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Abstract: Internet traffic monitoring is a crucial task for the security and reliability of communication
networks and Internet of Things (IoT) infrastructure. This description of the traffic statistics is used to
detect traffic anomalies. Nowadays, intruders and cybercriminals use different techniques to bypass
existing intrusion detection systems based on signature detection and anomalies. In order to more
effectively detect new attacks, a model of anomaly detection using the Hurst exponent vector and the
multifractal spectrum is proposed. It is shown that a multifractal analysis shows a sensitivity to any
deviation of network traffic properties resulting from anomalies. Proposed traffic analysis methods
can be ideal for protecting critical data and maintaining the continuity of internet services, including
the IoT.

Keywords: IoT; anomaly detection; Hurst exponent; multifractal spectrums; TCP/IP; computer
network traffic; communication security; Industry 4.0

1. Introduction

Network traffic modeling and analysis is a crucial issue to ensure the proper performance of the
ICT system (Information and Communication Technologies), including the IoT (Internet of Things)
and Industry 4.0. This concept defines the connection of many physical objects with each other
and with internet resources via an extensive computer network. The IoT approach covers not only
communication devices but also computers, telephones, tablets, and sensors used in the industry,
transportation, etc. Changes in network development concepts and paradigms are a vital process in
the current telecommunications arena. There is a transition from the Next Generation Network concept
(NGN) to the Internet of Things (IoT), Ubiquitous Sensor Network (USN), Machine to Machine (M2M),
and other proposals. The main reason for the change is the broad application of wireless sensor nodes
and RFID (Radio-Frequency IDentification). According to forecasts, by 2020, it is expected that more
than seven trillion wireless devices will be connected to the network [1].

The IoT has gained considerable popularity in recent years. The idea behind the IoT is to extend
everyday activities with computing power and internet connections and to enable them to detect,
calculate, communicate, and control the surrounding environment. Existing IoT communication is
dependent not only on modern cellular networks but also on home networks, usually connected to
fiber-optic networks. Current networks sufficiently meet the requirements of existing IoT equipment.
However, the projected future massive increase in IoT data traffic may be too much for existing mobile
communication systems (3G, 4G, etc.) to handle, so it is necessary to implement 5G technology as
soon as possible. 10T traffic is usually different from regular traffic, such as video conversations or file
transfers. IoT data are mainly generated by a large number of IoT devices in the form of small packets
and are mainly based on narrowband applications. User-generated regular data traffic appear from a
small number of mobile devices in the shape of large packets [2].
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Network traffic monitoring and analysis (NTMA) is a critical element of network management,
primarily to ensure the proper functioning of large IoT networks. As the complexity of internet
services and the volume of traffic continue to increase, it becomes challenging to design scalable NTMA
applications. Appropriate performance models require accurate traffic models that can capture the
statistical characteristics of actual activity. This article shows that estimating the value of Hurst’s
exponent allows for the analysis of current traffic patterns for the prediction of the future trend of
data behavior, both of which can help in ensuring security and detecting attacks or other anomalies in
network operations. By correctly estimating the Hurst parameter and creating appropriate patterns, it is
possible to prepare for disturbing situations and to react to changes in the trends. Sudden deviations in
the value of the exponent that concern the obtained base results probably signify problems and testify
to the unusual behavior of the network, which is possibly related to cybercrime or network failure.
Such traffic analysis methods can be ideal to protect critical data and maintain the continuity of offered
internet services [1-5].

The characteristics of individual samples, investigated during long-term and multifractal analyses,
differ depending on the character of the network traffic. In cases when there are data sets that are
storing records of traffic flowing through the tested communication network, it is possible to detect the
nature of the traffic by analyzing samples from different periods of the network operation. In this way,
by using long-term and multifractal analyses, it is possible to detect the anomalies of network traffic.
The results of regular network operation analyses should be consistent with the results contained in the
database. In the case of detecting anomalies or performing an attack on a given network, the analysis
of samples of the infected network traffic should differ from the analysis of properly flowing traffic.
Since the objects in the IoT are directly connected to the unsafe internet, the attacker can easily access
the device’s limiting resources. Such public access to the internet makes things susceptible to hacking.

Our article aims to propose a comprehensive and practical introduction to the application of
multifractal analysis in the study of traffic in the IoT network. The theoretical basis is defined, and the
problems and traps related to the choice of scaling range, minimal regularity, spectrum approximation,
and parameter estimation are discussed. It is shown that multifractal analysis is related to the other
standard features of network traffic variability. This multifractal analysis aims to provide a global
analysis of data variability [6]. Because geometric structures are inherited from the evolution of data
over time, multifractal analysis globally measures the local dynamics (or variability) of the analyzed
bounded function. This measure is based on the Eh Hausdorf dimension and is referred to as a
multifractal spectrum. The multifractal analysis provides powerful tools to understand the complex
non-linear nature of time series in different fields [7].

2. Literature Review

Network traffic can be stored both as an increasing number and as a sequence of intervals between
adjacent events. The oldest model of the stream is the Poisson process. As a result of research on
real network traffic, an internal correlation in streams was observed. The model based on the Poisson
process did not take into account this feature of the generated traffic. Thus, subsequent models were
developed that more accurately reflected the real character of the traffic flow in the network. However,
many of them are characterized by autocorrelation, which disappears very quickly (exponentially).
These are the so-called processes of short memory. The Poisson process has been used to model
incoming connections in telecommunication networks due to its analytical simplicity. However, it is
unsuitable for new types of network traffic that have emerged from basic internet protocols such as
Transmission Control Protocol (TCP) and applications such as TELNET and FTP (File Transfer Protocol).
New applications, such as video streaming, bring with them new traffic models that are necessary for
traffic engineering. A detailed study of the different traffic characteristics in the IoT network is still
not available, so in our work, we deal with this problem. The studies presented in [4] showed that
models using Poisson’s decomposition are not able to accurately reflect the explosiveness of TCP/IP
traffic. Only the use of models of self-similar traffic enables the realistic rendering of TCP/IP traffic.



