
applied  
sciences

Article

Development of Detection System with Low
Predictive Errors for Determining Vitamin C
Content of Indian Jujube

Shih-Hao Hua, Hsun-Ching Hsu and Pin Han *

Graduate Institute of Precision Engineering, National Chung Hsing University, No.145, Xingda Rd., South Dist.,
Taichung 402, Taiwan; hua940117@gmail.com (S.-H.H.); bourne@nchu.edu.tw (H.-C.H.)
* Correspondence: pin.nchu.ipe@gmail.com; Tel.: +886-4-2285-0405

Received: 31 October 2019; Accepted: 2 December 2019; Published: 6 December 2019
����������
�������

Abstract: Herein, we developed a nondestructive detection system with low prediction errors for
determining the vitamin C content in Indian jujube. This system comprises a Ge photodetector,
a halogen lamp and five near-infrared (NIR) bandpass filters. The detection of vitamin C is enabled
by the absorption of its OH and CH2 bonds in the NIR region. The light beams of our system were
parallel-polarized and designed to be incident on the fruit at the Brewster angle (θB), which reduces
reflectance noise from the fruit’s skin and enhances the OH and CH2 absorption signals of the fruit’s
flesh. After the reflectance signal was analyzed by the partial least squares (PLS) algorithm to obtain
the predicted vitamin C content of each fruit, the coefficient of prediction (r2

p) and root-mean-square
error of prediction (RMSEP) were calculated. When wavelengths of 1200, 1400, 1450, 1500 and 1550 nm
were used for probing, r2

p and RMSEP of the system detecting vitamin C were 0.84 and 1.65 mg/100 g,
respectively. In summary, the vitamin C content of Indian jujube was predicted using a low-cost NIR
detection system having a high r2

p and low RMSEP; further, it comprises five parallel-polarized NIR
beams and the PLS algorithm.
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1. Introduction

Indian jujube is a typical high value crop in Asia; it is rich in vitamin C, an essential trace element
that serves as an antioxidant and neutralizes free radicals in the human body [1]. Hence, Indian
jujube is a popular fruit. However, the vitamin C content of Indian jujube can vary significantly,
which may affect consumer purchase intentions significantly. Currently, the determination of a fruit’s
vitamin C content typically requires destructive methods, for example, high-performance liquid
chromatography (HPLC) analysis, where the fruit is sliced, squeezed and filtered to produce an extract
for HPLC analysis [2]. This method is highly time consuming and the damaged fruits cannot be sold.
In current state-of-the-art nondestructive measurement systems, fruits are graded using spectroscopic
systems and large conveyor belts. However, these systems are large and expensive [3]. In portable
nondestructive measurement systems, light from a halogen lamp is channeled through optical fibers to
generate a reflectance spectrum of the fruit’s skin. The resulting spectrum is then analyzed to predict
the fruit quality. However, these testing systems are costly owing to their built-in spectrometers [4],
which has hindered the spread of their use in fruit collection centers and consumer applications.

Research has shown that the vitamin C (or ascorbic acid) content of a fruit is strongly correlated
with the second overtone absorptions of OH and CH2 vibrations (1000–1650 nm) [5–8]. Furthermore,
most of the existing nondestructive techniques (NDTs) for vitamin C determination rely on spectroscopy
and algorithmic models to predict fruit quality.
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The most typically used algorithms in NDTs are multiple linear regression (MLR) and partial least
squares (PLS) regression and the calculations are performed by substituting the energy absorbed by
the fruits’ flesh (which is derived from the intensity of the reflected light waves) into these algorithms.
In MLR, the intensities of a few specified wavelengths are linearly combined to predict some variables.
However, in spectroscopic analysis, the presence of multicollinearity between the variables will
negatively affect the MLR performance [9,10]. Jaiswal et al. [11] indicated that the calibrated and
predicted results of the MLR model can differ significantly, which indicates that MLR predictions are
not reliable. PLS extracts the orthogonal factors with the maximum predictive power, which may then
be used to predict the variable. Many previous studies have employed PLS models to predict vitamin
C content. For example, Yang et al. [12] used a PLS model to determine vitamin C content based on
Fourier transform near-infrared (FT-NIR) and FT-Raman spectra. Liao [13] used PLS regression to
construct a model for quantifying the vitamin C content of navel oranges via NIR diffuse reflectance
spectroscopy. In addition, Qing et al. [14] and Zude et al. [15] used PLS models to calculate fruit soluble
solid content (SSC) and fruit flesh firmness. Based on the results of these studies, we decided to use the
PLS algorithm to analyze our spectroscopic data.

