
applied  
sciences

Article

A Computer-Aided Detection System for the
Detection of Lung Nodules Based on 3D-ResNet

Jiaxu Ning 1,*, Haitong Zhao 2, Lei Lan 2, Peng Sun 3,4 and Yunfei Feng 5

1 School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2 College of Computer Science & Engineering, Northeastern University, Shenyang 110819, China;

zhaohaitong214@gmail.com (H.Z.); lanlei1021@gmail.com (L.L.)
3 Fidelity Investments Inc., Boston, MA 02210, USA; peng.sun@fmr.com
4 Department of Computer Science, IOWA State University, Ames, IA 50010, USA
5 Wal-mart Inc., Bentonville, AR 72712, USA; Yunfei.Feng@walmart.com
* Correspondence: zhangchangsheng@mail.neu.edu.cn

Received: 12 November 2019; Accepted: 11 December 2019; Published: 16 December 2019 ����������
�������

Abstract: In recent years, the research into automatic aided detection systems for pulmonary nodules
has been extremely active. Most of the existing studies are based on 2D convolution neural networks,
which cannot make full use of computed tomography’s (CT) 3D spatial information. To address
this problem, a computer-aided detection (CAD) system for lung nodules based on a 3D residual
network (3D-ResNet) inspired by cognitive science is proposed in this paper. In this system, we
feed the slice information extracted from three different axis planes into the U-NET network set, and
make the joint decision to generate a candidate nodule set, which is the input of the proposed 3D
residual network after extraction. We extracted 3D samples with 40, 44, 48, 52, and 56 mm sides from
each candidate nodule in the candidate set and feed them into the trained residual network to get
the probability of positive nodule after re-sampling the 3D sample to 48 × 48 × 48 mm3. Finally, a
joint judgment is made based on the probabilities of five 3D samples of different sizes to obtain the
final result. Random rotation and translation and data amplification technology are used to prevent
overfitting during network training. The detection intensity on the largest public data set (i.e., the
Lung Image Database Consortium and Image Database Resource Initiative—LIDC-IDRI) reached
86.5% and 92.3% at 1 frame per second (FPs) and 4 FPs respectively using our algorithm, which is
better than most CAD systems using 2D convolutional neural networks. In addition, a 3D residual
network and a multi-section 2D convolution neural network were tested on the unrelated Tianchi
dataset. The results indicate that 3D-ResNet has better feature extraction ability than multi-section
2D-ConvNet and is more suitable for reduction of false positive nodules.
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1. Introduction

Lung cancer is the cancer with the highest mortality in the world. According to statistics,
222,500 new cases of lung cancer and 155,870 deaths are predicted in the United States in 2017 [1].
Lung cancer deaths account for 25% of all cancer deaths, ranking first among all cancers. The seminal
National Lung Screening Trial [2] shows that screening for high-risk lung cancer with low-dose
computed tomography (CT) is more effective than chest X-ray screening, which can reduce the 7-year
mortality rate by 20%.

Since then, screening for lung cancer with low-dose CT has been widespread worldwide. However,
a large number of CTs require more radiologists to analyze and diagnose, which greatly increases
the burden and the needs of radiologists. To alleviate this, researchers have studied computer-aided
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methods for the detection of lung nodules based on CT and have proposed multiple computer-aided
detection (CAD) systems for this purpose. These CAD systems can be divided into non-convolution
neural network CAD systems, such as the use of a support vector machine (SVM) classifier for lung
nodule detection [3] or using image intensity, shape, and texture features for nodule detection [4–6] as
proposed by Wiemker and Rafael; and convolution-neural-network-based CAD systems, such as lung
nodule detection combined with multi-section based on a 2D convolution neural network.

A typical CAD system consists of two stages: 1) nodule candidate detection and 2) false positive
reduction [7]. The aim of the nodule candidate detection is to detect nodule candidates at a very
high sensitivity, which usually produces many false positives. In the false positive reduction stage,
the system is expected to have a good classification performance to reduce false positive nodules in the
candidates at the nodule discovery stage. Finally, the probability of each candidate nodule being a true
positive is given. This stage has an especially important impact on the performance of the CAD system.