Appl. Sci. 2019, 9, 5319 30f 20

Self-similarity is a phenomenon that retains the statistical properties of the model despite changes in
the applied time scale. The most visible feature in the characteristics of network traffic that indicate the
occurrence of self-similarity is the occurrence of densities and dilutions at intervals between events
and the lack of blurring of this feature despite the use of several different time scales (e.g., seconds,
minutes, and hours) [5,8]. Meanwhile, the development of new network services has caused traffic to
change its characteristics. Currently, network traffic, especially in IoT infrastructure, is characterized
by a much stronger, long-distance correlation.

Nowadays, the internet is based on the Internet Protocol (IP), which is managed by the Internet
Engineering Task Force (IETF). The use of IP addresses to identify connected devices and traffic has
become entirely natural. Therefore, one might think that a similar analogy could also be used in IoT
for compliance purposes, but this is not so obvious. The industry has developed many other wireless
communication technologies and networks to meet the needs of IoT applications, leading to numerous
interoperability problems. Many providers have started without support for IPv6 but are slowly
integrating it, which will allow us to apply our traffic analysis methods. Network traffic in the IoT
contains a sequence of packets with incremented timestamps that represent a time series. Time series
data represent a set of values obtained from sequential measurements in time. The traffic time series
can also be used to monitor security. An analysis of anomalies in network traffic patterns can be used
to detect the irregular behavior of intelligent devices caused by failures or security breaches. Currently,
the IoT ecosystem offers many devices with a low-security level, which poses a high threat to the IoT
system and enables distributed denial of service attacks (DDoS). Monitoring network activity from
these devices to centralized hosts (or any other destination) is significant in ensuring the early detection
of intrusions [9]. Network traffic contains much useful information about the type of devices, users
and applications used. Therefore, an analysis of this traffic is useful not only in detecting intrusions
but also in identifying applications, classifying the use of services in applications, etc. [10].

The idea of describing natural phenomena through the study of statistical scaling laws is not new.
The authors in [11] presented many studies that have been conducted on this subject, including those
by Bachelier (1900), Frish (1995), Kolmogorov (1941), and Mandelbrot (1963). The main feature of
fractal geometry is its ability to describe the irregular or fragmented shape of natural features and
as other complex objects which traditional Euclidean geometry cannot analyze. This phenomenon
is often expressed by the spatial or temporal laws of statistical scaling and is characterized by the
maintenance of the power-law of real physical systems. This concept allows for simple, geometric
interpretation and is often found in various fields such as geophysics, biology and fluid mechanics.
Fractal geometry is widely used in general problems with image analysis, especially in medicine. It is
applied in different ways with different results [11].

In recent years, the analysis of long-term temporal relationships has become more critical.
The topics of self-similarity and long-range dependence (LRD) in time series have become trendy fields
of research [12]. The most commonly used measure of self-similarity is the value of Hurst coefficient,
H, introduced by hydrologist H.E. Hurst based on the observation of Nile level fluctuation. The closer
the H value is to 1, the more clearly the phenomenon shows a self-similar character [3].

A recent analysis of the traffic measurements from different communication networks showed
that traffic is long-range dependent or fractal (self-similar). These developments revolutionized the
understanding of network traffic by explaining the difference between theoretical performance estimates
and performance measured in practice. In network traffic, long-range dependence corresponds to the
slow decaying autocorrelation function and the heavy-tailed behavior of the probability density function.

There are various statistical techniques for estimating the Hurst parameter. By definition, the LRD
phenomenon is related to the maintenance of the power-law of some second-order statistics (variance,
covariance, etc.) of the process concerning the duration of observation. Many Hurst estimators
are therefore based on the idea of measuring the slope of the linear adjustment on a log-log graph.
Estimators of Hurst parameters can be divided into two categories: those operating in the time
domain and those operating in the frequency domain. However, traditional estimators can be
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seriously biased. The rescaled range (R/S) estimator has poor statistical performance, with a high
deviation and suboptimal variance. The estimator of discrete discomfort is only asymptotically
impartial. An asymptotic set-up is not sufficient for a good estimator, which must be impartial, robust,
and efficient [9]. Our article aims to emphasize the superiority of the Hurst parameter estimator based
on a multifractal spectrum.

Therefore, Hurst’s exponent can be considered a quantitative method of describing, e.g., traffic
in computer networks or the IoT, determining its characteristics that describe overloads or states
deviating from the accepted standards. In other words, changes in the intensity and characteristics of
the traffic are significant for each other.

In [13], a systematic literature review (SLR) of the Intrusion Detection Systems (IDS) in the IoT
environment has been presented. Then detailed categorizations of the IDSs in the [oT—anomaly-based,
signature-based, specification-based, and hybrid; centralized, distributed, and hybrid; simulation
and theoretical; and denial of service attack, Sybil attack, replay attack, selective forwarding attack,
wormbhole attack, black hole attack, sinkhole attack, jamming attack, and false data attack—were also
provided by using standard features. The authors discussed the advantages and disadvantages of the
selected mechanisms, and directions for future trends were also provided.

LRD is a relatively new statistical concept in time series analysis and has been empirically shown
to exist in many fields such as engineering, astronomy, finance, statistics, and hydrology. The analysis
of real data is a challenge for both engineers and researchers. Therefore, LRD has been increasingly
used in data analysis, including traffic.

In order to increase efficiency, the authors of [8] used Multifractal Detrended Fluctuation Analysis
(MDFA) for the multifractal analysis of discharge signals. Spectral studies of q-order Hurst, mass
exponents and multifractals revealed differences between different voltage values applied to different
types of signals (electrical and acoustic). The simulated HFD (Higuchi Fractal Dimension) and MDFA
algorithms have proven to be useful in the real-time detection and analysis of pressure plate failures
where early warning can prevent insulation system malfunctions. Additionally, the simultaneous
analysis of electrical and acoustic signals using a synergy of these methods enhances the efficiency of
the proposed system.

The authors in [7] showed that the multifractal analysis of financial data for one and
multidimensional time series arouses great interest in the community of ecophysics, mainly due
to the invention of new methods and easier access to a massive amount of financial data. Many new
methods of multifractal analysis are still being proposed, most of which are variants of existing classical
methods. This paper presents some examples of multifractal analysis used in quantifying market
inefficiencies, supporting risk management, and others.

