hn

v1 v2 vm

Hidden layer

Visible layer

...

...

Figure 4. The structure of the RBM.

Deep Brief Network (DBN). A DBN consists of several RBM layers and a softmax classification
layer, as shown in Figure 5. Training a DBN involves two stages: unsupervised pretraining and
supervised fine-tuning [18,19]. First, each RBM is trained using greedy layer-wise pretraining.
Then, the weight of the softmax layer are learned by labeled data. In attack detection, DBNs are
used for both feature extraction and classification [20–22].

Hidden layer1

Visible layer1

Input

Output

Visible layer2

RBM1

RBM2

Fully connection layer

Hidden layer2

Figure 5. The structure of the DBN.

Deep Neural Network (DNN). A layer-wise pretraining and fine-tuning strategy makes it
possible to construct DNNs with multiple layers, as shown in Figure 6. When training a DNN,

Appl. Sci. 2019, 9, 4396 10 of 28

the parameters are learned first using unlabeled data, which is an unsupervised feature learning
stage; then, the network is tuned through the labeled data, which is a supervised learning stage.
The astonishing achievements of DNNs are mainly due to the unsupervised feature learning stage.

Hidden layer

Input layer

Output layer

Figure 6. The structure of the DNN.

Convolutional Neural Network (CNN). CNNs are designed to mimic the human visual system
(HVS); consequently, CNNs have made great achievements in the computer vision field [23–25].
A CNN is stacked with alternate convolutional and pooling layers, as shown in Figure 7.
The convolutional layers are used to extract features, and the pooling layers are used to enhance
the feature generalizability. CNNs work on 2-dimensional (2D) data, so the input data must be
translated into matrices for attack detection.

Input layer Output layer

Convolutional layer Convolutional layerPooling layer Pooling layer Fully connected layer

Figure 7. The structure of a CNN.

Recurrent Neural Network (RNN). RNNs are networks designed for sequential data and are
widely used in natural language processing (NLP) [26–28]. The characteristics of sequential data
are contextual; analyzing isolated data from the sequence makes no sense. To obtain contextual
information, each unit in an RNN receives not only the current state but also previous states.
The structure of an RNN is shown in Figure 8. Where all the W items in Figure 8 are the same.
This characteristic causes RNNs to often suffer from vanishing or exploding gradients. In reality,
standard RNNs deal with only limited-length sequences. To solve the long-term dependence problem,
many RNN variants have been proposed, such as long short-term memory (LSTM) [29], gated recurrent
unit (GRU) [30], and bi-RNN [31].

Appl. Sci. 2019, 9, 4396 11 of 28

x

h

y

Hidden layer

Input layer xt-1

ht-1

yt-1

xt

ht

yt

xt+1

ht+1

yt+1

Unfold

W W W W

Output layer

Figure 8. The structure of an RNN.

The LSTM model was proposed by Hochreiter and Schmidhuber in 1997 [29]. Each LSTM unit
contains three gates: a forget gate, an input gate, and an output gate. The forget gate eliminates
outdated memory, the input gate receives new data, and the output gate combines short-term memory
with long-term memory to generate the current memory state. The GRU was proposed by Chung et al.
in 2014 [30]. The GRU model merges the forget gate and the input gate into a single update gate, which
is simpler than the LSTM.

Generative Adversarial Network (GAN). A GAN model includes two subnetworks, i.e., a generator
and a discriminator. The generator aims to generate synthetic data similar to the real data, and
the discriminator intends to distinguish synthetic data from real data. Thus, the generator and the
discriminator improve each other. GANs are currently a hot research topic used to augment data in
attack detection, which partly ease the problem of IDS dataset shortages. Meanwhile, GANs belong
to adversarial learning approaches which can raise the detection accuracy of models by adding
adversarial samples to the training set.

3.1.3. Shallow Models Compared to Deep Models

Deep learning is a branch of machine learning, and the effects of deep learning models are
obviously superior to those of the traditional machine learning (or shallow model) methods in most
application scenarios. The differences between shallow models and deep models are mainly reflected
in the following aspects.

(1) Running time. The running time includes both training and test time. Due to the high
complexity of deep models, both their training and test times are much longer than those of
shallow models.

(2) Number of parameters. There are two types of parameters: learnable parameters and
hyperparameters. The learnable parameters are calculated during the training phase, and
the hyperparameters are set manually before training begins. The learnable parameters and
hyperparameters in deep models far outnumber those in shallow models; consequently, training
and optimizing deep models takes longer.

(3) Feature representation. The input to traditional machine learning models is a feature vector,
and feature engineering is an essential step. In contrast, deep learning models are able to learn feature
representations from raw data and are not reliant on feature engineering. The deep learning methods
can execute in an end-to-end manner, giving them an outstanding advantage over traditional machine
learning methods.

(4) Learning capacity. The structures of deep learning models are complex and they contain
huge numbers of parameters (generally millions or more). Therefore, the deep learning models have
stronger fitting ability than do shallow models. However, deep learning models also face a higher risk
of overfitting, require a much larger volume of data for training. However, the effect of deep learning
models is better.

(5) Interpretability. Deep learning models are black boxes [32–35]; the results are almost
uninterpretable, which is a critical point in deep learning. However, some traditional deep learning
algorithms, such as the decision tree and naïve Bayes, have strong interpretability.

Appl. Sci. 2019, 9, 4396 12 of 28

3.2. Metrics

Many metrics are used to evaluate machine learning methods. The optimal models are selected
using these metrics. To comprehensively measure the detection effect, multiple metrics are often used
simultaneously in IDS research.

• Accuracy is defined as the ratio of correctly classified samples to total samples. Accuracy
is a suitable metric when the dataset is balanced. In real network environments; however,
normal samples are far more abundant than are abnormal samples; thus, accuracy may not
be a suitable metric.

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

• Precision (P) is defined as the ratio of true positive samples to predicted positive samples;
it represents the confidence of attack detection.

P =
TP

TP + FP
(4)

• Recall (R) is defined as the ratio of true positive samples to total positive samples and is also called
the detection rate. The detection rate reflects the model’s ability to recognize attacks, which is an
important metric in IDS.

R =
TP

TP + FN
(5)

• F-measure (F) is defined as the harmonic average of the precision and the recall.

F =
2 ∗ P ∗ R

P + R
(6)

• The false negative rate (FNR) is defined as the ratio of false negative samples to total positive
samples. In attack detection, the FNR is also called the missed alarm rate.

FNR =
FN

TP + FN
(7)

• The false positive rate (FPR) is defined as the ratio of false positive samples to predicted positive
samples. In attack detection, the FPR is also called the false alarm rate, and it is calculated
as follows:

FPR =
FP

TP + FP
(8)

where the TP is the true positives, FP is the false positives, TN is the true negatives, FN is the false
negatives. The purpose of an IDS is to recognize attacks; therefore, attack samples are usually regarded
as positives, and normal samples are usually regarded as negatives. In attack detection, the frequently
used metrics include accuracy, recall (or detection rate), FNR (or missed alarm rate), and FPR (or false
alarm rate).

3.3. Benchmark Datasets in IDS

The task of machine learning is to extract valuable information from data; therefore,
the performance of machine learning depends upon the quality of the input data. Understanding data
is the basis of machine learning methodology. For IDSs, the adopted data should be easy to acquire
and reflect the behaviors of the hosts or networks. The common source data types for IDSs are packets,
flow, sessions, and logs. Building a dataset is complex and time-consuming. After a benchmark
dataset is constructed, it can be reused repeatedly by many researchers. In addition to convenience,
there are two other benefits of using benchmark datasets. (1) The benchmark datasets are authoritative,
and make experimental results more convincing. (2) Many published studies have been conducted

Appl. Sci. 2019, 9, 4396 13 of 28

using common benchmark datasets, which allows new study results to be compared with those of
previous studies.

(1) DARPA1998

The DARPA1998 dataset [36] was built by the Lincoln laboratory of MIT and is a widely used
benchmark dataset in IDS studies. To compile it, the researchers collected Internet traffic over nine
weeks; the first seven weeks form the training set, and the last two weeks form the test set. The dataset
contains both raw packets and labels. There are five types of labels: normal, denial of service (DOS),
Probe, User to Root (U2R) and Remote to Local (R2L). Because raw packets cannot be directly applied to
traditional machine learning models, the KDD99 dataset was constructed to overcome this drawback.

