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Abstract: We demonstrate that directed transport of particles in a two dimensional driven lattice can
be dynamically reversed multiple times by superimposing additional spatially localized lattices on
top of a background lattice. The timescales of such current reversals can be flexibly controlled by
adjusting the spatial locations of the superimposed lattices. The key principle behind the current
reversals is the conversion of the particle dynamics from chaotic to ballistic, which allow the particles
to explore regions of the underlying phase space which are inaccessible otherwise. Our results can
be experimentally realized using cold atoms in driven optical lattices and allow for the control of
transport of atomic ensembles in such setups.

Keywords: directed transport; current reversal; optical lattice; cold atoms; control of chaos;
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1. Introduction

Originally conceived as a proof of principle behind the working of biological motors [1–4],
the phenomenon of ‘ratchet’ transport of particles, i.e., the emergence of unidirectional particle
transport in an unbiased non-equilibrium environment, has gained widespread applications across
various disciplines [2,5–14]. The necessary ingredients required for such a rectification of random
particle motion into directed transport has been shown to be non-equilibrium, non-linearity and
the breaking of certain spatio-temporal symmetries [7,15,16]. Since then the ratchet effect has found
numerous applications including particle separation based on physical properties [17–19], design
of efficient velocity filters [20,21], transportation of fluxons in Josephson junctions arrays [22,23],
unidirectional motion of active matter [13,24], voltage rectification in superconducting quantum
interference devices (SQUID) [25–27], and enhancement of photocurrents in quantum wells [28].

Due to novel experimental progress in atom trapping techniques, directed transport of atomic
ensembles has been realized in ac-driven optical lattices [29,30] both in the ultracold quantum
regime [31] and at micro kelvin temperatures where a classical dynamics approach successfully
describes the experiments [14,32]. Apart from the vast majority of ratchet-based setups in one
spatial dimension (1D) [7,15,16,33,34], recent experiments have significantly progressed the realization
of highly controllable two dimensional (2D) setups using ac-driven optical lattices [14,29,35,36]
and holographic optical tweezers [37]. Due to such widespread applications of directed particle
transport, the different mechanisms to control the transport have been a topic of ongoing research.
One such mechanism is ‘current reversal’ where the direction of the particle transport can be reversed
by suitably changing one or more system parameters [25,35,38–46]. Indeed, most of the existing
schemes to generate current reversals focus on reverting the direction of asymptotic particle transport
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due to a change of system parameter [47–50]. Only recently has research focused on setups where
the current reversal occurs dynamically in time either due to a time-dependent switching of system
parameters or due to the presence of interactions and dimensional coupling [33,38,51,52].

Here, we present a scheme to dynamically generate multiple current reversals due to
superimposed driven lattices in two dimensions. The setup employs a ‘background lattice’ driven by
an external bi-harmonic oscillating driving force, whose underlying potential is separable in terms of
the spatial coordinates. This allows directed transport of particles along the direction of the driving
force and trapped motion in the orthogonal direction. Superimposing a second lattice in a finite region
of space along the direction of transport leads to a reflection behavior and hence generates a current
reversal. Subsequently, the superposition of a third identical lattice can reflect the transport direction
once again yielding a second reversal of transport. The timescales of the current reversals can be
controlled by the spatial locations of the superimposed lattices. The underlying principle behind
the current reversals lie in the conversion of the particle dynamics from chaotic to ballistic in the
setup involving multiple lattices, a phenomenon which is forbidden in the background lattice alone.
Our paper is structured as follows. In Section 2, we describe the underlying setup in detail and discuss
its relevant symmetries followed by the main results in Section 3. We discuss the cause of the current
reversals in terms of the underlying phase space in Section 4. Finally, in Section 5, we provide a
possible experimental realization of our setup and conclude our findings in Section 6.

2. Setup, Equations of Motion and Symmetries

We consider N non-interacting classical particles of mass m in a two dimensional (2D) periodic
potential V(r) = VB(r) + VG(r). The separable potential due to the ‘background lattice’ is represented by
VB(r) = ṼB(cos2 πx

l + cos2 πy
l ) with potential height ṼB and spatial period l in both x and y directions.