The critical task in the empirical multifractal analysis is to determine the appropriate scaling
range based on which scaling exponents are estimated. Usually, a small change in the scaling range
results in significant changes in the estimated exponents. Very short time series can give “wrong”
estimates because the estimated multifractal properties usually deviate more from shorter time series,
as confirmed by the log-Poisson binomial. In addition, the estimated generalized Hurst exponents
may significantly differ from the expected values, especially in the case of short time series. Therefore,
statistical tests are necessary for empirical multifractal analysis. It is often the case that scaling
exponents and multifractal spectrum derived from empirical time series are problematic, especially
when there are linear or non-linear trends in the time series. The result is an erroneous estimation of the
degree and nature of the multifractal, which has harmful effects on the understanding of network traffic
behavior. The choice of scaling range is most important and challenging for short-term series [7,14,15].

The authors in [1] stipulated that models in networks with a large number of sensors and RFID
should be well researched. The authors also analyzed USN motion models, and the test results showed
that the traffic flows for fixed and mixed fixed/moving sensor nodes are self-similar with an average
level of similarity in both cases. The motion flow for reconfiguration and signaling was found to be
self-similar with a high level of self-similarity.
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The area of anomaly detection in networks has attracted much attention in recent years, especially
with the development of interconnected devices and social networks. The detection of anomalies
covers a wide range of applications, from the detection of terrorist cells in anti-terrorist operations to the
identification of unexpected mutations during the transcription of ribonucleic acid. Accordingly, many
algorithmic anomaly detection techniques have been implemented. In the paper of [16], a statistical
evaluation of a set of popular spectral methods for the detection of anomalies in networks was carried
out. The presented studies revealed several essential and critical shortcomings. The authors evaluated
the performance of these algorithms by using simulated networks and extended the methods from
binary to count networks.

Applications such as traffic classification and police control require a scalable approach in
real-time. Anomaly detection and security mechanisms require the rapid identification and response
of unforeseen events in the processing of millions of different events. The system must collect, store
and process enormous collections of historical data in a post-mortem analysis. The authors in [17],
based on questionnaires, developed guidelines for future work on anomaly detection, conclusions,
and research directions.

According to the authors of [18], the manual (human-based) handling of anomalies in complex
systems is not recommended, and automatic and intelligent handling is the right approach. In the article,
the authors presented many case studies, challenges, and possible solutions for the implementation of
computerized anomaly detection systems.

There are many approaches to the problem of anomaly detection. The authors of [19] presented a
method for detecting network anomalies based on a fuzzy cluster. The proposed method consisted
of three stages: preprocessing, function selection, and clustering. The performance indicators used
were cluster correctness, accuracy, and a false—positive ratio. According to the authors, the proposed
method achieved better results in comparison to other methods.

The most known models of long-range dependent processes are the fractional motion of Brown
(fBm) and fractional autoregressive integrated moving average (FARIMA) [10]. In the context of
Ethernet traffic, it should be noted that data are not stationary due to hidden periods, daily cycles,
failures, various anomalies, etc. However, it is reasonable to expect that data will be stationary for
smaller timescales when network conditions are relatively stable. Thus, Ethernet traffic is stationary at
some scales and not stationary at other scales. Random data entry can be a general trend. These trends
are the source of the transient state for a random input process. Estimating the Hurst parameter is
necessary to detect the presence of LRD in a time series [12].

Internet traffic monitoring is a crucial task for network security. To detect anomalies, the authors
of [20] proposed a multidimensional, self-similar model called the fractional operator BrownianMotion
(OfBm) for a conventional similarity analysis in bytes and packets. A non-linear regression procedure
based on the original branching and boundary solving procedure were developed in order to fully
identify the two-dimensional OfBm. The proposed procedure for detecting anomalies of internet traffic
used the Hurst exponent vector underlying the modeling of internet data based on OfBm.

Cyber-attack technologies are constantly being developed, and the number of new threats is
steadily growing. In the article [21], an innovative method of anomaly detection based on the estimation
of self-similarity of systems and networks was proposed. As in our article, self-similarity properties,
which are characterized by the Hurst parameter, were also used. By using the proposed method,
the status of the network and system anomalies was determined through the calculation of the change
of similarity value. The effectiveness and efficiency of this approach were developed based on the
Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation dataset created
in 1999.

A different approach to the detection of anomalies was proposed in [22]. The authors assumed
that the time series of traffic flows should be considered a Poisson’s non-stationary process related
to superstatistical theory. According to the superstatistical theory, a complex dynamic system can
have a significant fluctuation of intense magnitude at large time scales, which causes the system to
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behave as non-stationary and non-linear, which are also features of network traffic flows. This idea
provides a new way of dividing transient traffic time series into small stationary segments that can be
modeled using Poisson’s distribution in sub-second time scales. To distinguish between normal traffic
and anomalous traffic, the Hurst parameter was calculated and compared.

3. Self-Similarity and Multifractal Spectrum Dependences

Creating hundreds of thousands of time series based on source and destination when each package
can cover more than one class is not a trivial problem. The monitoring level is usually done by
collecting NetFlow statistics from IP routers and processing these traffic flows to create time series [9].

Self-similar processes are interpreted as a sequence of random variables at a specific time. These
processes are characterized by specific parameters such as mean value, variance, random moments of
higher orders, and probability distribution. Self-similarity, which is also called monofractal, means that
the characteristics of some processes are identical or similar to different scales of dimensions or time.
The autocorrelation function, Hurst’s exponent, and variance are used to describe the monofractal
characteristics of time series. These are some of the methods used to determine entropy. In particular,
we can include the autocorrelation function which, as a function of time or time delay, can show the
correlation between the values of a random process in different periods; the hardtail distribution,
which is a class of probability distributions that have heavier tails than the exponential distribution;
and the method using the Hurst exponent and re-analyzing the scaled range, where the Hurst exponent
associated with autocorrelations is used as a parameter to measure the long-term memory of time
series and is usually calculated by re-scaling the range (R/S) [13].