Due to the improvement of modern computer computing power and the development of deep
learning [8], convolution neural networks are increasingly being applied in the image analysis field [9].
Because convolution neural networks have a strong ability to extract image features, CAD systems
based on them have shown better performance than other methods and achieved a higher competition
performance metric (CPM) score. The approach proposed by Nasrullah et al. uses two deep 3D
faster R-CNN and U-Net encoder–decoders with MixNet to detect and learn the features of the lung
nodules, respectively [10]. For the DeepLung model, a 3D faster region-based convolutional neural
network (R-CNN) was designed for nodule detection with 3D dual path blocks and a U-NET-like
encoder–decoder structure to effectively learn nodule features, and deep 3D dual path networks
(DPNs) were designed for nodule detection and classification, respectively [11].

Although the existing CAD systems based on convolution neural networks have achieved better
performance than CAD based on other approaches [12–14], there are still two problems in these
studies: (1) Too many false positive nodules are introduced in the nodule discovery stage, and the
convolution neural network is prone to false positive nodules in the subsequent false positive reduction
stage. (2) These studies mostly use 2D convolution neural networks for false positive reduction. It is
well-known that a CT image has three dimensions. A 2D convolution neural network cannot make full
use of the 3D feature and spatial information of the image data. So, there is still much room for the
precision of the network to improve.

Aiming at the above problems, we use the spatial information of data as much as possible
in the phases of both candidate nodule detection and false positive nodule reduction. The main
contributions are as follows: (1) A nodule discovery method based on the U-NET framework [15] is
designed, which is based on a 2D convolution neural network and has good feature extraction ability.
Through extracting information from three axial planes for detection, it makes good use of the spatial
information of the data. This candidate nodule discovery method has high discovery intensity and
greatly reduces the number of false positive nodules. (2) A 3D residual network structure is proposed
to reduce false positives. For 3D images such as CT, the 3D convolution neural network has a stronger
ability to extract features than a 2D network. In order to make the network easy to train, we add
residual blocks to alleviate gradient dispersion.

2. Data

The dataset in this paper was from the largest available open dataset (i.e., the Lung Image Database
Consortium (LIDC-IDRI)) [16] and the Tianchi racing data set [17]. The LIDC-IDRI database was
initiated by the American National Cancer Institute, aiming to study early cancer detection in high-risk
groups. The LIDC-IDRI database contains a total of 1018 CT images that come from seven institutions
and were labeled by four experienced radiologists in two stages. In the first stage, each radiologist
independently diagnosed and labeled the nodule position. The following are the three kinds of labeled
objects: (1) R (diameter) ≥ 3 mm nodules, (2) R < 3 mm nodules, and (3) R ≥ 3 mm non-nodules. In the
second stage, annotations from all four radiologists were reviewed in an unblended fashion and each



Appl. Sci. 2019, 9, 5544 3 of 12

radiologist decided to either accept or reject each annotation. The database is very uneven, and the
thickness of CT images varies from 0.6 to 5.0 mm. According to the recommendations of the American
Radiology Association [18], we discarded the scans with a thickness greater than 3 mm, yielding 888
scans. According to the current screening rules for lung cancer, we treated only nodules that were
classified as R ≥ 3 mm as significant, while nodules that were R ≥ 3 mm and non-junctions were
classified as meaningless. Since the nodule labels were labeled by different radiologists, the nodule
labels whose distances were closer than the sum of their radii were merged. The merger regulation
is to average their diameter and coordinates separately. We selected the nodules labeled by 3 or 4 of
the 4 radiologists as standard positive nodules. These damage tissues were the detection target of our
algorithm. Other nodules labeled by less than 3 radiologists or nodules with R ≥ 3 mm were considered
as meaningless. We believe that they are neither false positive nodules nor true positive nodules.

3. Method

This paper proposes a two-stage CAD system framework. The implementation process of the
proposed CAD system is shown in Figure 1. The two stages are: 1) candidate detection; and 2) false
positive reduction. The network structure of the first stage is described in Figure 1a. It detects and
extracts the candidate nodules from the preprocessed CT images. For this task, we designed a modified
U-NET [15]. As shown in the bottom-left of Figure 1, the CT sections of X–Y, X–Z, and Y–Z are fed
into the modified U-NET to detect candidate nodules. Finally, the candidate nodules in different
dimensions of the sections are merged into 3D candidate nodules, which is the input of the next
stage. The task of the second stage is to reduce false positives from the candidates generated by the
first stage. A ResNet structure is employed at this stage, as shown in Figure 1b. As shown in the
picture at the bottom-middle of Figure 1, we extracted five kinds of 3D samples with different sizes
(403 means 40 × 40 × 40 mm3, 443 means 44 × 44 × 44 mm3, 483 means 48 × 48 × 48 mm3, 523 means
52 × 52 × 52 mm3, and 563 means 56 × 56 × 56 mm3) from each candidate and adjusted the size to
48 × 48 × 48 mm3 uniformly. The setting of the sizes of 3D scans was determined by experimental
trials and the experience of the researchers. Next, we fed them into a 34-level 3D residual network
to reduce false positives and get the positive probability nodules. When training the models, we
randomly divided the 888 scans into 5 parts: 3 for training, 1 for cross-validation, and 1 for testing.
The details of the implementation of the two stages are introduced in the following subsections.