(2) KDD99

The KDD99 [37] dataset is the most widespread IDS benchmark dataset at present. Its compilers
extracted 41-dimensional features from data in DARPA1998. The labels in KDD99 are the same as the
DARPA1998. There are four types of features in KDD99, i.e., basic features, content features, host-based
statistical features, and time-based statistical features. Unfortunately, the KDD99 dataset includes many
defects. First, the data are severely unbalanced, making the classification results biased toward the
majority classes. Additionally, there are many duplicate records and redundant records exist. Many
researchers have to filter the dataset carefully before they can use it. As a result, the experimental
results from different studies are not always comparable. Last but not least, KDD data are too old to
represent the current network environment.

(3) NSL-KDD

To overcome the shortcomings of the KDD99 dataset, the NSL-KDD [38] was proposed.
The records in the NSL-KDD were carefully selected based on the KDD99. Records of different
classes are balanced in the NSL-KDD, which avoids the classification bias problem. The NSL-KDD also
removed duplicate and redundant records; therefore, it contains only a moderate number of records.
Therefore, the experiments can be implemented on the whole dataset, and the results from different
papers are consistent and comparable. The NSL-KDD alleviates the problems of data bias and data
redundancy to some degree. However, the NSL-KDD does not include new data; thus, minority class
samples are still lacking, and its samples are still out-of-date.

(4) UNSW-NB15

The UNSW-NB15 [39] dataset was compiled by the University of South Wales, where researchers
configured three virtual servers to capture network traffic and extracted 49-dimensional features
using tool named Bro. The dataset includes more types of attacks than does the KDD99 dataset, and
its features are more plentiful. The data categories include normal data and nine types of attacks.
The features include flow features, basic features, content features, time features, additional features, and
labeled features. The UNSW-NB15 is representative of new IDS datasets, and has been used in some
recent studies. Although the influence of UNSW-NB15 is currently inferior to that of KDD99, it is
necessary to construct new datasets for developing new IDS based on machine learning.

4. Research on Machine Learning-Based IDSs

Machine learning is a type of data driven method in which understanding the data is the first
step. Thus, we adopt the type of data source of as the main classification thread, as shown in Figure 1.
In this section, we introduce various ways to apply machine learning to IDS design for different data
types. The different types of data reflect different attack behaviors, which include host behaviors and
network behaviors. Host behaviors are reflected by system logs, and network behaviors are reflected
by network traffic. There are multiple attack types, each of which has a unique pattern. Thus, selecting
appropriate data sources is required to detect different attacks according to the attack characteristics.
For instance, one salient feature of a DOS attack is to send many packets within a very short period of

Appl. Sci. 2019, 9, 4396 14 of 28

time; therefore flow data is suitable for detecting a DOS attack. A covert channel involves data-leaking
activity between two specific IP addresses, which is more suited to detection from session data.

4.1. Packet-Based Attack Detection

Packets, which are the basic units of network communication, represent the details of each
communication. Packets consist of binary data, meaning that they are incomprehensible unless they are
first parsed. A packet consists of a header and application data. The headers are structured fields that
specify IP addresses, ports and other fields specific to various protocols. The application data portion
contains the payload from the application layer protocols. There are three advantages to using packets
as IDS data sources: (1) Packets contain communication contents; thus, they can effectively be used to
detect U2L and R2L attacks. (2) Packets contain IPs and timestamps; thus, they can locate the attack
sources precisely. (3) Packets can be processed instantly without caching; thus, detection can occur in
real time. However, individual packets do not reflect the full communication state nor the contextual
information of each packet, so it is difficult to detect some attacks, such as DDOS. The detection
methods based on packets mainly include packet parsing methods and payload analysis methods.

4.1.1. Packet Parsing-Based Detection

Various types of protocols are used in network communications, such as HTTP and DNS.
These protocols have different formats; the packet parsing-based detection methods primarily focus
on the protocol header fields. The usual practice is to extract the header fields using parsing tools
(such as Wireshark or the Bro) and then to treat the values of the most important fields as feature
vectors. Packet parsing-based detection methods apply to shallow models.

The header fields provide basic packet information from which feature can be extracted used
with using classification algorithms to detect attacks. Mayhew et al. [40] proposed an SVM- and
K-means-based packet detection method. They captured packets from a real enterprise network and
parsed them with Bro. First, they grouped the packets according to protocol type. Then, they clustered
the data with the K-means++ algorithm for the different protocol datasets. Thus, the original
dataset was grouped into many clusters, where the data from any given cluster were homologous.
Next, they extracted features from the packets and trained SVM models on each cluster. Their precision
scores for HTTP, TCP, Wiki, Twitter, and E-mail protocols reached 99.6%, 92.9%, 99%, 96%,
and 93%, respectively.

In packet parsing-based detection, unsupervised learning is a common way to solve the high
false alarm rate problem. Hu et al. [41] proposed a fuzzy C-means based packet detection method.
The fuzzy C mean algorithm introduces fuzzy logic into the standard K-means algorithm such that
samples belong to a cluster with a membership degree rather than as a Boolean value such as 0 or 1.
They used Snort to process the DARPA 2000 dataset, extracting Snort alerts, source IPs, destination
IPs, source ports, destination ports, and timestamps. Then, they used this information to form feature
vectors and distinguished false alerts from true alerts by clustering the packets. To reduce the influence
of initialization, they ran the clustering algorithms ten times. The results showed that the fuzzy
C-means algorithm reduced the false alarm rate by 16.58% and the missed alarm rate by 19.23%.

4.1.2. Payload Analysis-Based Detection

Apart from packet parsing-based detection, payload analysis-based detection places emphasis on
the application data. The payload analysis-based methods are suitable for multiple protocols because
they do not need to parse the packet headers.

As a type of unstructured data, payloads can be processed directly by deep learning models [42].
It should be noted that this method does not include encrypted payloads. Shallow models depend
on manual features and private information in packets, leading to high labor costs and privacy
leakage problems. Deep learning methods learn features from raw data without manual intervention.
Min et al. [43] utilized a text-based CNN to detect attacks from payloads. They conducted

Appl. Sci. 2019, 9, 4396 15 of 28

experiments on the ISCX 2012 dataset and detected attacks with both statistical and content
features. The statistical features mainly came from packet headers and included protocols, IPs, and
ports. The content features came from the payloads. First, payloads from different packets were
concatenated. Next, the concatenated payloads were encoded by skip-gram word embedding. Then,
the content features were extracted with a CNN. Finally, they trained a random forest model to detect
attacks. The final model reached an accuracy of 99.13%.

Combining various payload analysis techniques can achieve comprehensive content information,
which is able to improve the effect of the IDS. Zeng et al. [44] proposed a payload detection method
with multiple deep learning models. They adopted three deep learning models (a CNN, an LSTM,
and a stacked autoencoder) to extract features from different points of view. Among these, the CNN
extracted local features, the RNN extracted time series features, and the stacked autoencoder extracted
text features. The accuracy of this combined approach reached 99.22% on the ISCX 2012 dataset.

Extracting payload features with unsupervised learning is also an effective detection method.
Yu et al. [45] utilized a convolutional autoencoder to extract payload features and conducted
experiments on the CTU-UNB dataset. This dataset includes the raw packets of 8 attack types. To take
full advantage of convolutions, they first converted the packets into images. Then, they trained
a convolutional autoencoder model to extract features. Finally, they classified packets using
learned features. The precision, recall and F-measure on the test set reached 98.44%, 98.40%, and
98.41% respectively.

To enhance the robustness of IDSs, adversarial learning becomes a novel approach. Adversarial
learning can be used for attacks against IDS. Meanwhile, it is also a novel way to improve detection
accuracy of IDS. Rigaki et al. [46] used a GAN to improve the malware detection effect. To evade
detection, malware applications try to generate packets similar to normal packets. Taking the malware
FLU as an example, the command & control (C & C) packets are very similar to packets generated by
Facebook. They configured a virtual network system with hosts, servers, and an IPS. Then, they started
up the malware FLU and trained a GAN model. The GAN guided the malware to produce packets
similar to Facebook. As the training epochs increased, the packets blocked by the IPS decreased and
packet that passed inspection increased. The result was that the malicious packets generated by the
GAN were more similar to normal packets. Then, by analyzing the generated packets, the robustness
of the IPS was improved.