The determination of the value of the Hurst exponent can be obtained by plotting the
log[R(n)/S(n)] as a function of logn and matching the straight line by the least square method.
Referring directly to the definition, the slope of a straight line is precisely Hurst’s exponent. The value
of the Hurst exponent (H) allows for the determination of the relative trend of time series either to a
strong reversion to the average or a cluster in the direction. The range of available variants of the H
parameter is from 0 to 1. H in the range 0-0.5 means that time series has long-term switching between
high and low values in adjacent pairs, which means that after high values of, e.g., network traffic,
the switching trend between high and low values probably would last for a long time in the future.
The value of the exponent H = 0.5 indicates that a time series has the law of random walk, known
as a stochastic or random process, which describes a path consisting of a series of random steps in a
mathematical space, such as integers. The value of the exponent H in the range of 0.5-1 indicates that
the time series has long-term positive autocorrelation, which means that a high traffic volume in the
series will probably be followed by another high indication of the point value of traffic [8,13].

3.1. Self-Similarity Statistical Factor

Stationary processes are characterized by a probability distribution that, for these processes, has a
constant value. However, such a term is not entirely accurate and does not provide a proper description
of the stochastic process. Most stochastic processes are characterized by the fact that the values of these
processes are dependent on one another in time. This means that the value of the process at some point
in time depends on the process that precedes it. The time dependencies described in the stochastic
process can be described through the autocorrelation function in Equation (1) [23,24]:

Rx(s,t) = E(X(s)X(t)) )

for which:

e  Xis the stochastic time process analyzed in a specified time scale s, £,
e R the autocorrelation function.

Multifractal processes are defined by a scaling law for moments (E) of the processes’ increments
over finite time intervals. Stochastic processes characterized by infinite time are called long-range
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dependence (LRD). The autocorrelation function of a long-term process is called a slowly disappearing
function. The basic concept of a self-similar process is the autocorrelation function. The next necessary
concept is the stochastic process itself (defined by the letter X) in the time scale (defined by the letter
m), and this process is defined by the Riemann integral, as given in Equation (2):

X(’”)(t):% f X(s) ds )

The above equation allows us to define a general formula for the process of statistical similarity
that can be described as Equation (3):

Ry(m (k) = m™PRy) (k) ®3)

where X(™) is the X process in the 1 time scale and § denotes a constant.

The B parameter, which determines the rate of change of the autocorrelation function during
the time change, is significant. For short-term processes (SRD), this parameter is close to a value of
1. According to Equation (4) and the application of discrete processes in the Riemann integral and
conversion to sum, the value of § parameter can be in the range of 0-1 [21].

(m) 1 m—1 ) 1 m—1

m

X" = =Y X = ) Kk @
k=0 k=0

The main advantage of using models of self-similar patterns of a time series is that the degree of
self-similarity of the series is only expressed by one parameter. The parameter expresses the speed of
decay series autocorrelation function. For historical reasons, the parameter used is the Hurst parameter
H =1-p/2. For self-similar series, 1/2 < H < 1. As H — 1, the degree of self-similarity increases. Thus,
the main criterion for assessing self-similarity is the question: Is H exponent significantly different
from 0.5?

3.2. Multifractal Spectrum

The analysis of multifractal dependencies of a given set of data allows for the determination of the
characteristics of the tested data. Thanks to the application of multifractal decomposition, it is possible
to analyze the processes taking place in small time scales. The examined processes are divided into
sub-sets of points in such a way that their environment has similar geometrical features determined by
Holder’s exponent. Then, for the sub-sets obtained after this analysis, their Hausdorff dimensions are
determined. In this way, a multifractal spectrum, which is a relation between the obtained Hausdorff
dimension and the determined Holder’s exponent, is obtained [25,26].

Holder’s interval exponent, determined for the probabilistic measure u in the specified range I,
is characterized by the use of Equation (5):

WD) = log (1)

logll ©)

For this expression, |I| is the Lebesgue measure, which is defined for the range I.
Let x will be identified as a point of reference in the field of measurement u, and {I;} reflects the
sequence of compartments:
x €I, ]}i_)rgollkl =0 (6)
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Holder’s exponent, which is a measure of p for a specific point x, is described with the use of
Equation (7):

. log 11(I)
au(x) = l}g{}oau(lk) = I}I_{EOW 7)
The Hausdorff dimension determined for set F is expressed as a limit, Equation (8):
logNs (A
dim(E) = lim 28Ns(A) @®)
§—c0 —logd

for which:

e Fisasubset of the n-dimensional Euclidean space,

e A determines the set of n-dimensional spheres, where F C A,

e  {isthe diameter of the coverage A, which is the diameter of the largest of the spheres belonging
to the coverage,

e N;s(A) means the minimum number of spheres that are part of the coverage with a diameter of 0.

The multifractal spectrum, which is determined by multifractal decomposition, determines
the relation between the Hausdorf dimension of a set of points of measurement with a fixed point
dimension and the point dimension itself, Equation (9):

fru(a) = dim(K,) , K, = {x:a(x) = a}. 9)

The definition formulated in this way assumes that the spectrum is calculated for the probabilistic
measure. In order to obtain a multifractal spectrum for the stochastic process, one must linearly rescale
the values of the process so that the realization of the rescaled range is practically always a probabilistic
measure. During the estimation of the multifractal spectrum concerning the realization of the processes
of traffic intensity recorded in the measurements, it is necessary to linearly rescale the processes so that
the values of these processes meet the condition of normalization. The generality of considerations is
not reduced in any way by this type of rescaling because the multifractal spectrum does not depend on
the mean value of the analyzed sample [27-29].

Multifractal decomposition divides the studied processes into sets of points, where each of them
is defined as a set of Cantor. These sets of points are fractals, and the fractal dimension of each of them
is different from unity [25,29].