3.1. Candidate Detection

For a CAD system, the candidate detection plays a decisive role in the performance of the next
phase. The candidate detection algorithm should improve the detection intensity as much as possible
while reducing the number of false positives on the basis of guaranteeing a high detection intensity.
To improve the detection intensity and reduce the number of false positives, we designed a convolution
neural network based on U-NET to detect candidates. In contrast to Z-NET [19] which only used
vertical sections for candidate detection, we cut three axis planes of each CT to detect candidate
nodules through the same U-NET. We obtained the position information p(x, y, z) and diameter of each
candidate as well as the probability of the given candidate. We only focused on candidates with R ≥ 3
mm since nodules R < 3 mm and non-nodules were considered as meaningless. We merged candidate
sets of three sections to improve the detection intensity. The merger rule was to merge the candidates
whose distances of (x, y, z) coordinates did not exceed 5 mm and the new coordinates took the average.

The images were preprocessed before passing through U-NET. There were great differences
between the scans because they came from different facilities and different devices, which would
have a great impact on our CAD system. We re-sampled the segmented images so that each voxel
represented 1 mm3. Then we adjusted the pixel intensity from (−1000, 400) to (0, 1), and the portion
outside this range was discarded.
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Figure 1. Computer-assisted detection (CAD) system overview.

The original U-NET is very prone to over-fitting because this model contains a large number of
parameters [20]. To solve this problem, several adjustments were made to the structure of U-NET. (1) We
adjusted the U-NET input size from 572× 572 to 320× 320; the input size of 320× 320 can contain all the
lung tissue areas of all existing image data. (2) The number of convolutional cores was appropriately
reduced on the premise of securing the number of original network layers. The modified U-NET did not
show a significant drop in performance and this avoids over-fitting [21]. The adjusted network structure
is shown by Figure 1. It consists of down-sampling steps and up-sampling steps. Each down-sampling
step consists of two consecutive convolutional layers and one pooling layer. The convolution kernel
size of a convolution layer was 3× 3, and the initial number of convolution kernels was 32. We doubled
the number of convolution cores in every down-sampling step. The rectified linear unit (ReLU) [22]
was applied to every convolution layer. We used the filling mode of the same padding to keep the size.
The pooling layer used a 2 × 2 maximum pool in steps of 2 for down-sampling. Each up-sampling
step consisted of two consecutive convolution layers—a connection layer and an up-sampling layer.
The convolution kernel size of the convolution layer was also 3 × 3, and the number of convolution
kernels was halved in each stage. ReLU and the same padding were applied to each convolutional
layer. The connection layer duplicated the corresponding same-size features in the down-sampling step
and linked them with the corresponding features in the upper sampling line. The up-sampling layer
used 2 × 2 steps for up-sampling to achieve size amplification. The last layer of the network adopted a
1 × 1 convolution operation. The sigmoid activation function was used in this layer. A probability map
with the size of 320 × 320 × 1—the same as the input size—was obtained, and the candidate nodules
were extracted based on the U-NET output probability mapping.

In order to prevent the network from over-fitting the false positive reduction caused by the
imbalance of the positive nodules and the false positive nodules in the candidate set, we discarded
some low-probability candidates and only focused on the higher-probability candidates. We selected a
probability threshold based on experience and the performance on the cross-validation set. We reduced
the probability threshold from 1.0, and the amplitude of each reduction was 0.1 until the detection
intensity on the cross-validation set was constant after three consecutive reductions. This value was
chosen as the threshold. This allowed us to ensure high detection intensity while minimizing the
number of false positive nodules.
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3.2. 3D Sample Extraction

Since the nodule’s R (diameter) ≥ 30 mm, in order to include all the nodule information and
enough background information in the dicing blocks, we extracted 48 × 48 × 48 mm3 3D samples
centered on the candidate p(x, y, z). Because the size distribution of the nodules is very uneven, in order
to improve the performance of the CAD system, we also extracted dicing blocks of 40 × 40 × 40 mm3,
44 × 44 × 44 mm3, 52 × 52 × 52 mm3, and 56 × 56 × 56 mm3 and resized them to 48 × 48 × 48 mm3.
These 3D samples got their respective nodule probabilities via the same false positive reduction
network and the average was used as the final probability.