On top of the lattice VB, we superimpose two finite lattices of 2D Gaussian barriers VG1 and VG2 localized
in different regions which can be described by the potential VG(r) = ∑+∞

m,n=−∞ ŨG(rmn)e−α(r−rmn)
2

with
the barriers centered at positions rmn = (ml, nl) where m, n ∈ Z (see Figure 1a). These two lattices also
have spatial period l along both x and y directions. ŨG(rmn) denote the potential height of the barrier
located at rmn and α is a measure of the widths of the barriers. In addition, the lattices are driven by an
external bi-harmonic periodic driving force fD(t) = a(cos ωt + 0.5 cos 2ωt, 0) along the x-direction with
driving amplitude a and frequency ω. This force is spatially independent. Introducing dimensionless
variables x′ = x

l , y′ = y
l and t′ = ωt and dropping the primes for simplicity, the equation of motion for a

single particle at position r = (x, y) with velocity ṙ = (ẋ, ẏ) reads

r̈ = FB(r) + FG(r) + FD(t)
= UBπ(sin 2πx, sin 2πy) + 2β ∑+∞

m,n=−∞ UG(Rmn) (r− Rmn) e−β(r−Rmn)2
+ d(cos t + 0.5 cos 2t, 0)

(1)

where FB(r), FG(r) and FD(t) denote the forces due to the background lattice, superimposed lattices of
Gaussian barriers and external driving respectively. The system is described by the four dimensionless

parameters: UB = ṼB
ml2ω2 denoting the effective potential height of the lattice VB, UG(Rmn) =

ŨG(rmn)
ml2ω2

denoting the effective potential heights of the Gaussian barriers, β = αl2 and the effective driving
amplitude d = a

mlω2 . Rmn = (m, n) denote the positions of the maxima of the Gaussian barriers which
coincides with the positions of the potential maxima of the background lattice VB. In this dimensionless
form, the system has a spatial period L = 1 in both x and y directions and a temporal period T = 2π.

Our setup breaks the generalized time reversal symmetry St: t −→ −t + τ, r −→ r + δδδ

(for arbitrary constant translations δδδ and τ of space and time respectively) and the generalized
parity symmetry Px: x −→ −x + δ, t −→ t + τ in the x-direction. As a result, directed transport
of a particle ensemble is expected along the x-direction [7]. Since the setup preserves the generalized
parity symmetry along the y-direction: Py: y −→ −y + δ, t −→ t + τ, directed transport is not possible
along this direction. Throughout the following discussions, by ‘transport’ we would always refer to
the directed transport along the x-direction.
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Figure 1. (a) Schematic representation of a slice of our 2D setup along the x-direction and viewed
along the y-direction. The filled dots denote particles and the colors red and black denote diffusive and
ballistic motion respectively. The arrows denote the direction of motion of the particles at asymptotic
timescales (t = t f ) with the length of the arrow being proportional to the magnitude of the x component
of their velocities, i.e., vx. In the presence of only the driven background lattice VB depicted in blue
(setup I, upper panel), most particles exhibit diffusive/chaotic transport towards right, hence the
average transport is along the positive x-direction. On superimposing a finite lattice of 2D Gaussian
barriers VG1 (in green), most particles undergo a conversion from diffusive to ballistic motion leading to
a reversal of their average transport direction (setup II, middle panel). Their velocities can be reversed
once again due to the superposition of a second identical lattice of Gaussian barriers VG2, thus leading
to a second current reversal. The external driving force is along the x-direction. (b) Mean transport
velocity of the ensemble along the x-direction as a function of time for the three different setups.
UG(Rmn) = 0 for all (m, n) in setup I. For the setup II, UG(Rmn) = 5 for 5× 103 < m < 104 and
vanishes elsewhere whereas for setup III, UG(Rmn) = 5 for 5× 103 < |m| < 104 and zero elsewhere.
Remaining parameters: UB = 1.0, β = 5, d = 0.5.