4.2. Flow-Based Attack Detection

Flow data contains packets grouped in a period, which is the most widespread data source
for IDSs. The KDD99 and the NSL-KDD datasets are both flow data. Detecting attacks with
flow has two benefits: (1) Flow represents the whole network environment, which can detect
most attacks, especially DOS and Probe. (2) Without packet parsing or session restructuring, flow
preprocessing is simple. However, flow ignores the content of packets; thus, its detection effect
for U2R and R2L is unsatisfactory. When extracting flow features, packets must be cached packets;
thus, it involves some hysteresis. Flow-based attack detection mainly includes feature engineering and
deep learning methods. In addition, the strong heterogeneity of flow may cause poor detection effects.
Traffic grouping is the usual solution to this problem.

4.2.1. Feature Engineering-Based Detection

Traditional machine learning models cannot directly address flow data; therefore, feature
engineering is an essential step before these models can be applied. Feature engineering-based
methods adopt a “feature vectors + shallow models” mode. The feature vectors are suitable for most
machine learning algorithms. Each dimension of the feature vectors has clear interpretable semantics.
The common features include the average packet length, the variance in packet length, the ratio of TCP
to UDP, the proportion of TCP flags, and so on. The advantages of these types of detection methods
are that they are simple to implement, highly efficient, and can meet real-time requirements.

Appl. Sci. 2019, 9, 4396 16 of 28

The existing feature engineering-based IDSs often have high detection accuracy but suffer from
a high false alarm rate. One solution is to combine many weak classifiers to obtain a strong classifier.
Goeschel et al. [47] proposed a hybrid method that included SVM, decision tree, and Naïve Bayes
algorithms. They first trained an SVM model to divide the data into normal or abnormal samples.
For the abnormal samples, they utilized a decision tree model to determine specific attack types.
However, a decision tree model can identify only known attacks, not unknown attacks. Thus, they also
applied a Naïve Bayes classifier to discover unknown attacks. By taking advantage of three different
classifier types this hybrid method achieved an accuracy of 99.62% and a false alarm rate of 1.57% on
the KDD99 dataset.

Another research objective is to accelerate the detection speed. Kuttranont et al. [48] proposed
a KNN-based detection method and accelerated calculation via parallel computing techniques running
on a graphics processing unit (GPU). They modified the neighbor-selecting rule of the KNN algorithm.
The standard KNN selects the top K nearest samples as neighbors, while the improved algorithm
selects a fixed percentage (such as 50%) of the neighboring samples as neighbors. The proposed method
considers the unevenness of data distribution and performs well on sparse data. These experiments
were conducted using the KDD99 dataset, achieving an accuracy of 99.30%. They also applied parallel
computing and the GPU to accelerating calculation. The experimental results showed that the method
with the GPU was approximately 30 times faster than that without the GPU.

The unsupervised learning methods are also applied to IDS, a typical way is to divide data with
clustering algorithms. The standard K-means algorithm is inefficient on big datasets. To improve
detection efficiency, Peng et al. [13] proposed an improved K-means detection method with mini
batch. They first carried out data preprocessing on the KDD99 dataset. The nominal features were
transformed into numerical types, and each dimension of the features was normalized by the max-min
method. Then, they reduced the dimensions using the principal components analysis (PCA) algorithm.
Finally, they clustered the samples with the K-means algorithm, but they improved K-means from
two aspects. (1) They altered the method of initialization to avoid becoming stuck in a local optimum.
(2) They introduced the mini-batch trick to decrease the running time. Compared with the standard
K-means, the proposed method achieved higher accuracy and runtime efficiency.

4.2.2. Deep Learning-Based Detection

Feature engineering depends on domain knowledge, and the quality of features often becomes
a bottleneck of detection effects. Deep learning-based detection methods learn feature automatically.
These types of methods work in an end-to-end fashion and are gradually becoming the mainstream
approach in IDS studies.

Deep learning methods can directly process raw data, allowing them to learn features and
perform classification at the same time. Potluri et al. [49] proposed a CNN-based detection method.
They conducted experiments on the NSL-KDD and the UNSW-NB 15 datasets. The data type in these
datasets is a feature vector. Because CNNs are good at processing 2-dimensional (2D) data, they first
converted the feature vectors into images. Nominal features were one-hot coded, and the feature
dimensions increased from 41 to 464. Then, each 8-byte chunk was transformed into one pixel. Blank
pixels were padded with 0. The end result was that the feature vectors were transformed into images
of 8*8 pixels. Finally, they constructed a three-layer CNN to classify the attacks. They compared their
model with other deep networks (ResNet 50 and GoogLeNet), and the proposed CNN performed best,
reaching accuracies of 91.14% on the NSL-KDD and 94.9% on the UNSW-NB 15.

Unsupervised deep learning models can also be used to extract features; then, shallow models
can be used to perform classification. Zhang et al. [50] extracted features with a sparse autoencoder
and detected attacks with an XGBoost model. They used data from the NSL-KDD dataset. Due to the
imbalanced nature of this dataset, they sampled the dataset using SMOTE. The SMOTE algorithm
oversamples the minority classes and divides the majority classes into many subclasses so that every
class is balanced. The sparse autoencoder introduces a sparsity constraint into the original autoencoder,

Appl. Sci. 2019, 9, 4396 17 of 28

enhancing its ability to detect unknown samples. Finally, they classified the data using an XGBoost
model. Their model achieved accuracies on the Normal, DOS, Probe, R2L, and U2R classes of 99.96%,
99.17%, 99.50%, 97.13%, and 89.00%, respectively.

Deep learning models have made great strides in big data analysis; however, their performances
are not ideal on small or unbalanced datasets. Adversarial learning approaches can improve the
detection accuracy on small datasets. Zhang et al. [51] conducted data augmentation with a GAN.
The KDD99 dataset is both unbalanced and lacks new data, which leads to poor generalizability of
machine learning models. To address these problems, they utilized a GAN to expand the dataset.
The GAN model generated data similar to the flow data of KDD99. Adding this generated data to
the training set allows attack variants to be detected. They selected 8 types of attacks and compared
the accuracies achieved on the original dataset compared to the expanded dataset. The experimental
results showed that adversarial learning improved 7 accuracies in 8 attack types.

4.2.3. Traffic Grouping-Based Detection

Flow includes all traffic within a period, and many types of traffics may act as white noise in attack
detection. Training machine learning models with such data probably leads to overfitting. One natural
approach is to group traffic to decrease heterogeneity. The grouping methods include protocol-based
and data-based methods.

The traffic features of various protocols have significant differences; thus, grouping traffic by
protocol is a valid step toward improving accuracy. Teng et al. [52] proposed an SVM detection method
based on protocol grouping using the data of the KDD99 dataset, which involves various protocols.
They first divided the dataset based on protocol type, and considered only TCP, UDP, and ICMP
protocols. Then, according to the characteristics of these different protocols, they selected features for
each subdataset. Finally, they trained SVM models on the 3 subdatasets, obtaining an average accuracy
of 89.02%.

Grouping based on data characteristics is another traffic grouping approach. One typical
method is clustering. Ma et al. [53] proposed a DNN and spectral clustering-based detection method.
The heterogeneity of flow may cause low accuracy. Therefore, they first divided the original dataset
into 6 subsets, in which each subset was highly homogeneous. Then, they trained DNN models on
every subset. The accuracy of their approach on the KDD99 and the NSL-KDD datasets reached 92.1%.

4.3. Session-Based Attack Detection

A session is the interaction process between two terminal applications and can represent high-level
semantics. A session is usually divided on the basis of a 5-tuple (client IP, client port, server IP, server
port, and protocol). There are two advantages of detection using sessions. (1) Sessions are suitable
for detecting an attack between specific IP addresses, such as tunnel and Trojan attacks. (2) Sessions
contain detailed communications between the attacker and the victim, which can help localize attack
sources. However, session duration can vary dramatically. As a result, a session analysis sometimes
needs to cache many packets, which may increase lag. The session-based detection methods primarily
include statistics-based features and sequence-based features.

