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Abstract: Skeleton-based action recognition is a widely used task in action related research because
of its clear features and the invariance of human appearances and illumination. Furthermore, it can
also effectively improve the robustness of the action recognition. Graph convolutional networks
have been implemented on those skeletal data to recognize actions. Recent studies have shown that
the graph convolutional neural network works well in the action recognition task using spatial and
temporal features of skeleton data. The prevalent methods to extract the spatial and temporal features
purely rely on a deep network to learn from primitive 3D position. In this paper, we propose a novel
action recognition method applying high-order spatial and temporal features from skeleton data,
such as velocity features, acceleration features, and relative distance between 3D joints. Meanwhile,
a method of multi-stream feature fusion is adopted to fuse these high-order features we proposed.
Extensive experiments on Two large and challenging datasets, NTU-RGBD and NTU-RGBD-120,
indicate that our model achieves the state-of-the-art performance.

Keywords: human action recognition; graph convolution; high-order feature; spatio-temporal feature;
feature fusion

1. Introduct

Action recognition is a very important task in machine vision, and it can be applied to many scenes,
such as automatic driving, security, human-computer interaction, and others. Therefore, in recent years,
the task of analyzing the actions of people in videos has received more and more attention. The task of
action recognition has many problems which are difficult to solve by using traditional methods, such as
how to deal with occlusion, illumination changes, the positioning and recognition of human actions in
a single frame, and extracting the relationships of frame-wise [1]. Recent approaches in depth-based
human action recognition achieved outstanding performance and proved the effectiveness of 3D
representation for the classification of action classes. Meanwhile, biological observation studies have
also shown that even without appearance information, the locations of a few joints can effectively
represent human action [2]. For identifying human action, skeleton-based human representation has
attracted more and more attention for its high level of representation and robustness in regard to
position and appearance changes. Recently, graph neural networks, which generalize convolutional
neural networks to graphs of arbitrary structures, have been adopted in a number of applications
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and have proved to be efficient for the processing of graph data [3–5]. Skeleton data also can be
considered as graph structure data. Therefore, graph-based neural networks have been used for
action recognition instead of the traditional CNN networks because of the successful performance.
Some graph-based neural networks [6–10] are dedicated to learning both spatial and temporal features
for action recognition. Meanwhile, they focus on capturing the hidden relationships among vertices in
space. However, they all ignore the high-order information hidden in the skeleton data. For example,
the velocity, acceleration, and relative distance information of each vertex can be extracted from the
skeleton-based data. The values and directions of velocity are different for various actions. When a
human is brushing his/her teeth, the hand should move up and down instead of moving back and forth.
When pushing, the hand should move forward rather than backward. In a single frame, for different
parts of the body, the acceleration is also varied. Additionally, there are some different actions with
similar posture patterns but with different motion speeds. For example, the main difference between
“grabbing another person’s stuff” and “touching another person’s pocket (stealing)” is the motion
velocity. Therefore, taking advantage of this high-order information and extracting discriminative
representations are necessary.

In this work, our main contributions are as follows:

1. We propose several high-order spatial and temporal features that are important for skeletal
analysis: velocity, acceleration, and relative distance between 3D joints. Currently, the spatial
features are extracted by a deep network through an adjacent matrix, while the relative distances
between 3D joints are not considered in the network; we propose to use deep learning to
extract the relative distances between 3D joints, which represent the postural changes of each
action. Meanwhile, the widely used temporal features are extracted from the original 3D joints.
The high-order motion features, such as velocity and acceleration of the joints, are nontrivial to
be learned from the deep network. By explicitly calculating the high-level information as input,
the deep network is able to learn higher level spatial and temporal features.

2. A multi-stream feature fusion is proposed to blend the high-order spatial and temporal features;
thus, the accuracy of action recognition can be improved significantly. Our method is evaluated
on the NTU-RGBD and NTU-RGBD-120 dataset, which achieves state-of-the-art performance on
action detection.

2. Related Work

Recent years, NTU-RGBD [11] created a large-scale dataset for human action recognition in 2016.
In 2019, NTU-RGBD has been enlarged, which is referred to NTU-RGBD-120 [12]. In addition, there are
a lot of public data sets for action recognition, such as [13–19] datasets. The release of high-quality
datasets have encouraged more researches on action recognition. These datasets are mainly divided
into two categories, RGB-Video based and Skeleton-based. Most of the researches focus on the study
of RGB video based and Skeleton-based action recognition.

2.1. RGB-Video Based Methods

In terms of video-based analysis methods, most studies consider video as a sequence of images,
and then analyze the images frame by frame to learn spatial and dynamic features. Before the
emergence of deep learning, the actions were identified and classified mainly by hand-designed
features. [20,21] mainly introduce a method of eliminating background light flow. Their features
are more focused on the description of human motion. Three hand-designed motion descriptors
HOG(histogram of gradient), HOF(histogram of flow), MBH(motion boundary histograms) have been
introduced, which play a very good role in the classification of motion. Since 2014, deep learning
mothods have been applied to action recognition. Two-Stream Convolutional Neural Network [22]
divides the convolutional neural networks into two parts, one for processing RGB images and
one for processing optical flow images, which are ultimately combined and trained to extract
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spatial-temporal action features. The important contribution is introduced the feature of optical
flow into action recognition.