3. Results

To explore the transport properties of our setup, we initialize N = 104 particles within a square
region x, y ∈ [−5, 5]× [−5, 5] with small random velocities vx, vy ∈ [−0.1, 0.1]× [−0.1, 0.1]. The initial
velocities of the particles are chosen randomly within the low velocity regime such that their initial
kinetic energies are small compared to the potential heights of the lattices. Subsequently we time
evolve our ensemble up to time t = t f = 4× 104 T by numerical integration of Equation (1) using
a Runge-Kutta Dormand Prince integrator [53]. The background lattice is large enough such that
the ensemble never leaves the lattice throughout the duration of the simulation; hence no boundary
conditions are imposed on the particles. We now discuss the transport properties of our setup
characterized by the average velocity v̄x of the particle ensemble along the x-direction.

In the presence of only the background lattice VB (setup I in Figure 1a), the particles exhibit directed
transport along the positive x-direction with an asymptotic transport velocity v̄x ' 1.3 (Figure 1b).
In the setup II we consider a spatially localized lattice of Gaussian barriers VG1 superimposed on the
lattice VB (Figure 1a), such that UG(Rmn) = 5 for 5× 103 < m < 104 and UG(Rmn) = 0 everywhere
else. We define x1 = 5× 103 − ε and x2 = 104 + ε with ε = 5L as the left and right ‘edges’ of the
lattice VG1, since the force on the particles due to the Gaussian barriers is negligible for x < x1 and
x > x2. In this case, we observe an initial directed transport along the positive x-direction with v̄x > 0
(Figure 1b). However, the transport velocity starts to decelerate and at t ' 3.1× 103 T, the transport
completely vanishes. Thereafter, the ensemble is transported along the negative x-direction with
v̄x < 0 and the transport velocity finally saturates to v̄x ' −7.1. Hence, a superimposed spatially
localized lattice of Gaussian barriers can trigger a current reversal with the reversal timescale in this
case given by tr1 = 3.1× 103 T, i.e., when v̄x changes its sign.

In the third setup (setup III), we consider a second identical lattice of Gaussian barriers VG2
superimposed on the lattice VB between x = −x1 and x = −x2, such that now UG(Rmn) = 5 for
5× 103 < |m| < 104 and UG(Rmn) = 0 elsewhere (Figure 1a). Up to t ' 4.6× 103T, the transport
velocity exhibits a similar behavior as that observed in setup II (Figure 1b). Thereafter, instead of
asymptotically attaining a negative value, the velocity increases steadily, exhibiting a second current



Appl. Sci. 2020, 10, 1357 4 of 10

reversal at t = tr2 = 5.6× 103 T before finally attaining a constant value v̄x ' 4.7. The timescales of
current reversal can be controlled by the locations of the lattices VG1 and VG2. Overall, this demonstrates
a controllable scheme to generate multiple reversals of directed particle transport by superimposing
spatially localized lattices of 2D Gaussian barriers over a background lattice.

4. Discussion

The mechanism behind such controllable multiple current reversals in our setup crucially depends
on the structure of the phase space underlying the system. Since the particles are non-interacting
and can move along both x and y directions, the single particle phase space in our externally driven
lattice setup is five-dimensional (5D); characterized by (x, px, y, py, t). However in the regions where
the lattices VG1 and VG2 are absent, the particle dynamics along x and y directions can be completely
decoupled. Hence the dynamics of the particles moving only through the background lattice VB driven
along the x-direction can be described in terms of a three-dimensional (3D) phase space characterized
by (x, px, t) along x and a 2D phase space characterized by (y, py) along y direction. Since we are only
interested in the transport along the x-direction, we would henceforth only refer to the 3D phase space
along the x-direction in the course of our discussion.