4.3.1. Statistic-Based Feature Detection Methods

Session statistical information includes the fields in packet headers, the number of packets, the
proportion of packets coming from different directions, and so on. This statistical information is used
to compose feature vectors suitable for shallow models. The sessions have high layer semantics; thus,
they are easily described by rules. Decision tree or rule-based models may be appropriate methods.
Unfortunately, the methods based on statistical features ignore the sequence information, and they
have difficulties detecting intrusions related to communication content.

Because statistical information includes the basic features of sessions, supervised learning
methods can utilize such information to differentiate between normal sessions and abnormal sessions.

Appl. Sci. 2019, 9, 4396 18 of 28

The existing session-based detection methods often face problems of low accuracy and have high
runtime costs. Ahmim et al. [54] proposed a hierarchical decision tree method in which, reduce the
detection time, they analyzed the frequency of different types of attacks and designed the detection
system to recognize specific attacks. They used data from the CICIDS 2017 dataset that included
79-dimensional features and 15 classes. The proposed detection system had a two-layer structure.
The first layer consisted of two independent classifiers (i.e., a decision tree and a rule-based model),
which processed part of the features. The second layer was a random forest classifier, which processed
all the features from the dataset as well as the output of the first layer. They compared multiple machine
learning models on 15 classes; their proposed methods performed best on 8 of the 15 classes. Moreover,
the proposed method had low time consumption, reflecting its practicability.

Session-based detection using supervised learning models depends on expert knowledge, which
is difficult to expand to new scenarios. To address this problem, Alseiari et al. [55] proposed an
unsupervised method to detect attacks in smart grids. Due to the lack of smart grid datasets, they
constructed a dataset through simulation experiments. First, they captured and cached packets to
construct sessions. Then, they extracted 23-dimensional features from the sessions. Next, they utilized
mini batch K-means to divide the data into many clusters. Finally, they labeled the clusters. This work
was based on two hypotheses. The first was that normal samples were the majority. The second one
was that the distances among the normal clusters were relatively short. When the size of a cluster was
less than 25% of the full sample amount or a cluster centroid was far away from all other the other
cluster centroids, that cluster was judged as abnormal. No expert knowledge was required for any
part of this process. The proposed methods were able to detect intrusion behaviors in smart grids
effectively and locate the attack sources while holding the false alarm rate less to than 5%.

4.3.2. Sequence Feature-Based Detection

Different from flow, the packets in sessions have a strict order relationship. The sequence features
mainly contain the packet length sequence and the time interval sequence. Analyzing the sequence can
obtain detailed session interaction information. Most machine learning algorithms cannot deal with
sequences, and related methods are relatively rare. At present, most sequence feature-based detection
adopts the RNN algorithm.

Encoding raw data is a common preprocessing step for RNN methods. The bag of words (BoW)
model is a frequently used text processing technology. Yuan et al. [56] proposed a DDOS detection
method based on the LSTM using UNB ISCX 2012 dataset. They first extracted 20-dimensional features
from the packets and encoded them with BoW. Then, they concatenated the packets in sequence,
resulting in matrices with a size of m*n, where m was the number of packets in a session and n was
the dimension of a packet, and both m and n were variable. Finally, they trained a CNN to extract
local features and an LSTM to classify the sessions. They provided comprehensive experimental
results, reaching accuracy, precision, recall, and F-measure scores of 97.606%, 97.832%, 97.378%, and
97.601%, respectively.

One of the drawbacks of the BoW is that it is unable to represent the similarity between words.
Word embedding approaches overcome that problem. Radford et al. [57] proposed a session detection
method based on a bi-LSTM. Because LSTMs had made great strides in NLP, they expressed the sessions
as a specific language. They conducted experiments on the ISCX IDS dataset. First, they grouped
packets on the basis of IP addresses to obtain sessions. Then, they encoded the sessions with the
word embedding. Finally, they trained an LSTM model to predict abnormal sessions. To utilize the
contextual information, they adopted a bi-LSTM model to learn the sequence features in two directions.

In addition to text processing technology, the character-level CNN is a novel encoding method.
Wang et al. [58] proposed a hierarchical deep learning detection method in which a session contains
not only packet contents but also the packet time sequence. Then, they designed a hierarchical deep
learning method using a CNN to learn the low-level spatial features and an LSTM to learn the
high-level time features, where the time features are based on the spatial features. They conducted

Appl. Sci. 2019, 9, 4396 19 of 28

experiments on the DARPA 1998 and the ISCX 2012 datasets. They first applied the CNN to extract
spatial features from packets. Next, they concatenated the spatial features in sequence and extracted
time features using the LSTM model. The resulting model achieved accuracies between 99.92% and
99.96%, and detection rates between 95.76% and 98.99%.

4.4. Log-Based Attack Detection

Logs are the activity records of operating systems or application programs; they include system
calls, alert logs, and access records. Logs have definite semantics. There are three benefits to using
logs as a data source in IDSs. (1) Logs include detailed content information suitable for detecting
SQL injection, U2R, and R2L attacks. (2) Logs often carry information about users and timestamps
that can be used to trace attackers and reveal attack times. (3) Logs record the complete intrusion
process; thus, the result is interpretable. However, one problem is that log analysis depends on
cyber security knowledge. Additionally, the log formats of different application programs do not
have identical formats, resulting in low scalability. The log-based attack detection primarily includes
hybrid methods involving rules and machine learning, log feature extraction-based methods, and text
analysis-based methods.

4.4.1. Rule and Machine Learning-Based Hybrid Methods

Hybrid methods combine rule-based detection and machine learning, which together achieve
better performances than do single detection systems. Many rule-based detection systems (e.g., Snort)
generate masses of alerts; however, most of the alerts involve only operations that do not match
the rules; therefore, these are often not real intrusion behaviors. The hybrid methods take the log
output of the rule-based systems as inputs; then, machine learning models are used to filter out the
meaningless alerts.

Many IDSs suffer from high false alarm rates, which cause real attacks to be embedded among
many meaningless alerts. Ranking alerts via machine learning models forms a possible solution.
To reduce the false alarm rate, Meng et al. [59] proposed a KNN method to filter alarms. They conducted
experiments in a real network environment and generated alerts using Snort. Then, they trained a KNN
model to rank the alerts. There were 5 threat levels in total in their experiment, and the results showed
that the KNN model reduced the number of alerts by 89%.

Some IDSs perform a function similar to human interaction, in which alerts are ranked by machine
learning to reduce analyst workloads. McElwee et al. [60] proposed an alert filtering method based on
a DNN. They first collected the log generated by McAfee. Then, they trained a DNN model to find
important security events in the logs. Next, the extracted important events were analyzed by security
experts. Then, the analysis results were used as training data to enhance the DNN model, forming
an interaction and promotion cycle. The proposed hybrid system can reduce analyst workloads and
accelerate security analyses.

4.4.2. Log Feature Extraction-Based Detection

This method involves extracting log features according to domain knowledge and discovering
abnormal behaviors using the extracted features, which is suitable for most machine learning
algorithms. Using a sliding window to extract features is a common approach. The sliding window
makes use of the contextual information contained in logs. In addition, the sliding window is
a streaming method that has the benefit of low delay.

Intrusion behaviors may leave traces of system calls, and analyzing these system calls with
classification algorithms can detect intrusions. Tran et al. [61] proposed a CNN method to analyze
system calls. Every underlying operation that involves the operating system will use system calls;
thus, analyzing the system call path can reproduce the complete intrusion process. They conducted
experiments on the NGIDS-DS and the ADFA-LD datasets, which include a series of system calls.
First, they extracted features with a sliding window. Then, they applied a CNN model to perform

Appl. Sci. 2019, 9, 4396 20 of 28

classification. The CNN was good at finding local relationships and detecting abnormal behaviors
from system calls.