According to the current market needs, a high accuracy, low prediction error and low-cost
nondestructive detection system has great potential. The novelty of this study lies in the construction
of a parallel-polarized NIR nonconstructive detection system for determining the vitamin C content
in Indian jujube. In this study, the OH and CH2 bonds absorb the parallel-polarized waves
substantially [16] and light sources reduce the reflectance of fruit skin and increase detection accuracy
at the Brewster’s angle (θB) of incidence [17].

In the present study, the light sources were constructed by using five NIR parallel-polarized
wavelength combinations and a Ge photodetector, which greatly reduced the production cost of
equipment. Therefore, the optoelectronic detection system achieves high accuracy, a low prediction
error and low production cost.

2. Materials and Methods

2.1. Indian Jujube Samples

In this study, parallel-polarized NIR light was used to determine the vitamin C content of Indian
jujube in a nondestructive manner. A total of 180 fruits were purchased for this study and the number
of Indian jujube samples used in this study was based on the number of samples used by Qing et al. [14]
and Magwaza et al. [18] (120 samples). All of the samples were purchased in February 2019 from
a retail market in Taichung, Taiwan. The samples of the calibration and prediction sets were both
stored in an air-conditioned environment (the laboratory) for a day to ensure that the test conditions of
both sets were identical. The temperature in this environment varied between 20 ◦C and 23 ◦C and the
samples were stored away from strong light. The number of Indian jujube samples in each set and
their vitamin C contents are shown in Table 1.

Table 1. Statistics of the weight and vitamin C of Indian jujube.

Calibration Set (120 Samples) Prediction Set (60 Samples)

Min Max Mean S.D. Min Max Mean S.D.

Weight (g) 120 167 145 5.8 116 155 140 6.5
Vitamin C (mg/100 g) 45 60 53 2.5 45 60 52 2.3

S.D.: Standard Deviation.

2.2. Experimental Procedures

This study comprises three experimental procedures, as shown in Figure 1. First, we selected
wavelengths in NIR range that correspond to the second overtone absorptions of OH and CH2 groups
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in vitamin C (1000–1650 nm) as probing light sources. The probing light sources were constructed
using a parallel-polarized halogen light source and NIR bandpass filters. The central wavelength
of the bandpass filters were varied in 50 nm intervals, which allowed us to determine the optimal
combination of wavelengths for vitamin C determination.
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Figure 1. The experimental procedures of this study.

In the second step, a predictive model for the nondestructive measurement of vitamin C in Indian
jujube was constructed. The optimal wavelengths provided in Step 1 were parallel-polarized and
designed to be incident at the Brewster angle (i.e., θi = θB) on the 120 Indian jujube samples of the
calibration set. HPLC analysis was then performed to determine the vitamin C contents of these
samples, while the PLS algorithm was used to relate the reflectance of the fruits’ flesh with their vitamin
C contents to construct a predictive model for the vitamin C contents of Indian jujube fruits in the
calibration set.

In the third step, the predictive model that was created using the calibration set was used to
perform nondestructive vitamin C measurements on fruits in the prediction set. The reflectances of the
60 Indian jujube samples in the prediction set were substituted in the aforementioned predictive model
to predict the vitamin C value of each Indian jujube fruit. Destructive vitamin C measurements (HPLC
analysis) were then performed to obtain the actual vitamin C values of the fruits in the prediction set.
The coefficient of prediction (r2

p) and root-mean-square error of prediction (RMSEP) of the predicted
values were then calculated.