A multifractal spectrum can be determined in many different ways. The two primary methods are
the Legendre transformation of the split function and determining spot metering histogram boundaries.
The split function can be represented by Equation (10), where A is an overlay of the plane of u measure
and 6 is a diameter of the measurement plane:

So(q) = Y u(C)’ (10)

ceA

Next, the Legendre transformation function f: R — R is represented as a transformation of the
dependency, Equation (11):
fi(s) = inf(sx = f(x)) (1)
X

For the differential functions, this transformation can be presented in Equation (12):

fs(x)) = x- f'(x) = f(x); s(x) = f'(x) (12)

The multifractal spectrum based on the split function is represented as a Legendre transformation,
Equation (13):
logSs(q)

wla) = fim = 13)
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As aresult of this transformation, we can obtain a multifractal spectrum based on the split function,
Equation (14):
frla) =7°(x) = q7'(q) — t(q); alg) = '(q) (14)

While estimating multifractal spectrum based on the spot metering histogram, to simplify, we only
take into consideration the probability measurement p defined in a [0,1] range and its sampling within
a space of intervals, Equation (15) [25-27]:

L=1lk-27", (k+1)-27"] (15)
Assuming that:
_ 1 n
Yu(a) = n*logZ”K"‘” (16)

where {x tx =k=*27"q 0((1,’(’) =ua,ke{0,1,...,2" - 1}}. We can define the multifractal spectrum as a spot
metering histogram boundary in the following way, Equation (17) [25,27]:

fo(@) = lim Y, (a) (17)

This relationship indicates the multifractal spectrum as the limit of the histogram of the point

dimension. The described methods of determining the multifractal spectrum allow for the definition of

the so-called multifractal formalism. This specifies that a given measure can be qualified as multifractal
if all methods yield similar results:

fc(a) = fula) = fL(a). (18)

It is not possible to fulfill this equality for the processes of traffic volume in computer networks.
The reason for such a claim are limitations connected with the observation of such processes. Therefore,
the accuracy of a multifractal spectrum estimation through the use of the described methods decreases.
Nevertheless, a similar estimation of both f; and f;, spectra allow for the determination of whether the
analyzed data stream can be characterized by a multifractal spectrum [25-29].

Probabilistic polynomial measurements are essential elements in creating traffic intensity processes
based on multifractal properties. Due to their simple structure, it has become possible to obtain
many results on their basis, which in turn facilitates the practical application of these measures to
model traffic intensity, which shows long-term dependencies. An ideal polynomial measure would
be insufficiently useful. It is much easier to obtain the result in the case of an interval polynomial
measurement in an appropriate row, and it is possible to consider it as an approximation of the ideal
polynomial measurement [25].

4. The Methodology of Network Traffic Anomaly Detection Study

The network traffic pattern for each IoT device differs according to the type of protocol or communication
technology used by the manufacturer. Nevertheless, the observation of traffic shows similarities. In order
to achieve a precise analysis, it is therefore essential to find common traffic patterns for devices in a given
category and to exclude similarities between devices in different categories. Our proposed approach
allows us to analyze this problem and identify the device by making full use of hidden correlations and
unchanging patterns from the flows of the underlying IoT network. When connected to a network, IoT
devices generate traffic (incoming and outgoing) depending on some configuration features and application
services. While different devices in a network can use different protocols and transfer data for different
purposes, the vast majority of this traffic uses TCP/IP protocols. These packets include network configuration
traffic (e.g., Network Time Protocol (NTP) and Domain Name System (DNS)) and routine communication
between the device and the server. Therefore, our research was based on TCP/IP traffic analysis. Due to the
wide implementation of security protocols such as the Secure Sockets Layer (SSL), Transport Layer Security
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(TLS), and Privacy Policy, only the packet header can be used to classify traffic. From traffic volume, packet
length, network protocols, and traffic direction, i.e., incoming and outgoing, it is possible to separate user
packets and control packets. User packets include user data and server-device communication packets (TCP,
UDP - User Datagram Protocol, HTTP - Hypertext Transfer Protocol or other multi-layer protocols). Control
packets support mainly functional protocol packets such as ICMP (Internet Control Message Protocol), ARP
(Address Resolution Protocol), DNS, and NTP packets. The scheme of network traffic anomaly detection
based on self-similarity consisted of a few modules: traffic collection, statistical analysis, statistical estimation
and anomaly detection (Figure 1).
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Figure 1. Network traffic anomaly detection scheme.

To reduce the impact on normal network usage, when collecting local area network (LAN) traffic,
the traffic on the router is reflected on the traffic collection server. Packets received from the router are
processed. One can extract some traffic parameters, such as the number of packets and the total length
of the packet. The purpose of the study was to observe traffic on the network and determine whether
there were long-term dependencies throughout the network operation time and overtime intervals.
In order to perform the work of all intercepted packets, we extracted those that had the most significant
impact on the network. They were divided into main groups in terms of services and protocols: HTTP,
HTTPS (HTTP Secure), Unknown, IP Security (IPsec), DNS, Secure Shel (SSH), and others.

The following statistical values of the selected traffic indicators were then calculated. The first
step is to check if the traffic is stationary (h > 0.5). If so, a spectral analysis is performed to compare the
current traffic patterns with the adopted safe working model. The values can be used to detect traffic
anomalies. The calculated Hurst value is compared with the normal traffic model. If the value of the H
parameter differs from the base value in the regular traffic model, the current traffic is considered to be
anomalous. It is assumed that the Hurst parameter remains relatively stable.

A crucial task in assessing the security of the IoT system is to find the right features of the observed
network traffic (directly measurable features) and/or the combination of these features (derivative features).
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These features should be linked to anomalies. This information can be useful to identify what is happening
in the system and how to prevent it. As a rule, such devices can fulfill their function as mechanisms of initial
traffic analysis for manual log analysis, but they are entirely useless for an automatic reaction.

To work with automatic response systems, the anomaly analysis system must be able to provide
necessary information to the rules governing reactions. Information about the detection of an anomaly
should go to the appropriate agent systems, which should take appropriate action. It can be concluded
that each parameter identified and tested by the anomaly recognition system should be associated
with an object that is identifiable in network traffic by other security measures, mainly by remotely
managed network filters. Network filters operate in different layers of the ISO/OSI model (International
Organization for Standardization/Open System Interconnection Reference Model). For each layer,
network communication protocols, which uniquely define the form and format of the transmitted
information units, are assigned. Based on experience and historical data, the parameters describing the
behavior of network traffic can be related to weekdays, seasons, or working hours, as well as the use
of characteristic phrases in the content of the transmitted information indicating the so-called “data
leakage.” When using the Hurst parameter and spectral spectra, or, more precisely their deviations from
the standard values, one could consider them as symptoms of unauthorized actions. The proposed
method is based on the identification of anomalies in the current time window based on correct samples
in the standard profile. For each interval, the value of the exponent was estimated in the first stage
in order to determine the character of the motion and to determine the trend. If the similarity was
confirmed, in the next step, the tested motion samples were checked for multifractal dependencies.