3.3. False-Positive Reduction: 3D Depth Residual Network

In existing CAD systems [12], the 2D convolutional neural network is mostly adopted in the false
positive reduction stage. However, 2D convolutional neural networks cannot make full use of 3D
image information. Studies have shown that the convolutional neural network depth is an extremely
important factor in determining its performance [23]. The performance of a convolutional neural
network will increase as its depth increases. At the same time, deeper networks become more difficult
to train and degenerate. In order to solve these problems, a deep residual network [24] was proposed
by He et al. Based on the above discussion, we designed a 3D deep residual network in order to
improve the performance of reducing false positives.

The structure of the 3D deep residuals network is shown in Figure 1b. The main network
structure refers to the 34-layer residual network in [24]. The original residual network was a 2D
residual network and the CT involved in this paper provides 3D image information. The original
2D network cannot make good use of spatial information, so we improved the original 2D residual
network and propose a 3D residual network. At the same time, the number of original network
convolution kernels is large. We properly reduced the number of convolution kernels under the
existing data set to prevent over-fitting and to prevent difficulty in training. The improved 3D residual
network was composed of 33 convolution layers and a fully-connected layer. The convolution layer
used 3 × 3 × 3 convolution kernels and the initial convolution kernel was 16. For the same size
output, the number of convolution kernels does not change. We doubled the number of convolution
kernels when the size of feature map was reduced by half. We achieved down-sampling by setting
the step size to 2. We implemented residual operations by inserting shortcut connections between
convolutional layers. While the input and output of the residual block were the same, we added the
input characteristics and output characteristics of the residual block directly before passing through
the activation function. When the output size of the residual block increased, we let the input feature
map pass through a 1 × 1 × 1 convolutional layer of step size 2 to uniform size and then added it to
the output. At the end of the network was a global average pooling and a fully-connected layer using
the sigmoid’s activation function.

In the training process, we used an efficient first-order stochastic gradient optimization algorithm
(Adam [25]) to optimize the model. The cross-entropy error was used as a measure of the loss.
The number of samples per batch (mini-batches) was 40, and batch normalization [26] was used to
accelerate training before each convolutional layer’s activation function. The weight initialization
strategy is the standard initialization proposed by Glorot et al. [27]. Training was stopped when the
accuracy in the crossing validation dataset did not improve after three epochs.

3.4. Data Augmentation

Data augmentation is an important way to improve the performance of convolutional neural
networks because it prevents over-fitting. We adopted a series of data augmentation methods during
the candidate detection stage and false positive reduction stage.
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(1) Candidate detection phase: In the candidate detection phase, we adopted the following
data augmentation methods: (−20, 20) degree random rotation, image mirror, R ≥ 30 mm random
translation. Through data amplification, the detection intensity increased slightly.

(2) False-positive-reduction stage: Because the candidate set is unbalanced, the false positives are
far greater in number than the true positives. Deep residual networks trained with unbalanced data
can result in predictions trending toward false positives, degrading the performance of the network.
Therefore, the amplification process at this stage was only for the positive nodules of the training set
and the cross-validation set. For each positive nodule, we took the following amplification methods:
(−10, 10) degrees random rotation, 1 mm translation in each axis, and extraction of 3D samples with
side lengths of 40, 44, 48, 52, and 56 mm and adjusting them to 48 × 48 × 48 mm3 uniformly.

3.5. Evaluation

The output of the CAD system is a CSV file containing all the label information of candidates.
Each label contains (x, y, z) coordinate information and a score. The score range is (0, 1). The higher
the score, the higher the probability that the corresponding nodule is a true positive. When the label
coordinates were located at a circular space centered on the standard reference coordinate with the
radius of the nodule as radius, we identified it as a correctly detected positive nodule. Otherwise it
was treated as a false positive nodule. The free response operating characteristic (FROC) curve of the
result set and the CPM [28] were used as evaluation criteria to measure the CAD system’s performance.
The CPM calculated the average intensity of the FROC curves at seven points (1/8, 1/4, 1/2, 1, 2, 4,
and 8 frames per second per scan (FPs/scan)). It shows the performance of CAD systems at important
points and can be a good measure of the performance of a CAD system.