Model interpretation is another important research direction, which has attracted extensive
attention. Tuor et al. [62] proposed an interpretable deep learning detection method using data from
the CERT Insider Threat dataset, which consists of system logs. They first extracted 414-dimensional
features using a sliding window. Then, they adopted a DNN and an RNN to classify logs. The DNN
detected attacks based on the log contents, and the RNN detected attacks based on the log sequences.
The proposed methods reduced the analysis workload by 93.5% and reached a detection rate of 90%.
Furthermore, they decomposed the abnormal scores into the contributions of each behavior, which
was a helpful analysis. Interpretable models are more convincing than are uninterpretable models.

Some logs lack labeled information; consequently, supervised learning is inappropriate.
Unsupervised learning methods are usually used with unlabeled logs. Bohara et al. [63] proposed an
unsupervised learning detection method in the enterprise environment. They conducted experiments
on the VAST 2011 Mini Challenge 2 dataset and extracted features from the host and network logs.
Due to the different influences of each feature, they selected features using the Pearson correlation
coefficient. Then, they clustered the logs with the K-means and DBSCAN algorithms. By measuring the
salient cluster features, the clusters were associated with abnormal behaviors. Finally, they analyzed
the abnormal clusters manually to determine the specific attack types.

4.4.3. Text Analysis-Based Detection

The text analysis-based detection regards logs as plain text. The methods utilize mature
text processing techniques such as the n-gram to analyze logs. Compared with log feature
extraction-based methods, this method understands log content at the semantic level and therefore has
stronger interpretability.

In log-based detection, extracting text features from logs and then performing classification is
the usual approach. When analyzing texts, a small number of keywords have large impacts on the
whole text. Thus, the keywords in the field of cyber security aid in improving the detection effect.
Uwagbole et al. [64] proposed an SQL-injection detection method for the Internet of Things (IoT).
They collected and labeled logs from a real environment. The logs provide the contextual information
of the SQL injection attack. First, they extracted 479,000 high-frequency words from the logs and
then added 862 keywords that appear in SQL queries to compose a dictionary. Then, they removed
duplicate and missing records from the log and balanced the data with SMOTE. Next, they extracted
features using the n-gram algorithm and selected features using Chi-square tests. Finally, they trained
an SVM model to perform classification, achieving accuracy, precision, recall, and F-measure scores of
98.6%, 97.4%, 99.7% and 98.5%, respectively.

In an actual network environment, normal samples are in the majority, and abnormal samples
are rare. One-class classification, a type of unsupervised learning method, uses only normal samples
for training, which solves the problem of a lack of abnormal samples. Vartouni et al. [65] proposed
a web attack detection method based on the isolate forest model. They used the data of the CSIC 2010
dataset. First, they extracted 2572-dimensional features from HTTP logs with the n-gram. Then, they
utilized an autoencoder to remove irrelevant features. Finally, they trained an isolation forest model to
discover abnormal webs, which reached an accuracy of 88.32%.

5. Challenges and Future Directions

Table 5 lists papers on machine learning based IDSs which are introduced in this survey. It shows
that deep learning methods have become a research hotspot (26 papers are listed, 14 papers adopt
deep learning methods). KDD99 and NSL-KDD datasets are still widespread used. Although machine
learning methods have made great strides in the field of intrusion detection, the following challenges
still exist.

Appl. Sci. 2019, 9, 4396 21 of 28

Table 5. Methods and papers on machine learning based IDSs.

Methods Papers Data Sources Machine Learning Algorithms Datasets

Packet parsing Mayhew et al. [40] Packet SVM and K-means Private dataset
Hu et al. [41] Packet Fuzzy C-means DARPA 2000

Payload analysis

Min et al. [43] Packet CNN ISCX 2012
Zeng et al. [44] Packet CNN, LSTM, and autoencoder ISCX 2012

Yu et al. [45] Packet Autoencoder CTU-UNB
Rigak et al. [46] Packet GAN Private dataset

Statistic feature for flow
Goeschel et al. [47] Flow SVM, decision tree, and Naïve Bayes KDD99

Kuttranont et al. [48] Flow KNN KDD99
Peng et al. [13] Flow K-means KDD99

Deep learning for flow
Potluri et al. [49] Flow CNN NSL-KDD and UNSW-NB15
Zhang et al. [50] Flow Autoencoder and XGBoost NSL-KDD
Zhang et al. [51] Flow GAN KDD99

Traffic grouping Teng et al. [52] Flow SVM KDD99
Ma et al. [53] Flow DNN KDD99 and NSL-KDD

Statistic feature for session Ahmim et al. [54] Session Decision tree CICIDS 2017
Alseiari et al. [55] Session K-means Private dataset

Sequence feature for session
Yuan et al. [56] Session CNN and LSTM ISCX 2012

Radford et al. [57] Session LSTM ISCX IDS
Wang et al. [58] Session CNN DARPA 1998 and ISCX 2012

Rule-based Meng et al. [59] Log KNN Private dataset
McElwee et al. [60] Log DNN Private dataset

Log feature extraction with
sliding window

Tran et al. [61] Log CNN NGIDS-DS and ADFA-LD
Tuor et al. [62] Log DNN and RNN CERT Insider Threat

Bohara et al. [63] Log K-means and DBSCAN VAST 2011 Mini Challenge 2

Text analysis Uwagbole et al. [64] Log SVM Private dataset
Vartouni et al. [65] Log Isolate forest CSIC 2010 dataset

Appl. Sci. 2019, 9, 4396 22 of 28

(1) Lack of available datasets. The most widespread dataset is currently KDD99, which has many
problems, and new datasets are required. However, constructing new datasets depends on expert
knowledge, and the labor cost is high. In addition, the variability of the Internet environment intensifies
the dataset shortage. New types of attacks are emerging, and some existing datasets are too old to
reflect these new attacks. Ideally, datasets should include most of the common attacks and correspond
to current network environments. Moreover, the available datasets should be representative, balanced
and have less redundancy and less noise. Systematic datasets construction and incremental learning
may be solutions to this problem.

(2) Inferior detection accuracy in actual environments. Machine learning methods have a certain
ability to detect intrusions, but they often do not perform well on completely unfamiliar data. Most the
existing studies were conducted using labeled datasets. Consequently, when the dataset does not cover
all typical real-world samples, good performance in actual environments is not guaranteed—even if
the models achieve high accuracy on test sets.

(3) Low efficiency. Most studies emphasize the detection results; therefore, they usually employ
complicated models and extensive data preprocessing methods, leading to low efficiency. However,
to reduce harm as much as possible, IDSs need to detect attacks in real time. Thus, a trade-off exists
between effect and efficiency. Parallel computing [66,67] approaches using GPUs [48,68,69] are common
solutions.

From summarizing the recent studies, we can conclude that the major trends of IDS research lie in
the following aspects.

(1) Utilizing domain knowledge. Combining domain knowledge with machine learning can
improve the detection effect, especially when the goal is to recognize specific types of attacks in specific
application scenarios.

• The rule-based detection methods have low false alarm rates but high missed alarm rates include
considerable expert knowledge. In contrast, the machine learning methods usually have high
false alarm rates and low missed alarm rates. The advantages of both methods are complementary.
Combining machine learning methods with rule-based systems, such as Snort [70–73], can result
in IDSs with low false alarm rates and low missed alarm rates.

• For specific types of attacks, such as DOS [74–79], botnet [80], and phishing web [81], proper
feature must be extracted according to the attack characteristics that can be abstracted using
domain knowledge.

• For specific application scenarios, such as cloud computing [82,83], IoT [84–86], and smart
grids [87,88], domain knowledge can be used to provide the environmental characteristics that
are helpful in data collection and data preprocessing.

(2) Improving machine learning algorithms. Improvements in machine learning algorithms
are the main means to enhance the detection effect. Thus, studies involving deep learning and
unsupervised learning methods has an increasing trend.

• Compared with shallow models, deep learning methods learn features directly from raw data,
and their fitting ability is stronger. Deep learning models with deep structures can be used for
classification, feature extraction, feature reduction, data denoising, and data augmentation tasks.
Thus, deep learning methods can improve IDSs from many aspects.

• Unsupervised learning methods require no labeled data; thus they can be used even when
a dataset shortage exists. The usual approach involves dividing data using an unsupervised
learning model, manually labeling the clusters, and then training a classification model with
supervised learning [89–92].