The article used data from the Internet Data Analysis Centre (CAIDA) [30]. The obtained data
encompass a set of passive network traffic tracked on a commercial backbone network. The institution
mentioned above started collecting data in 2008 and has continued to do so day. Until 2014, data
collection took place at the Chicago and San Jose nodes. In the years 2015-2016, traffic was recorded
only at the Chicago nodes, but it was moved to New York in 2018. CAIDA analyzes, among other
things, types of protocols, and it maintains daily statistics that are available on the organization’s
website. Figure 2 shows an example of generated statistics that show the number of transmitted
packets per second, depending on the type of application.
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Figure 2. Weekly statistics on network traffic.
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The latest available downloadable data sets were selected for analysis. The first set consisted
of measurements made in 2016. The packets were captured at the Equinix data center in Chicago.
The measurements were taken over several days of sessions from January to April. The second set of
data came from the Equinix data center in New York. The recording of intercepted traffic also took
place on several-day sessions from March to May 2018. To ensure a meaningful comparison of the
network traffic dependencies, different time periods were analyzed, and two sets of data were selected
for each month. Dataset A (sample A) was related to data transmission at the Seattle-Chicago node for
2016 and the Sao Paulo-New York node for 2018. Dataset B (sample B) refers to data transmission
in opposite directions at these nodes. Table 1 contains the specific properties of all traffic samples
extracted from the downloaded datasets.

Table 1. Aggregate summary of all network traffic samples undergoing long-term and
multifractal analysis.

21.01.2016 18.02.2016 17.03.2016 06.04.2016
< Data Total Data Total Data Total Data Total
.;.; sample traffic sample traffic sample traffic sample traffic
% Packets 30,000 0.11% 30,000 0.13% 30,000 0.12% 30,000 0.12%
N Sum (B) 16,358,450 0.12% 20,949,888 0.13% 17,086,840 0.11% 17,311,577 0.12%
Average packet size (B) 545.3 105.07%  698.35 97.95% 569.58 90.27% 577.07  101.25%
Standard deviation 641.94 664.71 643.85 647

Variance 412,083.62 441,836.27 414,548.32 418,606.55
o Packets 30,000 0.10% 30,000 0.11% 30,000 0.10% 30,000 0.11%
2 Sum (B) 29,437,075 0.10% 27,055282 0.11% 26,745,757 0.10% 25,476,884 0.10%
g Average packet size (B) 981.8 97.70% 901.87  100.55%  891.55 98.63% 849.26 98.64%
& Standard deviation 637.8 657.51 657.67 668.28

Variance 406,793.04 432,314.43 432,533.21 446,601.62

15.03.2018 19.04.2018 17.05.2018
< Data Total Data Total Data Total
% sample traffic sample traffic sample traffic
g Packets 30,000 0.12% 30,000 0,10% 30,000 0.09%
3 Sum (B) 28,970,063 0.12% 25,059,464 0,10% 29,103,826 0.10%
Average packet size (B) 96595  101.05%  835.34 98,28% 970.16  108.65%
Standard deviation 640.95 668.4 655.87

Variance 410,819.45 446,761.09 430,159.96
" Packets 30,000 0.22% 30,000 0,19% 30,000 0.14%
v Sum (B) 8,479,210  0.22% 10,544,621 0,19% 10,450,452 0.14%
fg Average packet size (B) 282.65 99.18% 351.5 100,43%  348.36  101.27%
& Standard deviation 470.87 529.91 531.98

Variance 221,722.74 280,803.74 282,998.98

5. Results

The determination of the Hurst coefficient for samples that store fragments of network traffic
were done with the OriginPro 2017 software. This application was used to analyze various types of
data. It also allowed us to generate graphs based on the data. To estimate the value of Hurst, the Hurst
Exponent tool was used along with the rescaled range (R/S) method.

For the fractal analysis of data, the Matlab R2014a software and Fraclab 2.1 tool, specializing in
processing images and signals utilizing fractal and multifractal analysis, were used. Thanks to a large
number of implemented procedures, it was possible to calculate various fractal quantities, such as
fractal dimension, Holder exponents, and multifractal spectra.

5.1. Network Traffic Stationery and Spectrum Analysis—General Information

The proposed process of anomaly detection by comparing multifractal spectra following the
presented concept must be preceded by the verification of the character of the traffic, i.e., its stationary
character. The values of standard deviations differ depending on the sample and the average length of
the data packets of the sets. In the case of the 2016 samples, the changes in the deviations were small.
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This means that for the data in sample B for 2016 with the higher average packet lengths, the standard
deviation (defining the scattering of values around the mean) was lower compared to those in sample
A. On the other hand, the standard deviations of the 2018 data samples was proportionally varied to
the average size of the data packet.

Minor differences could be observed, especially for data samples A and B of 2018. For these sets,
the discrepancy between the compared results was significant. In the case of variance, the values for
each sample were distributed in a similar way to the results of the standard deviations.

The analysis of network traffic samples from 2016 and 2018 consisted of determining the estimated
values of Hurst’s exponent and setting different intervals dividing the data into sub-series. The size of
these intervals was selected within the range of multiples of number 2 from 21 to 211. Based on the
results of estimates using the OriginPro 2017 tool, a graph of the Hurst’s exponent distribution was
generated for each tested network traffic sample. The estimation of Hurst’s exponent value for network
traffic samples consisted of the 30 thousand records allowed for the evaluation of the characteristics of
the given traffic sample.

On the strength of the data, an upward trend in the calculated exponent values could be observed.
The phenomenon presented above may have been caused by the characteristics of network traffic
changes over time. The development of the IoT caused an increase in the number of new devices
generating network traffic, which had an impact on the changing characteristics of packet flow in the
network. Only one average estimated value reached a level below 0.7. The difference between the
extreme values was approximately 0.09. This means that the probability of a given trend continued to
differ by less than 10%. The average for all data in sample A for 2016 and 2018 was 0.735 (Figure 5).
In the case of direction B, a difference between the samples from 2016 and the 2018 packet sets was
visible. These discrepancies may have been the result of the influence of different nodes on which the
packet transmissions took place. The balanced measurements of Hurst’s exponent for the first set of
samples were much higher and exceeded 0.7. The average for these samples was 0.747. The average
for 2018’s data set B was 0.611. The difference between the extreme values for all samples was 0.196.
The average was estimated at 0.689, so the traffic was persistent and showed long-term dependencies
despite the observed differences.