2.3. Structure of the Nondestructive Detection System

The block diagram of our parallel-polarized light-based nondestructive measurement system
is shown in Figure 2a. Our system comprises a halogen lamp, a parallel polarizer, several NIR
bandpass filters, an NIR photodetector and a signal processing module. The signal processing module
is connected to the stepper motor that rotates the NIR bandpass filters and the NIR photodetector
and it controls the switching of the various bandpass filters and light source. A lens and polarizer
were installed at the light source to parallel-polarize the light source. The p-wave is then filtered by
one of the several NIR bandpass filters to emit NIR light of a certain wavelength band onto the flesh
of the Indian jujube fruit. The NIR photodetector will collect the light reflected by the flesh of the
Indian jujube fruit and convert it into an electrical voltage signal. This signal will be digitalized by the
signal processing module and then transmitted to an external computer via a communication interface.
Finally, the computer will calculate the r2

p and RMSEP of the detection system with respect to the
vitamin C content of the Indian jujube fruits.

Figure 2b shows the structural diagram of our system. The halogen lamp, polarizer, bandpass
filters, photodetector and signal processing module are all integrated inside a single housing and the
top of the housing contains an opening where the Indian jujube sample is to be placed for vitamin
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C measurements. The light source and photodetector were both housed inside a sealed chamber
(indicated by dotted lines in Figure 2a. The housing was designed such that the light source and
photodetector are both oriented towards the center of the housing’s opening, with the angle between the
light source and sample normal being the Brewster angle (θB). Figure 2b shows the paths of the p-waves.
The light source and photodetector are located on the same measurement plane; further, the p-waves
will pass through air (Medium 1) before entering the flesh of the Indian jujube fruit (Medium 2) with
its polarization parallel to the plane of incidence. Therefore, due to the above-mentioned reasons,
the penetration of p-waves into the fruit’s flesh will be maximized if the angle of incidence of the light
source θi is θB. Furthermore, having θi = θB minimizes the interference caused by reflections from the
fruit’s skin.
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2.3.1. Light Source, LENS and Polarizer

A 20-watt Osram halogen lamp was used as the light source and a lens (Thorlabs S-LAH64,
AL1512, 500–2000 nm) was set up in front of the light source to focus its light rays. The light
was then passed through an Edmund IR polarizer (#47-327, 650–1700 nm) and the polarized light
beams were then passed through an NIR bandpass filter to obtain a narrow band of NIR light in the
subsequent experiments.

2.3.2. NIR Bandpass Filter

The NIR bandpass filters were selected according to the range of wavelengths that correspond to
the second overtone absorptions of OH and CH2 groups in vitamin C (1000–1650 nm) to create several
narrow bands of wavelengths to probe the optical characteristics of the Indian jujube fruit flesh, using
an NIR photodetector. The specifications of each NIR bandpass filter are shown in Table 2.

Table 2. Specifications of the near infrared (NIR) bandpass filters.

Item Wavelength (nm) Part No. Full Width at Half Maximum Manufacturer

1 1050 FB1050-10 ±10 nm Thorlabs
2 1100 FB1100-10 ±10 nm Thorlabs
3 1150 FB1150-10 ±10 nm Thorlabs
4 1200 FB1200-10 ±10 nm Thorlabs
5 1250 FB1250-10 ±10 nm Thorlabs
6 1300 FB1300-12 ±12 nm Thorlabs
7 1350 FB1350-12 ±12 nm Thorlabs
8 1400 FB1400-12 ±12 nm Thorlabs
9 1450 FB1450-12 ±12 nm Thorlabs
10 1500 FB1500-12 ±12 nm Thorlabs
11 1550 FB1550-12 ±12 nm Thorlabs
12 1600 FB1600-12 ±12 nm Thorlabs
13 1650 FB1650-12 ±12 nm Thorlabs

2.3.3. Photodetector

Our system was equipped with a Thorlabs PDA50B2 NIR photodetector (spectral range:
800–1800 nm), which has a Ge photodiode with a surface area of 19.6 mm2 and a spectral range that
encompasses the aforementioned range of wavelengths (min: 1050 nm, max: 1650 nm). Additionally,
this NIR photodetector contains a high-gain amplification circuit.