(3) Developing practical models. Practical IDSs not only need to have high detection accuracy
but also high runtime efficiency and interpretability.

Appl. Sci. 2019, 9, 4396 23 of 28

• In attack detection, the real-time requirement is essential. Thus, one research direction is to
improve the efficiency of machine learning models. Reducing the time required for data collection
and storage is also of concern.

• Interpretability is important for practical IDSs. Many machine learning models, especially deep
learning models, are black boxes. These models report only the detection results and have no
interpretable basis [93]. However, every cyber security decision should be made cautiously.
An output result with no identifiable reason is not convincing. Thus, an IDS with high accuracy,
high efficiency and interpretability is more practical.

6. Conclusions

The paper first proposes an IDS taxonomy that takes data sources as the main thread to present
the numerous machine learning algorithms used in this field. Based on this taxonomy, we then analyze
and discuss IDSs applied to various data sources, i.e., logs, packets, flow, and sessions. IDSs aim
to detect attacks, therefore it is vital to select proper data source according to attack characteristics.
Logs contain detailed semantic information, which are suitable for detecting SQL injection, U2R, and
R2L attacks. And packets provide communication contents, which are fit to detect U2L and R2L
attacks. Flow represents the whole network environment, which can detect DOS and Probe attack.
Sessions, which reflect communication between clients and servers, can be used to detect U2L, R2L,
tunnel and Trojan attacks. For IDSs using these different data types, the paper emphasizes machine
learning techniques (especially deep learning algorithms) and application scenarios.

Deep learning models are playing an increasingly important role and have become an outstanding
direction of study. Deep learning approaches include multiple deep networks which can be used to
improve the performance of IDSs. Compared with shallow machine learning models, deep learning
models own stronger fitting and generalization abilities. In addition, deep learning approaches are
independent of feature engineering and domain knowledge, which takes an outstanding advantage
over shallow machine learning models. However, the running time of deep learning models are often
too long to meet the real-time requirement of IDSs.

By summarizing the recent typical studies, this paper analyzes and refines the challenges and
future trends in the field to provide references to other researchers conducting in-depth studies. Lacking
of available datasets may be the biggest challenge. So unsupervised learning and incremental learning
approaches have broad development prospects. For practical IDSs, interpretability is essential. Because
interpretable models are convincing and can guide users to make a decision. The interpretability of
models may become an important research direction about IDSs in the future.

Author Contributions: Writing—original draft preparation, H.L.; writing—review and editing, H.L.; writing—
review and editing, B.L.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Anderson, J.P. Computer Security Threat Monitoring and Surveillance; Technical Report; James P. Anderson
Company: Philadelphia, PA , USA, 1980.

2. Michie, D.; Spiegelhalter, D.J.; Taylor, C. Machine Learning, Neurall and Statistical Classification; Ellis Horwood
Series in Artificial Intelligence: New York, NY, USA, 1994; Volume 13.

3. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion
detection. IEEE Commun. Surv. Tutor. 2015, 18, 1153–1176. [CrossRef]

4. Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Gao, M.; Hou, H.; Wang, C. Machine learning and deep
learning methods for cybersecurity. IEEE Access 2018, 6, 35365–35381. [CrossRef]

5. Agrawal, S.; Agrawal, J. Survey on anomaly detection using data mining techniques. Procedia Comput. Sci.
2015, 60, 708–713. [CrossRef]

6. Denning, D.E. An intrusion-detection model. IEEE Trans. Softw. Eng. 1987, 222–232. [CrossRef]

http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1109/ACCESS.2018.2836950
http://dx.doi.org/10.1016/j.procs.2015.08.220
http://dx.doi.org/10.1109/TSE.1987.232894

Appl. Sci. 2019, 9, 4396 24 of 28

7. Heberlein, L.T.; Dias, G.V.; Levitt, K.N.; Mukherjee, B.; Wood, J.; Wolber, D. A network security monitor.
In Proceedings of the 1990 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland,
CA, USA, 7–9 May 1990; pp. 296–304.

8. Kuang, F.; Zhang, S.; Jin, Z.; Xu, W. A novel SVM by combining kernel principal component analysis and
improved chaotic particle swarm optimization for intrusion detection. Soft Comput. 2015, 19, 1187–1199.
[CrossRef]

9. Syarif, A.R.; Gata, W. Intrusion detection system using hybrid binary PSO and K-nearest neighborhood
algorithm. In Proceedings of the 2017 11th International Conference on Information & Communication
Technology and System (ICTS), Surabaya, Indonesia, 31 October 2017; pp. 181–186.

10. Pajouh, H.H.; Dastghaibyfard, G.; Hashemi, S. Two-tier network anomaly detection model: A machine
learning approach. J. Intell. Inf. Syst. 2017, 48, 61–74. [CrossRef]

11. Mahmood, H.A. Network Intrusion Detection System (NIDS) in Cloud Environment based on Hidden
Naïve Bayes Multiclass Classifier. Al-Mustansiriyah J. Sci. 2018, 28, 134–142. [CrossRef]

12. Shah, R.; Qian, Y.; Kumar, D.; Ali, M.; Alvi, M. Network intrusion detection through discriminative feature
selection by using sparse logistic regression. Future Internet 2017, 9, 81. [CrossRef]

13. Peng, K.; Leung, V.C.; Huang, Q. Clustering approach based on mini batch kmeans for intrusion detection
system over big data. IEEE Access 2018, 6, 11897–11906. [CrossRef]

14. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki,
Finland, 5–9 July 2008, pp. 1096–1103.

15. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010,
11, 3371–3408.

16. Deng, J.; Zhang, Z.; Marchi, E.; Schuller, B. Sparse autoencoder-based feature transfer learning for speech
emotion recognition. In Proceedings of the 2013 Humaine Association Conference on Affective Computing
and Intelligent Interaction, Geneva, Switzerland, 2–5 September 2013; pp. 511–516.

17. Hinton, G.E. A practical guide to training restricted Boltzmann machines. In Neural Networks: Tricks of the
Trade; Springer: Berlin, Germany, 2012; pp. 599–619.

18. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006,
18, 1527–1554. [CrossRef] [PubMed]

19. Boureau, Y.l.; Cun, Y.L.; Ranzato, M.A. Sparse feature learning for deep belief networks. In Proceedings
of the 21st Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–10
December 2008; pp. 1185–1192.

20. Zhao, G.; Zhang, C.; Zheng, L. Intrusion detection using deep belief network and probabilistic neural
network. In Proceedings of the 2017 IEEE International Conference on Computational Science and
Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC),
Guangzhou, China, 21–24 July 2017; Volume 1, pp. 639–642.

21. Alrawashdeh, K.; Purdy, C. Toward an online anomaly intrusion detection system based on deep learning.
In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications
(ICMLA), Anaheim, CA, USA, 18–20 December 2016; pp. 195–200.

22. Yang, Y.; Zheng, K.; Wu, C.; Niu, X.; Yang, Y. Building an effective intrusion detection system using the
modified density peak clustering algorithm and deep belief networks. Appl. Sci. 2019, 9, 238. [CrossRef]

23. Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: An astounding
baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 806–813.

24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV,
USA, 3–6 December 2012; pp. 1097–1105. [CrossRef]

25. Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face recognition: A convolutional neural-network approach.
IEEE Trans. Neural Netw. 1997, 8, 98–113. [CrossRef]

26. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks.
In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
Vancouver, BC, Canada , 26–31 May 2013; pp. 6645–6649.

http://dx.doi.org/10.1007/s00500-014-1332-7
http://dx.doi.org/10.1007/s10844-015-0388-x
http://dx.doi.org/10.23851/mjs.v28i2.508
http://dx.doi.org/10.3390/fi9040081
http://dx.doi.org/10.1109/ACCESS.2018.2810267
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://dx.doi.org/10.3390/app9020238
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/72.554195

Appl. Sci. 2019, 9, 4396 25 of 28

27. Graves, A.; Jaitly, N. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings
of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1764–1772.

28. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the
Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December
2014; pp. 3104–3112.

29. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
30. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on

sequence modeling. arXiv 2014, arXiv:1412.3555.
31. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45,

2673–2681. [CrossRef]
32. Ribeiro, M.T.; Singh, S.; Guestrin, C. Why should i trust you?: Explaining the predictions of any classifier.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144.

33. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Annual
Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017;
pp. 4765–4774.

34. Li, J.; Monroe, W.; Jurafsky, D. Understanding neural networks through representation erasure. arXiv 2016,
arXiv:1612.08220.

35. Fong, R.C.; Vedaldi, A. Interpretable explanations of black boxes by meaningful perturbation. In Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3429–3437.

36. DARPA1998 Dataset. 1998. Available online: http://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-
detection-evaluation-dataset (accessed on 16 October 2019).

37. KDD99 Dataset. 1999. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
(accessed on 16 October 2019).

38. NSL-KDD99 Dataset. 2009. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 16
October 2019).

39. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In Proceedings of the 2015 Military Communications And Information
Systems Conference (MilCIS), Canberra, Australia, 10–12 November 2015; pp. 1–6.

40. Mayhew, M.; Atighetchi, M.; Adler, A.; Greenstadt, R. Use of machine learning in big data analytics
for insider threat detection. In Proceedings of the MILCOM 2015-2015 IEEE Military Communications
Conference, Canberra, Australia, 10–12 November 2015; pp. 915–922.

41. Hu, L.; Li, T.; Xie, N.; Hu, J. False positive elimination in intrusion detection based on clustering.
In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 519–523.

42. Liu, H.; Lang, B.; Liu, M.; Yan, H. CNN and RNN based payload classification methods for attack detection.
Knowl.-Based Syst. 2019, 163, 332–341. [CrossRef]

43. Min, E.; Long, J.; Liu, Q.; Cui, J.; Chen, W. TR-IDS: Anomaly-based intrusion detection through
text-convolutional neural network and random forest. Secur. Commun. Netw. 2018, 2018, 4943509. [CrossRef]

44. Zeng, Y.; Gu, H.; Wei, W.; Guo, Y. Deep− Full − Range: A Deep Learning Based Network Encrypted Traffic
Classification and Intrusion Detection Framework. IEEE Access 2019, 7, 45182–45190. [CrossRef]

45. Yu, Y.; Long, J.; Cai, Z. Network intrusion detection through stacking dilated convolutional autoencoders.
Secur. Commun. Netw. 2017, 2017, 4184196. [CrossRef]

46. Rigaki, M.; Garcia, S. Bringing a gan to a knife-fight: Adapting malware communication to avoid detection.
In Proceedings of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May
2018; pp. 70–75.

47. Goeschel, K. Reducing false positives in intrusion detection systems using data-mining techniques utilizing
support vector machines, decision trees, and naive Bayes for off-line analysis. In Proceedings of the
SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016; pp. 1–6.

48. Kuttranont, P.; Boonprakob, K.; Phaudphut, C.; Permpol, S.; Aimtongkhamand, P.; KoKaew, U.; Waikham, B.;
So-In, C. Parallel KNN and Neighborhood Classification Implementations on GPU for Network Intrusion
Detection. J. Telecommun. Electron. Comput. Eng. (JTEC) 2017, 9, 29–33.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/78.650093
http://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
http://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
http://dx.doi.org/10.1016/j.knosys.2018.08.036
http://dx.doi.org/10.1155/2018/4943509
http://dx.doi.org/10.1109/ACCESS.2019.2908225
http://dx.doi.org/10.1155/2017/4184196

Appl. Sci. 2019, 9, 4396 26 of 28

49. Potluri, S.; Ahmed, S.; Diedrich, C. Convolutional Neural Networks for Multi-class Intrusion Detection
System. In Mining Intelligence and Knowledge Exploration; Springer: Cham, Switzerland, 2018; pp. 225–238.

50. Zhang, B.; Yu, Y.; Li, J. Network Intrusion Detection Based on Stacked Sparse Autoencoder and Binary
Tree Ensemble Method. In Proceedings of the 2018 IEEE International Conference on Communications
Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

51. Zhang, H.; Yu, X.; Ren, P.; Luo, C.; Min, G. Deep Adversarial Learning in Intrusion Detection: A Data
Augmentation Enhanced Framework. arXiv 2019, arXiv:1901.07949.

52. Teng, S.; Wu, N.; Zhu, H.; Teng, L.; Zhang, W. SVM-DT-based adaptive and collaborative intrusion detection.
IEEE/CAA J. Autom. Sin. 2017, 5, 108–118. [CrossRef]

53. Ma, T.; Wang, F.; Cheng, J.; Yu, Y.; Chen, X. A hybrid spectral clustering and deep neural network ensemble
algorithm for intrusion detection in sensor networks. Sensors 2016, 16, 1701. [CrossRef]

54. Ahmim, A.; Maglaras, L.; Ferrag, M.A.; Derdour, M.; Janicke, H. A novel hierarchical intrusion detection
system based on decision tree and rules-based models. In Proceedings of the 2019 15th International
Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 29–31 May
2019; pp. 228–233.

55. Alseiari, F.A.A.; Aung, Z. Real-time anomaly-based distributed intrusion detection systems for advanced
Metering Infrastructure utilizing stream data mining. In Proceedings of the 2015 International Conference on
Smart Grid and Clean Energy Technologies (ICSGCE), Offenburg, Germany, 20–23 October 2015; pp. 148–153.

56. Yuan, X.; Li, C.; Li, X. DeepDefense: identifying DDoS attack via deep learning. In Proceedings of the 2017
IEEE International Conference on Smart Computing (SMARTCOMP), Hong Kong, China, 29–31 May 2017;
pp. 1–8.

57. Radford, B.J.; Apolonio, L.M.; Trias, A.J.; Simpson, J.A. Network traffic anomaly detection using recurrent
neural networks. arXiv 2018, arXiv:1803.10769.

58. Wang, W.; Sheng, Y.; Wang, J.; Zeng, X.; Ye, X.; Huang, Y.; Zhu, M. HAST-IDS: Learning hierarchical
spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 2017,
6, 1792–1806. [CrossRef]

59. Meng, W.; Li, W.; Kwok, L.F. Design of intelligent KNN-based alarm filter using knowledge-based alert
verification in intrusion detection. Secur. Commun. Netw. 2015, 8, 3883–3895. [CrossRef]

60. McElwee, S.; Heaton, J.; Fraley, J.; Cannady, J. Deep learning for prioritizing and responding to intrusion
detection alerts. In Proceedings of the MILCOM 2017—2017 IEEE Military Communications Conference
(MILCOM), Baltimore, MD, USA, 23–25 October 2017; pp. 1–5.

61. Tran, N.N.; Sarker, R.; Hu, J. An Approach for Host-Based Intrusion Detection System Design Using
Convolutional Neural Network. In Proceedings of the International Conference on Mobile Networks and
Management, Chiba, Japan, 23–25 September 2017; Springer: Berlin, Germany, 2017; pp. 116–126.

62. Tuor, A.; Kaplan, S.; Hutchinson, B.; Nichols, N.; Robinson, S. Deep learning for unsupervised insider threat
detection in structured cybersecurity data streams. In Proceedings of the Workshops at the Thirty-First
AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

63. Bohara, A.; Thakore, U.; Sanders, W.H. Intrusion detection in enterprise systems by combining and clustering
diverse monitor data. In Proceedings of the Symposium and Bootcamp on the Science of Security, Pittsburgh,
PA, USA, 19–21 April 2016; pp. 7–16.

64. Uwagbole, S.O.; Buchanan, W.J.; Fan, L. Applied machine learning predictive analytics to SQL injection
attack detection and prevention. In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), Lisbon, Portugal, 8–12 May 2017; pp. 1087–1090.

65. Vartouni, A.M.; Kashi, S.S.; Teshnehlab, M. An anomaly detection method to detect web attacks using
Stacked Auto-Encoder. In Proceedings of the 2018 6th Iranian Joint Congress on Fuzzy and Intelligent
Systems (CFIS), Kerman, Iran, 28 February–2 March 2018; pp. 131–134.

66. Potluri, S.; Diedrich, C. Accelerated deep neural networks for enhanced Intrusion Detection System.
In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–8.