For the traffic flow recorded in 2016 between the Seattle and Chicago nodes, the calculated Hurst
exponent value was the same for samples A and B. Much higher discrepancies could be seen between
the Sao Paulo and New York nodes. The average for all tested samples was 0.712. Based on the
definition of Hurst’s R/S estimation, it could be confirmed that network traffic in the tested backbone
network had long-term properties. Table 2 presents a summary of the mean values of Hurst’s exponent
for all tested network traffic samples.

Table 2. Hurst’s exponent averaged values obtained for all tested packet flow samples.

Date of Packets Collection Sample A Sample B
2016.01.21 0.697 0.719
2016.02.18 0.702 0.777
2016.03.17 0.736 0.753
2016.04.06 0.733 0.738
2018.03.15 0.734 0.618
2018.04.19 0.787 0.581
2018.05.17 0.753 0.634

Average 0.735 0.689

In order to see whether there were no disturbances (anomalies) in the network, the samples
were subjected to spectral analysis. All samples were analyzed using three methods. Then,
the results of spectrum-generating functions were compared with each other in order to determine the
multifractal dependencies.
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The first method of analysis was a function of determining the Legendre spectrum. It was a
more natural way of analysis, but it is associated with the loss of information. Unlike, for example,
finite element methods, spectral methods, the spectral accuracy cannot accurately handle an arbitrary,
locally refined grid. The locally refined grid cannot be smoothly mapped to the standard spectral grid.
In the general setting, the use of spectrum analysis implies a loss of some information because the
Legendre spectrum is always a concave function. It is necessary to use this type of analysis along with
the significant deviation approach to make its estimation easier and robust.

The second method is the function of estimating the spectrum of significant deviation, which
carries more information by forming the determined values and the spectrum itself. To quickly evaluate
the Legendre spectra, the third option of determining the spectrum measure was used, a method that
allowed for the fastest estimation of the value in comparison with the Legendre spectrum function.

Each of the methods of multifractal spectrum analysis presented a different profile of the behavior
of the tested network traffic sample. The values generated by the Legendre spectrum for all tested
samples were arranged into a standard scheme that characterized the traffic data. This also applied to
the broad deviation spectrum. In order to compare all the spectra, they were divided according to the
type of spectrum and the node from which they originated.

5.2. Case of Normal Traffic State

The analysis of data transmitted at the Chicago—Seattle node in 2016 (direction B) is shown in
Figure 3 and Figure 6. The distribution of Legendre’s spectra and the spectra of significant deviation
are shown in the left and right graphs of Figure 3, respectively.
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Figure 3. Distribution of Legendre spectra (left graph) and significant deviation spectra (right graph)
for the 2016 sample B.

The spectra generated for these packet sets had very similar characteristics. Both the first and the
middle phase of the spectra were the same for all types of samples. Differences occurred only at the
level of the final values of the fractal dimension. Therefore, these spectra confirmed the self-similar
nature of the network traffic, as shown in the form of a time course of the length of packets flowing
through the network.

The analysis of the spectra determined by the lines did not show any aberration, contrary to
the analyzed sample A. All the spectra of significant deviation showed an entirely similar feature,
which indicated the similarity of the flowing traffic. Possible anomalies occurring at the node could be
immediately detected by a data sample that was strongly distant from the spectra visible on the graph.

A detailed analysis of subsequent samples of the 2018 data is presented in Figure 4. In detail,
Figure 4 presents the Legendre spectra and the distribution of the significant deviation spectra for the
three tested sample A in the left and right graphs, respectively.
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Figure 4. Distribution of Legendre spectra (left graph) and large deviation spectra (right graph) for
the 2018 sample A.

The Legendre’s spectra for these sample sets also had similar estimations. One could see a clear
trace of the creation of a path of spectral value values for this data set. By analyzing new samples from
other packet tracking series for this node in the future, one will be able to compare new results with
those already obtained. If they overlap or the waveform is similar, the database of the nature of the
movement will be enlarged. In the case of a sample containing an unusual movement associated with
a network attack, the estimation of this spectrum should significantly differ from the path determined
by the standard data flow, which will allow the detection of anomalies or threats.

Each of the spectra obtained had similar fractal dimension values. They did not show any
deviation from the norm, as determined by the resulting path of the significant deviation spectra.
The final phase overlapped for all spectra. Slight deviations occurred in the first and middle phases of
the waveforms, but all of them were very close to each other. Figure 5 shows the Legendre spectra for
the 2018 sample A generated by a faster measurement method and the distribution of the Legendre
spectra for the 2018 sample B in the left and right graphs, respectively.
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Figure 5. Legendre spectra for the 2018 sample A of obtained by values determined by measuring
values (left graph) and distribution of Legendre spectra for the 2018 sample B (right graph).

Despite the analysis of the data generated at another node, the results showed that the traffic flow
was very similar to the set of sample B from 2016. The range of the point dimension, in which all the
values of the fractal dimension fell, was also very similar. The characteristics of these spectra did not
show any characteristic features. They did not show any significant deviation from each other, which
may suggest that the sample data indicated a typical traffic path in which there were no symptoms
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associated with a network attack or suspicious packet flow. The significant deviation spectra for sample
B taken from the New York—Sao Paulo node are shown in Figure 6 (left graph).
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Figure 6. The distribution of the significant deviation spectra (left graph) and the measure of value
(right graph) for the 2018 sample B.

The first phases of the spectra began in a similar value area. The subsequent phases of estimation
ran in a very similar way, aiming at almost a typical end of the fractal and point dimension. There
were no significant deviations in the results, which may suggest a similar conclusion to the Legendre
spectra generated for this data set. Figure 6 (right graph) shows a set of the Legendre spectra analyzed
with a measure of value.