4.1. Directed Transport in Background Lattice

First, we discuss the directed transport of particles in the positive x-direction in the presence
of only the lattice VB and the driving force. To do so, it is necessary to understand the phase space
underlying our setup I by taking stroboscopic snapshots of particle trajectories x(t), vx(t) at t =

nT(n ∈ N) with each particle having different initial conditions. This leads to the 2D Poincaré surface
of sections (PSOS): {x(nT) mod L, vx(nT)}, which provide a representative overview of the structure
of the complete 3D phase space (Figure 2a). Due to the broken Px and St symmetries, the PSOS do not
possess any reflection symmetry about vx = 0. The PSOS is characterized by a single chaotic manifold
or ‘chaotic sea’ bounded by the two first invariant spanning curves (FISC) at vx ' 10 and vx ' −6.
The chaotic sea correspond to trajectories undergoing diffusive motion through the lattice. The large
regular island embedded in the chaotic sea denotes trapped particles oscillating near the potential
minima of the lattice. The particles with speed |vx| higher than the speed of the respective FISC at
positive and negative velocities correspond to ballistic unidirectional motion through the lattice along
positive or negative x-directions.

Figure 2. (a) The stroboscopic 2D Poincaré surface of sections (PSOS) in the (x, vx) plane corresponding
to the driven background lattice VB. The regular islands and invariant curves (in black) denote trapped
oscillations and ballistic motion respectively. The chaotic sea (in green) denotes diffusive motion.
(b) The asymptotic particle distribution as a function of position x mod L and vx (in colormap) of
all the N = 104 particles propagating in the setup I superimposed on the PSOS shown in Figure 2a.
The parameters are the same as in Figure 1.

The low energy initial coordinates of our particle ensemble correspond to trajectories in the
chaotic sea. Hence in the course of their time evolution, they ergodically populate the entire chaotic
sea. This can be observed from (Figure 2b), where we project the snapshot of the ensemble population
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distribution as a function of the particle coordinates (x, vx) at time t = t f onto the PSOS. This leads
to a converged value of the ensemble velocity which is equal to the transport velocity of the chaotic
manifold [16]. Physically this signifies that these particles undergo diffusive motion through the lattice
which is however asymmetric about vx = 0 due to the broken symmetries. Hence, the asymptotic
average velocity of the ensemble is non-zero and the particles exhibit directed transport along
x-direction with v̄x ' 1.3 as observed in Figure 1b.

4.2. First Current Reversal

Next, we discuss why the transport velocity is reversed due to the superposition of a localized
lattice of 2D Gaussian barriers VG1 on the background lattice VB as in the setup II. Here, the particle
dynamics is governed by the 2D PSOS (Figure 2a) in the region where only the lattice VB is present,
but by the full 5D phase space in the region x1 < x < x2 due to the presence of both the lattices VB and
VG1. Although this 5D phase space cannot be straightforwardly visualized, it turns out that the cause
of current reversal can be explained solely on the basis of the ensemble population in the 2D PSOS
in Figure 2a. Since the ensemble is initialized near the origin (0, 0), the particles initially experience
the spatial potential only due to the lattice VB and hence their initial dynamics is exactly the same as
described for setup I in the previous subsection. As a result the initial transport velocity is v̄x ' 1.3.