4. Experimental Results

4.1. Candidates Detection

We extracted the candidate set using three sections via U-NET and then merged the three
candidates. The detection intensity of the three sections merged into the final detection intensity.
In order to compare the detection performance of candidate nodules with other CAD systems, we
compared the solid [29], sub-solid [5], and large solid [30] algorithms in the proposed system [12]
with their merged detection sensitivity. As shown in Table 1, the detection sensitivity of the three axial
sections, Z-order, Y-order, and X-order, were 91.5%, 80.3%, and 84.4%, respectively. The detection
sensitivity after merging the three candidate sets and removing the candidate nodules with lower
probability was 94.2%. Compared to the solid, sub-solid, and large solid algorithms, the false
positives produced by our algorithm for nodule discovery based on three-section U-NET guaranteeing
the discovery intensity of similar nodules were only 30% (81.6/269.2) of those obtained by the
original algorithm.

Table 1. Detection sensitivity of candidate detection algorithms.

Candidate Dection Sensitivity (%) FPs per Scan

Z-order 91.5 46.9
Y-order 80.3 21.9
X-order 84.4 46.4

Combined set 95.2 81.6
Solid 85.7 329.3

Sub-solid 36.1 287.2
Large solid 31.8 47.1
Reduced set 93.3 269.2
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4.2. False Positives Reduction

For a given candidate nodule set, we classified positive and false positive nodules by using
3D-ResNet. The results of false positive reduction are shown in Figure 2. With the help of the test set
amplification, we obtained an average detection sensitivity of 78% at seven operating points. We found
that 3D-ResNet test data augmentation (TDA) significantly improved the network performance.
The average detection intensity increased from 72.1% to 78% through the test set amplification.
The detection sensitivity of the nodule detection phase was 0.952, and our CAD system achieved 86.5%
and 93.3% detection sensitivity at 1 FPs/scan and 4 FPs/scan, respectively.

(a) (b)

Figure 2. (a) The line chart of 3D-ResNet test data augmentation (TDA) and free-response operating
characteristic (FROC) of noTDA in the false positive reduction stage; (b) 3D-ResNet and late-fusion 9
views. The space between the dotted red/blue lines is the 0.95 confidence interval of the data of each
method, respectively.

As a contrast, we implemented the multifaceted 2D ConvNets of DIAG CONVNET [12] in the
false positives detection stage. For each candidate, nine 50 × 50 × 50 mm3 sections were extracted
from 64 × 64 × 64 mm3 3D samples. Each section corresponded to different planes of 3D samples
and via 2D ConvNets. Finally, we used a late-fusion method to merge them. The FROC curves of our
3D-ResNet and the late-fusion 9 views network are shown in Figure 2b. 3D-ResNet’s CPM = 0.78 was
higher than late-fusion 9 views’ (CPM = 0.729). At the same time, the detection intensity of 3D-ResNet
was also higher than late-fusion 9 views at 1 FPs/scan and 4 FPs/scan.

Figure 3 gives the candidate 3D samples with positive probability from 0.1 to 0.9 after removal of
the false positive nodes. It is obvious from the figure that the more pulmonary nodules the candidate
node had, the greater the positive probability.
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Figure 3. Candidate 3D samples of different probability.

4.3. Comparison with Existing CAD Systems

4.3.1. Comparison with 2DConvNet-CAD in CUMedVis

In order to better evaluate the performance of 3D-ResNet on different data sets, we compared the
CAD system in this paper with Conv2D in DIAG CONVNET. The test data used for comparison was the
totally unrelated Tianchi Race [17] data, and the corresponding candidate set of the data was generated
by the U-NET of the candidate nodule generation phase above. In order to compare the two networks
to determine which had better feature extraction and false positive reduction capability, we performed
test set augmentation on both networks based on the same candidate nodule set. The performance of
2DConvNet-CAD in CUMedVis [31] and 3D-ResNet CAD on the unrelated Tianchi dataset is shown in
Figure 4. The CPM of 3D-ResNet CAD was 0.503, which is better than the 2DConvNet-CAD CPM score
(0.429). It is obvious that the 3D convolution neural network had a better spatial feature extraction
capability for 3D image data with spatial features such as CT and had a better performance than the
2D convolution neural network. At the same time, when the network structure is complex and the
network is deep, the residual network can alleviate the phenomenon of gradient dispersion greatly
and accelerate training.

Figure 4. Comparison with 2DConvNet-CAD on the Tianchi dataset.