2.3.4. Signal Processing Module

The signal processing module comprises four parts—five switches, a lowpass filter, a signal
amplifier and a microcontroller. The switches (Vishay IRF530, Malvern, PA, USA) were connected to
a Direct current (DC) power supply (Agilent E3464A, Santa Clara, CA, USA) and the aforementioned
light source and disc-shaped bandpass filter holder. A microcontroller (ATMEL MEGA328P, Microchip
Corporation, San Jose, CA, USA) was used to control the state of each switch (open or close) and
the bandpass filter holder. Once the NIR photodetector receives the light reflected by the fruit’s
flesh, this light is converted into an electrical voltage signal. A low-pass filter is used to eliminate
high-frequency noise while a signal amplifier (LM324, Texas Instruments, Dallas, TX, USA) amplifies
the signal. The microcontroller then samples the signal, performs an analog-to-digital conversion
and packages the data into a readable format before sending the data to an external computer via
a communication interface. LabVIEW is then used to perform the necessary numerical computations
to calculate r2

p and RMSEP and store the data.



Appl. Sci. 2019, 9, 5317 6 of 14

2.4. Angle of Incidence and Polarization for Measuring Vitamin C Content of Indian Jujube

In this study, the reflectance of the Indian jujube fruits was calculated from the total reflectance
(Rtotal) of the incident light. Rtotal is the sum of reflections from the fruit’s skin (Rsurface) and
backscattered light (Rbackscatter), as shown in Equation (1). Based on Equation (2), the backscattered
light is the multiplicative product of the absorption coefficient (µa), backscatter coefficient (µs) and
transmittance (T) of the Indian jujube fruit’s flesh. As µa and µs are constants, the backscatter is directly
proportional to T.

Rtotal= Rsurface+Rbackscatter (1)

Rbackscatter= T ∗ µa∗µs. (2)

Based on Equations (1) and (2), one may surmise that increasing the transmittance of the fruit’s flesh
will increase the intensity of the backscattered light, thus improving the accuracy of the measurements.
According to Fresnel’s law, the reflectance of p-waves (Rp) is related to their transmittance (Tp) by
Equations (3) and (4) [19]. If the p-waves encounter a boundary between two media (i.e., the boundary
between medium 1 and medium 2, whose refractive indices are n1 and n2, respectively) and the angle of
incidence (θi) on medium 2 is arctan (n2/n1), then θB, Rp will be minimized while Tp will be maximized.
By reducing the interfacial reflection between n1 and n2 to the minimum (Rp = 0), the reflectance signal
from the fruit’s skin will be reduced to the minimum; the vibrational absorptions of chemical bonds
within the fruit’s flesh (including those of its vitamin C contents) will then manifest in the reflectance
signal captured by the NIR photodetector.

Rp =

(
n2cos θi−n1cos θt

n2cos θi+n1cos θt

)2

. (3)

Tp= 1−Rp (4)

2.5. Calibration of Detection System and Construction of a Predictive Algorithm Model

The following procedure was used to construct a predictive model for the vitamin C contents of
the calibration set:

Step 1—Nondestructive measurement of the reflectance of Indian jujube fruit flesh. The calibration
set consisted of 120 Indian jujube samples and the light emitted by the halogen light source was
parallel-polarized and bandpass-filtered before being projected onto the flesh and skin of these samples
at θi = θB. Subsequently, the NIR photodetector captured the light reflected by each sample at each
wavelength. The resulting electrical voltage signal was sampled and converted by the signal processing
module before being sent to a computer to compute the total reflected light intensity and Rtotal.