Since the transport velocity is positive, the particles reach x = x1 in the course of time where they
encounter the lattice VG1 in addition to VB. In the region x1 < x < x2, since the particle dynamics is no
longer governed by the 2D PSOS, the particles are now no longer confined to the central chaotic sea
and can access higher velocities beyond the FISC. In fact, the higher potential heights of the Gaussian
barriers ensure that most of the particles perform chaotic diffusive motion even at higher velocities
corresponding to the full 5D phase space of our setup. This leads to an interesting conversion process
between diffusive and ballistic motion of the particles at the left edge of the lattice VG1, i.e., at x = x1,
which is the key mechanism behind the current reversal. A diffusive particle close to the left edge but
with x > x1 can cross this edge in the course of time back to x < x1 with vx < 0. However, its velocity
vx immediately after crossing back can be either &−6 in which case it lies in the chaotic sea performing
diffusive motion or .−6 which means it moves away ballistically from the lattice VG1 towards the
negative x-direction. For the particles with vx . −6, such a conversion from diffusive to ballistic
motion ensures that they perform unidirectional ballistic flights towards the negative x-direction,
thus attaining a permanent negative velocity. On the other hand, since the particles with vx & −6
perform diffusive motion they can again enter the region x1 < x < x2 in course of time. They would
then undergo the same conversion mechanism until all the particles undergo the conversion from
diffusive to ballistic motion with vx . −6. This can be observed in Figure 3a where we plot the
asymptotic distribution of the ensemble over the 2D PSOS. Most of the particles are located on the
invariant curves vx . −6 moving ballistically in the negative x-direction. This results in the asymptotic
ensemble transport velocity v̄x ' −7.1. The dynamical change in the transport direction leads to the
current reversal at tr1 = 3.1× 103 T.
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Figure 3. The asymptotic particle distribution as a function of position x mod L and vx (in colormap)
of all the N = 104 particles propagating in the (a) setup II and (b) setup III projected on to the PSOS
shown in Figure 2a. The parameters are the same as in Figure 1.

4.3. Second Current Reversal

We now discuss why the transport can be reversed once again by superimposing a second identical
lattice of Gaussian barriers VG2 between x = −x1 and x = −x2 as in the setup III. Initially since the
particles are initialized near the origin (0, 0), the ensemble drifts towards the positive x-direction and
exhibit the same dynamics as in the setup II. As a result, the transport velocity is initially positive till the
first current reversal occurs at tr1 = 3.1× 103 T and then continues to be negative until t ' 4.6× 103 T.
Thereafter, the particle dynamics undergo another conversion process due to which the transport
velocity is reversed again.

Unlike the situation in setup II, the particles in the setup III moving ballistically with negative
vx after t = tr1 cannot keep moving through the lattice VB for all longer timescales. Instead at some
point, they interact with the lattice VG2 in the region −x2 < x < −x1. Due to the high kinetic energy of
the particles (since |vx| & 6), some of them can pass through the region and continue their ballistic
flights for longer timescales through the lattice VB. This can be seen from the asymptotic ensemble
distribution projected on to the 2D PSOS in Figure 3b, showing that even at t = t f a considerable
fraction of the ensemble moves with vx . −6.

However, once a particle enters the region −x2 < x < −x1, its dynamics is no longer confined
to the region vx . −6 of the 2D PSOS and can explore the different regions of the 5D phase space.
Hence most of the particles attain vx > 0 which in turn allow them to cross the right edge of the lattice
VG2 at x = −x1 back into the region −x1 < x < x1 where only the lattice VB is present. After crossing
to this region, these particles can either belong to the chaotic sea or to the invariant spanning curves
with velocity higher than the FISC at vx ' 10 of the 2D PSOS in Figure 2a. The particles with
vx & 10 perform unidirectional ballistic flights in the positive x-direction. Due to their significantly
higher kinetic energy, most of these particles are not ‘reflected’ further by the lattice VG1 in the region
x1 < x < x2; instead, after crossing this region, they continue moving ballistically through the lattice
VB with vx & 10. This can be observed from the significant distribution of particles with vx & 10 in
Figure 3b at t = t f . As the velocities of more and more particles undergo the conversion from vx . −6
to vx & 10, the transport velocity increases steadily after t ' 4.6× 103 T, leading to a second current
reversal at t = tr2 = 5.6× 103 T (Figure 1b). On the other hand, the particles in the chaotic layer
would eventually again encounter the lattices VG1 or VG2 so that their chaotic dynamics is eventually
converted to ballistic motion either with vx & 10 or with vx . −6. Due to the overall higher number
of particles moving asymptotically with vx & 10 compared to those with vx . −6 (see Figure 3b),
the asymptotic transport velocity is v̄x ' 4.7.