4.3.2. Comparison with Ohter CAD Systems that Use LIDC-IDRI Data Sets

To compare with other existing CAD systems more widely, we list the performance of other CAD
systems that use the LIDC-IDRI data set in Table 2. In contrast to the proposed two-stage nodule
detection approach, the compared methods use one step to process the input CT images, regardless
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of what kind of model is employed. The feature merging method is employed in the proposed CAD
system to merge nodules from different dimensions of sections. As shown in Table 2, our 3D-ResNet
CAD had better performance than other CAD systems based on selecting the same layer thickness
and the same size data. Especially at 4 FPs/scan, the detection intensity of 3D-ResNet CAD reached
92.3%. Although the CAD system proposed by Cascio et al. obtained a sensitivity of 97.0%, it found
111 nodules among the same samples. In contrast to this, the proposed CAD system found more true
positive nodules. Thus, the proposed CAD system had a stronger ability to detect lung tumor nodules,
which is essential for diagnosis in the medical field.

Table 2. CAD system using the Lung Image Database Consortium (LIDC-IDRI) dataset published in
recent years.

CAD Systems Year #Scans Slice
Thickness

Nodule
Size (mm)

Agreement
Levels Nodules Sensitivity (%)

/FPs/Scan

3D-ResNet - 888 ≥2.5 ≥3 at least 3 1186 92.3/4.0 86.5/1.0
CUMedVis [31] 2016 888 ≥2.5 ≥3 at least 3 1186 90.7/4.0 84.8/1.0
DIAG_CONVNET [12] 2016 888 ≥2.5 ≥3 at least 3 1186 90.1/4.0 85.4/1.0
LungCAM [32] 2015 949 - ≥3 at least 3 1749 80.8/8.0
Van Ginneken et al. [13] 2015 865 ≥2.5 ≥3 at least 3 1147 76.0/4.0 73.0/1.0
Brown et al. [4] 2014 108 0.5–3 ≥4 at least 3 68 75.0/2.0
Choi and Choi [6] 2013 58 0.5–3 3–30 at least 1 - 95.3/2.3
Tan et al. [33] 2013 360 - ≥3 at least 4 - 83.0/4.0
Teramoto and Fujita [34] 2013 84 0.5–3 5–20 at least 1 103 80.0/4.2
Cascio et al. [35] 2012 84 1.25–3 ≥3 at least 1 148 97.0/6.1 88.0/2.5
Guo and Li [36] 2012 85 1.25–3 ≥3 at least 3 111 80.0/7.4 75.0/2.8
3D MixNet [10] 2019 89 1.25–3 ≥3 at least 3 127 88.83/3.5
Li et al. [37] 2018 85 1.25–3 ≥3 at least 3 119 86.0/2.4

5. Conclusions

In this paper we proposed a nodule discovery algorithm based on a three-section U-NET and a
CAD system false positive reduction algorithm based on a 3D residual network. The system presented
two successes. First, in terms of candidate detection, compared to the single-section U-NET used by
Z-NET, we used the optimized U-NET for detection in three sections. Then, we used a high threshold
to extract the candidate nodule set and finally merged the three candidate sets. In this way, the spatial
information of the data can be better used to improve the detection intensity at the nodule detection
stage, while the high threshold reduces the number of false positive nodules to a large extent. As shown
by Table 1, at a similar detection intensity of 95.2%, the number of false positive nodules generated
by this method was only 30% that of the other detection methods. Secondly, in the false positives
reduction stage, to make better use of the data’s spatial information, we abandoned the traditional 2D
convolution neural network and used a 3D convolution neural network. Because spatial information
is essential for spatial data like CT scans, using spatial information effectively can greatly improve the
ability of the network to identify nodules. At the same time, we increased the depth of the network as
much as possible to achieve better performance. We adopted a 3D residual network to make the deep
3D network easy to train. For each nodule, we extracted five 3D samples of different sizes into a joint
judge to eliminate the effect of uneven nodule size distribution. The results show that this improved
performance to some extent. Finally, we implemented a multi-section 2D convolution neural network
(CUMedVis) [31] and compared it with our algorithm on the same data. The results show that our 3D
residual network had better performance and a higher CPM score (0.780). Based on the experimental
results, we conclude that 3D convolution neural networks have a stronger spatial feature extraction
capability for 3D data with spatial information (e.g., CT scans) than 2D networks, and therefore can
obtain better performance and CPM scores. In this paper, we focused on the optimization of both
nodule candidate detection and false positives reduction, and achieved good results.
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