Step 2—The vitamin C content of Indian jujube is its ascorbic acid (AA) content. The flesh of
each Indian jujube fruit was juiced and filtered to produce an extract for HPLC analysis such that its
AA content can be measured. The HPLC system was a Hitachi model L-2000 liquid chromatograph
equipped with a Hitachi L-2420 UV-vis detector (set to 254 nm) and a Hitachi D-2500 data processor.
Chromatography was performed with a LiChroCART 250-4 LiChrospher 100 RP-18e (5 µm) column.
The isocratic mobile phase consisted of 1.55 mL 0.5 M tetrabutylammonium hydroxide, 30 mL of
methanol and 970 mL of 0.01 M potassium dihydrogen phosphate (pH 4.0). The flow rate was
1.0 mL/min [20].

The test solution was diluted to 1/5 with 1% metaphosphoric acid immediately before use and 10µL
of the diluted sample was injected into the column. The chromatographic peak that corresponds to AA
can be determined by comparing its retention time to that of a standard. Hence, co-chromatography
was performed with a standard solution of AA and the sample. To verify the presence of interfering
substances in the AA chromatographic peak, peak purity was tested by pretreating the fruit extract
with 1 unit/mL of L-ascorbate oxidase at 20 ◦C. A calibration curve was prepared using standard AA
solutions to determine the relationship between peak area and AA concentration.
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The AA concentration in the fruit was calculated in mg/100 g fresh weight (FW), according to the
following equation [21]:

AAF= AAE(10 ∗W/100 + 20)∗100/10 = AAE(W + 200), (5)

where AAF is the AA concentration in the fruit (mg/100 g FW), AAE is the AA concentration in the
undiluted extract (mg/mL) and W is the water content (%).

Step 3—Calculation of the correlation coefficient of calibration (r2
c) and root-mean-square error of

calibration (RMSEC). The PLS algorithm in the SmartPLS 3 (Hamburg, Germany) software was used
to calculate the r2

c and RMSEC between the reflectance of each wavelength and the actual vitamin C
content of the Indian jujube fruits. The criterion for the latent variable setting in PLS should be stop
in 10−5.

The reflectance of each wavelength combination were then matched with the actual vitamin
C values of the fruits in the calibration set to construct a predictive model for the fruits’ vitamin C
content. The r2

c and RMSEC of the model for the calibration set were calculated using Equations (6)
and (7), respectively.

r2
c =

∑nc
i=1 (y pi−ymi

)2

∑nc
i=1 (y pi−ymean

)2 (6)

RMSEC =

√√∑nc
i=1

(
ypi−ymi

)2

nc
. (7)

In these equations, nc is the number of test samples in the calibration set, ypi is the vitamin C
predicted with nondestructive testing, ymi is the vitamin C measured with destructive testing and
ymean is the mean vitamin C of the calibration set.

2.6. Predictions by the Detection System and Verification of the Predictive Algorithm Model

The vitamin C values of the prediction set were predicted using the optimal combination of
parallel-polarized wavelengths for the calibration set. First, nondestructive measurements were
performed on the 60 Indian jujube samples of the prediction set to obtain the reflectance of each
wavelength in these samples. The predictive model that was established based on the calibration set
was then used to predict the vitamin C content of each Indian jujube sample. Next, HPLC analysis
was performed to obtain the actual vitamin C value of each sample. The r2

p and RMSEP values of the
predictive model for the prediction set were calculated using Equations (8) and (9).

r2
p =

∑np

i=1 (y pi−ymi

)2

∑np

i=1 (y pi−ymean

)2 (8)

RMSEP =

√√√∑np

i=1

(
ypi−ymi

)2

np
. (9)

In these equations, np is the number of test samples in the prediction set, ypi is the Vitamin C
predicted with nondestructive testing, ymi is the Vitamin C measured with destructive testing and
ymean is the mean Vitamin C of the prediction set.
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3. Results

3.1. Distribution of Rtotal Values for p-Waves Incident at θB

Based on the equation that relates Brix to the refractive index (n), which was provided by the
International Commission for Uniform Methods of Sugar Analysis [22], an SSC of 14◦ Brix corresponds
to n = 1.354. Therefore, the refractive index of medium 1 and medium 2 are n1 = 1.000 and n2 = 1.354,
respectively. According to Fresnel’s law of reflection, the angle of incidence that minimizes Rp (i.e., θB)
is 53.55◦. Because the thickness of the skin of Indian jujube is only 0.1–0.15 mm and 700–1600 nm
light is known to penetrate 3–4 mm of fruit flesh [23], it may be assumed that the skin’s influence on
reflectance is negligible and that all of the NIR light had penetrated into the fruits’ flesh.