It is worth stressing that the conversion from chaotic to ballistic dynamics of the particles is
possible solely due to the 2D nature of the potential generated by the superimposed Gaussian barriers.
This ensures that the particle dynamics is coupled in the x and y directions upon entering the regions
x1 < |x| < x2 (where the Gaussian barriers are present) whereas it is uncoupled in all other regions.
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In Figure 4a, we show the typical trajectory of a particle in our setup III undergoing such a conversion
process. The particle exhibits diffusive motion in the x direction through the lattice VB until it reaches
the left edge of the lattice VG1 at t � 5 � 103 T. However, since its motion in the y direction is
completely decoupled from the x direction, its velocity component vy shows a regular oscillatory
behaviour until t � 5 � 103 T. The interaction with the 2D Gaussian barriers couples the x and y
motion of the particle leading to a change in both the velocity components vx and vy. It then undergo
ballistic motion with negative vx between t � 5 � 103 T and t � 6 � 103 T. Between t � 6 � 103 T and
t � 8 � 103 T, it interacts with the lattice VG2 exhibiting diffusive motion coupled in x and y directions.
Finally, it undergoes a second conversion from diffusive to ballistic motion at t � 8 � 103 T as it exits
the right edge of the lattice VG2 and ballistically moves with a positive vx thereafter. It is important
to note that the individual timescales of such conversion processes vary for different particles. Some
particles may even undergo multiple conversions between diffusive and ballistic dynamics over long
timescales as shown for another typical trajectory in Figure 4b.

Figure 4. (a,b) Trajectories of two typical particles depicting the conversion between diffusive and
ballistic dynamics in the setup III. The horizontal black lines at x = x1 and x = � x1 in the upper panels
denote the left and right edges of the lattices VG1 and VG2 respectively. The particle in ( a) is re�ected
twice by these two lattices due to the conversion between diffusive and ballistic dynamics. However,
the particle in ( b) undergoes such conversions multiple times over long timescales. The parameters are
the same as in Figure 1.

5. Experimental Realization

Our scheme of multiple current reversal can be experimentally realized using cold atoms or colloids
with optical lattices [ 14,32,38] and lattices designed using holographic trapping techniques [ 37,54–57].
The background lattice can be formed by 2D optical lattices where the periodic potential is generated
by counterpropagating laser beams of perpendicular polarization. The spatially localized lattices of
2D Gaussian barriers can be obtained by reflecting a linearly polarized laser beam onto a spatial light
modulator (SLM) displaying a computer generated hologram. The external driving force can be realized
using a piezo-modulator [37].

Translating our parameters to experimentally relevant quantities for an optical lattice setup with
cold rubidium (Rb 87) atoms and 780 nm lasers, we obtain the lattice height ṼB � 5Er , the width 1p

a
�

350 nm, the driving frequency w � wr and the driving amplitude a � 0.003Er /nm, where Er and
wr are the recoil energy and recoil frequency of the atom respectively. The timescales of the current
reversals can be controlled by the spatial locations of the two lattices of Gaussian barriers. Further
away the lattices are from the origin, i.e., near the initial location of the ensemble, the larger would be
the reversal timescales. In contrast to Brownian ratchets, our mechanism does not depend on noise and
operates in the purely Hamiltonian regime. The effect of weak noise typical for ratchet experiments
with cold atoms and underdamped colloids [ 10,58] represent minor �uctuations of the average velocity
of the ensemble and this does not affect the functionality of the current reversal mechanism. Interaction
and disorder have been shown to enhance accumulation of particles within the regular regions of the
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phase space [33,59,60], which would aid the conversion of chaotic to ballistic dynamics of particles.
This would possibly decrease the reversal timescales.

6. Brief Conclusions

We provided a scheme to realize time dependent multiple reversals of directed transport in a
two dimensional driven lattice setup by superimposing `spatially localized lattices' on top of a `global
background lattice'. In contrast to most other current reversal schemes, the reversal of transport here
occurs dynamically and the timescales of reversal can be controlled by controlling the spatial location
of the localized lattices. The scheme is generic in the sense that the only requirement is a mixed phase
space corresponding to the underlying background lattice and hence can be applied to a variety of
physical systems, for e.g, cold atoms and colloids.
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