The interval of the point dimension, which contained the determined fractal values of the spectra,
shifted towards slightly lower values than in the case of all the previously analyzed network traffic
samples. The beginnings of all the spectra for the 2018 dataset B had different areas of the fractal
dimension value concerning the point dimension. The subsequent phases overlapped or were very
close to each other, which revealed a very similar nature of the estimation of the spectra of these samples.

5.3. Case of Anomaly Detection

Figure 7 shows the evaluation of Legendre’s spectra for the 2016 sample A extracted from the data
collected and the significant deviation for the same data set in the left and right graphs, respectively.
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Figure 7. Distribution of Legendre spectra (left graph) and significant deviation spectra (right graph)
for the 2016 sample A.

When analyzing the graphs, we can see that data transmission in the form of packets showed
standard features for this method of generating spectra. All estimates overlapped and slightly differed
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in values, which was related to the dynamic structure of network traffic. However, the general character
of this traffic was typical. The discrepancy between the tested samples concerns the series A of February
18, 2016. In this case, the final results of the fractal dimension generated higher values in comparison
with the other samples.

Nevertheless, all series remained convergent. In the case of a substantial deviation spectrum,
some discrepancies could be seen. For the three traffic samples taken in January, March, and April
2016, the traffic flow characteristics were similar. The initial and the final phase of the spectrum had
very close values that came down to a characteristic waveform, but these values were not identical,
as the difference was only visible in the thousandths or even ten-thousandths of the estimated results.
Slight deviations were visible in the middle phase but did not change the nature of the sample.
The data recorded on 18 February 2016 showed a deviation from the other values. The beginning
and middle course of the spectrum propagation were very similar. In the final phase, there was a
faster disappearance of the values concerning the point dimension. The fractal dimension showed
very similar estimates concerning the rest of the generated spectra. The difference between the ends
of the point dimension of the deviated sample and the others was 0.067. Due to the small deviation,
this sample could not be considered an anomaly that would describe this movement as suspicious or
infected. Perhaps the sudden change in packet flow characteristics may have been due to other reasons
that were not relevant to the stability of the network. For the faster Legendre spectrum measure,
the results of the analysis were collected and are presented in Figure 8.
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Figure 8. Legendre spectra obtained for samples A (left graph) and B (right graph) in 2016, determined
by a measure of values.

The estimates had higher values of the fractal dimension in relation to the analyses performed with
the use of functions. All spectra showed similar characteristics concerning each other. The initial and
final phases differed depending on the data set, but all had one common space for the maximum values
of the fractal dimension, in which the spectra almost overlapped. For the sample of 18 February 2016,
the initial phase was slightly different from the others, a difference which may have been the reason
for the slightly different characteristics of the recorded motion. In the case of sample B, the spectra
had a very similar distribution for all the tested samples. The samples from February and March 2016
were a particular case. They had almost the same waveform, clearly differing only in the final phases.
The remaining samples did not stand out significantly, falling within a kind of path of the value that
was determined by the spectrum. Compared to sample A of this year, the parabolic distribution of the
obtained results was less developed. Additionally, in this case, the point dimension shifted to higher
values and had a different course in comparison with the Legendre dimensions, as determined by the
default function of the determination of the spectra.
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We aimed to automatically compare spectra and identify anomalies. The presented analysis
showed anomalies in traffic patterns on February 18th. Due to the nature of the traffic and the
availability of data selected by CAIDA, it was not possible to determine the exact cause of the anomalies
observed. The paper aimed to present a two-stage approach to the detection of anomalies using the H
parameter and the multifractal spectrum.

6. Conclusions

The monitoring of data flows in the interconnected communication of IoT networks as wide-area
computer networks is an essential issue in the context of network reliability and information security.
The ability to detect anomalies in network traffic can significantly improve the management of network
infrastructure and security. This paper presents the possibility of using the Hurst coefficient to
determine the level of self-similarity of the traffic, which affects the ability to determine the typical
operating states as well as the detection of certain anomalies such as an attack, refusal of access,
overload and post-failure state. Additionally, this article presents the results of an analysis of traffic in
the communication network using a statistical coefficient of similarity and multifracture spectrum.
The presented results of the measurements and research confirmed that the analyzed traffic was
self-similar and amounted to 0.5-1. The value of the H parameter increased with the increase in the
level of network utilization. Therefore, network efficiency was determined by the self-similar properties
of network traffic. Some of the most important physical phenomena can significantly increase the
LRD in terms of user behavior, data generation, organization and search, traffic aggregation, network
control, network control, etc. The results of analytical considerations and experiments showed that the
similarity factor could be successfully applied in the analysis of traffic in computer networks and the
communication infrastructure of IoT systems.

In order to compare the self-similar and multifractal statistical characteristics of the proposed
model to those of the real traffic, some statistical data tests were conducted, such as the autocorrelation
function and the multifractal spectrum. The values of Hurst’s exponent presented in the paper showed
that network traffic is characterized by long-term dependencies. The analyzed cases showed that the
appropriate network throughput was maintained, which emphasized the general characteristics and
character of the traffic generated in nodes. The measured values of Hurst’s exponent allowed for an
in-depth analysis of the current state of the network, as well as a forecast of the future trend of data
behavior. Such use of this methodology enables a user to prepare for the maintenance or change of the
trend in a timely manner. Sudden deviations of the exponent value with the obtained results are likely
a sign of problems, which, for network traffic, indicates an unusual behavior of the network, possibly
related to a cybercrime attack.

The solutions studied may be ideal for analyzing traffic in backbone networks for security and
the detection of attacks. The tested methods—multifractal analysis, in particular—are sensitive to
any deviation of traffic characteristics due to anomalies. Such traffic analysis methods can be ideal
for protecting critical data and maintaining the continuity of internet services, including the IoT
communication infrastructure.

In the proposed approach, the direct time series extraction from the network packet stream can be
done quickly enough and for a sufficiently large set of classes to be able to cope with the expected
scenarios for IoT network development. Evidence of the existence of multifractal behavior of traffic
flows in computer networks has contributed to deeper traffic understanding and modeling. Through
multifractal interpretation, an explanation of traffic behavior in timescales that are smaller than some
hundreds of milliseconds is possible.
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