P-waves and unpolarized light were used to probe the reflectance of Indian jujube fruits, with the
angle of incidence being θB. The resulting Rtotal values were then recorded. When these measurements
are performed with p-waves and an angle of incidence of θB = 53.55◦, Rsurface will be minimized
(according to Fresnel’s law, Rp = 0 and Tp = 1), as shown in Figure 3. Therefore, all of the light will
penetrate into the flesh of the Indian jujube fruits, thus maximizing the absorption of incident light
by chemical bonds within the fruit, which will manifest in the reflectance signal measured by the
NIR photodetector.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 14 
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To confirm that polarization affects transmittance, we examined whether Rtotal changed with the
polarization of the light source while maintaining the angle of incidence at θB. Indian jujube fruits with
the same SSC (SSC = 14◦ Brix) were used in this experiment and Rtotal was measured using p-waves
and nonpolarized waves, 30 times each.

The resulting Rtotal values are shown in Figure 4a,b, which show that the nonpolarized waves
and parallel-polarized waves resulted in Rtotal values of 0.42–0.67 and 0.47–0.57, respectively (all Rtotal

values have been normalized). Because the Rtotal values that were obtained with p-waves are less
scattered than those obtained with unpolarized waves, one may conclude that the use of p-waves at
θi = θB can effectively reduce the interference caused by reflections from the Indian jujube fruits’ skin.
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Figure 4. Comparison between the total reflection (Rtotal) of (a) non-polarized waves (NP) and
(b) parallel-polarized waves (p-waves).

3.2. Correlation between the Vitamin C Contents of the Calibration Set and the Reflectances of the Characteristic
Wavelength Combinations

In the following experiment, the vitamin C content of Indian jujube was measured using a variety
of wavelengths that were obtained using NIR bandpass filters. The r2

c and RMSEC values of each
wavelength with p-waves and nonpolarized waves are shown in Table 3.

As shown in Table 3, the errors of the predictions based on p-waves are generally lower than those
of nonpolarized waves. Hence, it may be inferred that the use of p-waves can effectively suppress
the influence of surface reflections from the samples, which increases the strength of OH and CH2

absorptions in the reflectance signal, thus improving accuracy and reducing the RMSEC [16,17].
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Table 3. Root-Mean-Square Error of Calibration (RMSEC) and Coefficient of Calibration (r2
c)

of the vitamin C contents predicted by each wavelength with parallel-polarized waves and
nonpolarized waves.

Wavelength
(nm)

Nonpolarized Wave Parallel-Polarized Wave

Coefficient of
Calibration (r2

c)

Root-Mean-Square
Error of Calibration
(RMSEC) (mg/100 g)

Coefficient of
Calibration (r2

c)

Root-Mean-Square
Error of Calibration
(RMSEC) (mg/100 g)

1050 0.65 3.07 0.70 2.10
1100 0.52 3.28 0.58 2.49
1150 0.64 3.14 0.68 2.17
1200 0.79 3.02 0.85 1.49
1250 0.55 3.37 0.61 2.39
1300 0.54 3.14 0.59 2.46
1350 0.57 3.09 0.64 2.30
1400 0.80 3.07 086 1.43
1450 0.78 3.12 0.83 1.58
1500 0.74 3.15 0.78 1.80
1550 0.77 3.06 0.81 1.67
1600 0.73 3.09 0.76 1.88
1650 0.55 3.28 0.60 2.43