67. Pektaş, A.; Acarman, T. Deep learning to detect botnet via network flow summaries. Neural Comput. Appl.
2018, 1–13. [CrossRef]

http://dx.doi.org/10.1109/JAS.2017.7510730
http://dx.doi.org/10.3390/s16101701
http://dx.doi.org/10.1109/ACCESS.2017.2780250
http://dx.doi.org/10.1002/sec.1307
http://dx.doi.org/10.1007/s00521-018-3595-x

Appl. Sci. 2019, 9, 4396 27 of 28

68. Kim, J.; Shin, N.; Jo, S.Y.; Kim, S.H. Method of intrusion detection using deep neural network. In Proceedings
of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea,
13–16 February 2017; pp. 313–316.

69. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection.
IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 41–50. [CrossRef]

70. Ammar, A. A decision tree classifier for intrusion detection priority tagging. J. Comput. Commun. 2015, 3, 52.
[CrossRef]

71. Patel, J.; Panchal, K. Effective intrusion detection system using data mining technique. J. Emerg. Technol.
Innov. Res. 2015, 2, 1869–1878.

72. Khamphakdee, N.; Benjamas, N.; Saiyod, S. Improving intrusion detection system based on snort rules for
network probe attacks detection with association rules technique of data mining. J. ICT Res. Appl. 2015,
8, 234–250. [CrossRef]

73. Shah, S.A.R.; Issac, B. Performance comparison of intrusion detection systems and application of machine
learning to Snort system. Future Gener. Comput. Syst. 2018, 80, 157–170. [CrossRef]

74. Fouladi, R.F.; Kayatas, C.E.; Anarim, E. Frequency based DDoS attack detection approach using naive Bayes
classification. In Proceedings of the 2016 39th International Conference on Telecommunications and Signal
Processing (TSP), Vienna, Austria, 27–29 June 2016; pp. 104–107.

75. Alkasassbeh, M.; Al-Naymat, G.; Hassanat, A.; Almseidin, M. Detecting distributed denial of service attacks
using data mining techniques. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 436–445. [CrossRef]

76. Niyaz, Q.; Sun, W.; Javaid, A.Y. A deep learning based DDoS detection system in software-defined
networking (SDN). arXiv 2016, arXiv:1611.07400.

77. Yadav, S.; Subramanian, S. Detection of Application Layer DDoS attack by feature learning using Stacked
AutoEncoder. In Proceedings of the 2016 International Conference on Computational Techniques in
Information and Communication Technologies (ICCTICT), New Delhi, India, 11–13 March 2016; pp. 361–366.

78. Nguyen, S.N.; Nguyen, V.Q.; Choi, J.; Kim, K. Design and implementation of intrusion detection system
using convolutional neural network for dos detection. In Proceedings of the 2nd International Conference
on Machine Learning and Soft Computing, Phu Quoc Island, Vietnam, 2–4 February 2018; pp. 34–38.

79. Bontemps, L.; McDermott, J.; Le-Khac, N.A. Collective anomaly detection based on long short-term memory
recurrent neural networks. In Proceedings of the International Conference on Future Data and Security
Engineering, Tho City, Vietnam, 23–25 November 2016; Springer: Cham, Switzerland, 2016; pp. 141–152.

80. Bapat, R.; Mandya, A.; Liu, X.; Abraham, B.; Brown, D.E.; Kang, H.; Veeraraghavan, M. Identifying malicious
botnet traffic using logistic regression. In Proceedings of the 2018 Systems and Information Engineering
Design Symposium (SIEDS), Charlottesville, VA, USA, 27 April 2018; pp. 266–271.

81. Abdelhamid, N.; Thabtah, F.; Abdel-jaber, H. Phishing detection: A recent intelligent machine learning
comparison based on models content and features. In Proceedings of the 2017 IEEE International Conference
on Intelligence and Security Informatics (ISI), Beijing, China, 22–24 July 2017; pp. 72–77.

82. Peng, K.; Leung, V.; Zheng, L.; Wang, S.; Huang, C.; Lin, T. Intrusion detection system based on decision tree
over big data in fog environment. Wirel. Commun. Mob. Comput. 2018, 2018, 4680867. [CrossRef]

83. He, Z.; Zhang, T.; Lee, R.B. Machine learning based DDoS attack detection from source side in cloud.
In Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing
(CSCloud), New York, NY, USA , 26–28 June 2017; pp. 114–120.

84. Doshi, R.; Apthorpe, N.; Feamster, N. Machine learning ddos detection for consumer internet of things
devices. In Proceedings of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA,
24 May 2018; pp. 29–35.

85. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-BaIoT—
Network-based detection of IoT botnet attacks using deep autoencoders. IEEE Pervasive Comput. 2018,
17, 12–22. [CrossRef]

86. Diro, A.; Chilamkurti, N. Leveraging LSTM networks for attack detection in fog-to-things communications.
IEEE Commun. Mag. 2018, 56, 124–130. [CrossRef]

87. Foroutan, S.A.; Salmasi, F.R. Detection of false data injection attacks against state estimation in smart
grids based on a mixture Gaussian distribution learning method. IET Cyber-Phys. Syst. Theory Appl. 2017,
2, 161–171. [CrossRef]

http://dx.doi.org/10.1109/TETCI.2017.2772792
http://dx.doi.org/10.4236/jcc.2015.34006
http://dx.doi.org/10.5614/itbj.ict.res.appl.2015.8.3.4
http://dx.doi.org/10.1016/j.future.2017.10.016
http://dx.doi.org/10.14569/IJACSA.2016.070159
http://dx.doi.org/10.1155/2018/4680867
http://dx.doi.org/10.1109/MPRV.2018.03367731
http://dx.doi.org/10.1109/MCOM.2018.1701270
http://dx.doi.org/10.1049/iet-cps.2017.0013

Appl. Sci. 2019, 9, 4396 28 of 28

88. He, Y.; Mendis, G.J.; Wei, J. Real-time detection of false data injection attacks in smart grid: A deep
learning-based intelligent mechanism. IEEE Trans. Smart Grid 2017, 8, 2505–2516. [CrossRef]

89. Jing, X.; Bi, Y.; Deng, H. An Innovative Two-Stage Fuzzy kNN-DST Classifier for Unknown Intrusion
Detection. Int. Arab. J. Inf. Technol. (IAJIT) 2016, 13, 359–366.

90. Farnaaz, N.; Jabbar, M. Random forest modeling for network intrusion detection system. Procedia Comput. Sci.
2016, 89, 213–217. [CrossRef]

91. Ravale, U.; Marathe, N.; Padiya, P. Feature selection based hybrid anomaly intrusion detection system using
K means and RBF kernel function. Procedia Comput. Sci. 2015, 45, 428–435. [CrossRef]

92. Jabbar, M.; Aluvalu, R.; Reddy, S. Cluster based ensemble classification for intrusion detection system.
In Proceedings of the 9th International Conference on Machine Learning and Computing, Singapore,
24–26 February 2017; pp. 253–257.

93. Guo, W.; Mu, D.; Xu, J.; Su, P.; Wang, G.; Xing, X. Lemna: Explaining deep learning based security
applications. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, ON, Canada, 15 October 2018; pp. 364–379.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSG.2017.2703842
http://dx.doi.org/10.1016/j.procs.2016.06.047
http://dx.doi.org/10.1016/j.procs.2015.03.174
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Concept and Taxonomy of IDS
	Classification by Detection Methods
	Classification by Source of Data

	Common Machine Learning Algorithms in IDS
	Machine Learning Models
	Shallow Models
	Deep Learning Models
	Shallow Models Compared to Deep Models

	Metrics
	Benchmark Datasets in IDS

	Research on Machine Learning-Based IDSs
	Packet-Based Attack Detection
	Packet Parsing-Based Detection
	Payload Analysis-Based Detection

	Flow-Based Attack Detection
	Feature Engineering-Based Detection
	Deep Learning-Based Detection
	Traffic Grouping-Based Detection

	Session-Based Attack Detection
	Statistic-Based Feature Detection Methods
	Sequence Feature-Based Detection

	Log-Based Attack Detection
	Rule and Machine Learning-Based Hybrid Methods
	Log Feature Extraction-Based Detection
	Text Analysis-Based Detection

	Challenges and Future Directions
	Conclusions
	References