Wavelengths whose reflectances correlate most strongly with the vitamin C contents of Indian
jujube are 1200, 1400 and 1450 nm. This indicates that the chemical bonds of vitamin C absorb most
significantly at these wavelengths, which resulted in high r2

c values. The 1300, 1350 and 1650 nm
wavelengths correlate more poorly with vitamin C content; this is because the chemical bonds of
vitamin C do not absorb significantly at these wavelengths, thus resulting in low r2

c values.
Characteristic wavelengths that have the largest correlation coefficients were selected to form

combinations of wavelengths and were then used to determine the vitamin C content of Indian jujube.
Once the reflectance signals at these wavelengths were acquired by the NIR photodetector, the PLS
algorithm was used to quantify the vitamin C content of each fruit. The correlation of each wavelength
combination was then calculated. The r2

c and RMSEC values of each wavelength combination (which
comprises the most strongly correlated wavelengths) are shown in Table 4.

Table 4. Coefficient of calibration (r2
c) and Root-Mean-Square Error of Calibration (RMSEC) values of

each wavelength combination with respect to the actual vitamin C contents of Indian jujube fruits.

Wavelength Combinations (nm) Coefficient of
Calibration (r2

c)

Root-Mean-Square Error of
Calibration (RMSEC)

(mg/100 g)

A N = 3 1200, 1400, 1450 0.86 1.44
B N = 4 1200, 1400, 1450, 1500 0.87 1.39
C N = 4 1200, 1400, 1450, 1550 0.86 1.42
D N = 5 1200, 1400, 1450, 1500, 1550 0.89 1.31
E N = 5 1200, 1400, 1450, 1500, 1600 0.88 1.34
F N = 5 1200, 1400, 1450, 1550, 1600 0.88 1.32
G N = 6 1150, 1200, 1400, 1450, 1500, 1550 0.90 1.33
H N = 6 1050, 1200, 1400, 1450, 1500, 1550 0.91 1.32
I N = 6 1200, 1400, 1450, 1500, 1550, 1600 0.92 1.30

The results of the PLS calculations indicate that the r2
c and RMSEC of combination A were 0.86 and

1.44 mg/100 g, respectively. Combinations B and C (N = 4) resulted in r2
c of 0.87 and 0.86, respectively,

as well as RMSEC values of 1.39 mg/100 g and 1.42 mg/100 g, respectively. Although combinations
B and C have similar r2

c values, the RMSEC of combination B was slightly lower. Therefore, another
wavelength was added to combination B to form five-wavelength combinations (N = 5). Among
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combinations D, E and F (N = 5), D has the highest r2
c (r2

c = 0.89) and lowest RMSEC (1.31 mg/100 g).
Because the correlation of 1600 nm with vitamin C content is rather low (r2

c = 0.55), the inclusion of
this wavelength failed to enhance the accuracy of combination E and F. Another wavelength was
added to combination D to form N = 6 combinations, thus forming combinations G, H and I, which
all have slightly higher r2

c values than the N = 5 combinations. However, upon further analysis, it
was discovered that the r2

c and RMSEC values of the N = 6 combinations were slightly better than
those of the N = 5 combinations. We speculate that this is because the r2

c values of 1050 nm and
1150 nm are relatively low (0.70 and 0.68, respectively); therefore, the inclusion of these wavelengths in
a wavelength combination did not significantly improve the r2

c of the combination.
The wavelengths of combination D (1200, 1400, 1450, 1500 and 1550 nm) correlated strongly with

OH and CH2 absorptions. This result is consistent with the NIR absorptions of OH and CH2 that were
observed by López et al. [24], Aenugu et al. [25], Fox et al. [26], Rajan et al. [27] and Bento et al. [28].

Based on these results and the practical requirements of actual detection systems (e.g., size, cost
and performance), we decided to use combination D (N = 5) in our detection system, whose r2

c and
RMSEC are 0.89 and 1.31 mg/100 g, respectively. The results obtained using combination D are shown
in Figure 5. This combination was then used to measure the vitamin C contents of the prediction set.
The corresponding r2

p and RMSEP values were then calculated.
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3.3. Analyzing the Predicted Vitamin C Contents of the Prediction Set

Combination D (1200, 1400, 1450, 1500 and 1550 nm), which is the optimal combination of
wavelengths for the calibration set, was used to predict the vitamin C contents of the prediction set.
After nondestructive measurements and destructive HPLC analysis were performed on the 60 Indian
jujube samples of the prediction set, the r2

p and RMSEP values of the predicted values were calculated,
as shown in Table 5. The r2

p and RMSEP of combination D were are 0.84 and 1.65 mg/100 g for the
prediction set, respectively. These values are similar to the r2

c and RMSEC values of this combination
with the calibration set. The correlation between the predicted and measured vitamin C values is
illustrated in Figure 6. Here, it is shown that our detection system and predictive model performs
excellently and is highly robust, as it has a high r2

p value and low RMSEP.
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Table 5. Coefficient of Prediction (r2
p) and Root-Mean-Square Error of Prediction (RMSEP) of vitamin C.

Wavelengths Combination

Prediction Set

Coefficient of
Prediction (r2

p)
Root-Mean-Square Error of

Prediction (RMSEP) (mg/100 g)

D N = 5 1200, 1400, 1450, 1500, 1550 nm 0.84 1.65

4. Discussion

In this study, a parallel-polarized light source and several NIR bandpass filters were combined
to predict the vitamin C content of Indian jujube with a combination of wavelengths. The probing
wavelengths were designed to be incident on the fruit at θB, to increase r2

p and reduce RMSEP.
The r2

p and RMSEP values of our detection system were 0.84 and 1.65 mg/100 g, respectively, for
the vitamin C contents of Indian jujube fruits in the prediction set. Furthermore, our system is
significantly cheaper than currently available portable vitamin C measurement systems, as it simply
uses a halogen light source with NIR bandpass filters and an NIR photodetector instead of a costly
Fourier transform spectrometer.

The predictive accuracy of our system is equal to or better than that of other NDT systems.
For example, r2

p values of 0.81 and 0.87 were obtained by an FT-NIR-based detection system for the
vitamin C content of oranges and kiwifruit, respectively, with RMSEP values of 5.9 mg/100 g and
6.4 mg/100 g, respectively [18,29]. The r2

p values of a system based on visible NIR spectroscopy in
measuring the vitamin C content of carrots and tangerines were 0.72 and 0.82, respectively and the
corresponding RMSEP values were 4.3 mg/100 g and 2.3 mg/100 g, respectively [30,31]. Another
system that is based on NIR spectroscopy obtained r2

p values of 0.80 and 0.70 and RMSEP values of
4.0 mg/100 g and 16.0 mg/100 g when measuring the vitamin C contents of apples and infant cereals,
respectively [32,33].

In the future, we plan to improve the performance of our system using bandpass filters with
special specifications and different full-width half-maxima to improve the quality of the reflectance
signals. Furthermore, we will develop a chipset that will perform the necessary numerical analyses
and other algorithmic operations such that our system can display the predicted vitamin C value of
a fruit without being connected to another computer.
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5. Conclusions

In this study, we developed a low-cost, nondestructive fruit testing system based on
parallel-polarized NIR light sources, which comprises a halogen lamp, a parallel polarizer, several
NIR bandpass filters and an NIR photodetector. The probing wavelengths used in this system are
a combination of wavelengths whose reflectances correlate strongly with the vitamin C content of
Indian jujube—1200, 1400, 1450, 1500 and 1550 nm. The probing light sources were parallel-polarized
and designed to be incident on the fruit’s flesh at θB, which reduced interference from the fruit’s skin
and increased the transmittance and backscatter intensity of the incident light. The light reflected by
the fruit’s flesh was then collected by an NIR photodetector. This approach increased the accuracy
of the vitamin C measurement and reduced errors. The r2

p and RMSEP of the PLS predictions were
0.84 and 1.65 mg/100 g, respectively.

As compared to current NIR spectroscopy-based nondestructive testing systems, our detection
system is small, relatively cheap, consumes little power and has a competitively high r2

p value while
retaining a low RMSEP. The varieties of fruit that can be tested by this detection system could be
increased in the future, so that our system can be widely applied in fruit quality inspections.
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