After the two-stream network [22], researchers have been trying to improve its performance,
such as [23–25]. Du Tran proposed that C3D [26], for the first time, applied a 3D convolution
kernel to detect action and capture the motion information on the time series. After that, the 3D
convolutional-based methods became popular, prestigious methods; e.g., T3D [27].

2.2. Skeleton-Based Methods

Skeleton-based analysis benefits from the development of pose estimation algorithms and the
application of depth cameras. The original skeleton data are usually estimated from RGB video by a
pose estimation algorithm, or directly extracted by Kinetics cameras. In the analysis of the skeleton,
how to deal with the relationship among vertices in the single frame and how to deal with the
interframe relationship in the skeleton sequence are very important. Some researchers believe that a
certain type of action is usually only associated with and characterized by the combinations of a subset
of kinematic joints. For identifying an action, not all frames in a sequence have the same importance.
In order to assign different weights to different vertices of different frames, attention mechanisms
and recurrent neural networks are proposed, such as STA-LSTM proposed by Sijie Song et al. [28].
A spatial attention module adaptively allocates different attentions to different joints of the input
skeleton within each frame, and a temporal attention module allocates different attention levels to
different frames; e.g., Inwoong Lee et al. proposed TS-LSTM [29] and Spatio-temporal LSTMs [30].
Attention-based LSTM [28] and simple LSTM networks with part-based skeleton representation have
been used in [31,32]. These methods either use complex LSTM models which have to be trained
very carefully or use part-based representation with a simple LSTM model. Yan et al. proposed
ST-GCN [6], which was the first graph-based neural network for action recognition. They believed
that the spatial configuration of the joints and their temporal dynamics were significant for action
recognition. Therefore, they constructed the spatial temporal graph, which is shown in the Figure 1.
This model is formulated on top of a sequence of skeleton graphs, where each node corresponds to a
joint of the human body. The edges in the single-frame skeleton are composed of physical connections
of the human body, and the edges of the time dimension are composed of the connections between the
corresponding joins.

Figure 1. (a) The joint labeling of the NTU-RGBD and NTU-RGBD-120 datasets; the 21st node is
defined as the gravity center of human. (b) The spatio-temporal graph used in ST-GCN [6].

Kalpit divided the skeleton graph into four subgraphs with joints shared across them and taught
a recognition model using a part-based graph convolutional network [8]. AGC-LSTM [10] can not only
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capture features in spatial configuration and temporal dynamics but also explore the co-occurrence
relationship between spatial and temporal domains.

In the previous work for action recognition task based on skeleton, only the 3D coordinate
information of the joints was utilized. Nevertheless, how to effectively extract discriminative spatial
and temporal features is still a challenging problem. Therefore, in this work, we put more attention
on the high-order information features. The features we proposed are efficient for action recognition,
and the feature fusion method we used is easy to implement.

3. Proposed Graph Convolutional Network with High-Order Features

A graph is good for representing spatial and temporal information. We can transform a frame of
the skeleton data to a topological map, which contains joint and edge subsets as shown in Figure 1.
A graph neural network can model joint features and structure features simultaneously, which is
good method for graph data learning. As the convolution of an image is performed by a convolution
kernel with a regular shape, the graph convolution layer is applied on the graph data to generate a
high-level feature. Our network model is based on the 2s-AGCN [7]. The overall pipeline of our model
is shown in Figure 2, where AGCN is a multi-layer graph convolution network. The networks we
proposed consist of five sub-networks. Each sub-network is used to extract a variety of spatial and
temporal features. Joint-coordinates, bone, and relative distance are spatial features, and velocity and
acceleration of joints and bones are temporal features.

Figure 2. Illustration of the overall architecture of the MS-AGCN. The structure of the AGCN in blue
is the same. The only difference between blue and orange is the number of input channels. The final
score to obtain the prediction. The shape of input data is presented. (a) The joint feature, which is
extracted from 3D coordinates of all joints. (b) The bone feature, which contains edge information.
(c) The velocity feature and the acceleration feature, which are calculated from consecutive frames to
obtain the temporal feature. (d) The relative distance feature of 3D joints; each joint contains relative
distance information from others, and we only use one joint as an illustration in the figure.
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3.1. Improved Graph Convolutional Network

The implementation of the graph convolution in the spatial domain is not straightforward.
Concretely, the input of every layer in the network is actually a C × T × N tensor, where C, T, and N
are the number of channels, frames, and vertices, respectively. Furthermore, the edge importance
matrix was proposed in ST-GCN [6], aiming to distinguish the importance of the edge of skeletons for
different actions. The graph convolution operation is formulated as Equation (1) in [6]:

f n
out =

Sv

∑
s

Ws ∗ ( f n−1
out ∗ AS)� Mk (1)

where the matrix A is initial adjacency matrix proposed in [6], and S is the subset of matrix A, which is
similar to the N × N adjacency matrix. Ws is the weight vector of the Cn

out × Cn−1
out × 1 × 1 convolution

operation, where ∗ denotes the matrix product. M is the edge importance matrix of n ∗ n, which is dot
multiplied by matrix A.

Equation (1) shows that the edge importance matrix Mk is dot multiplied to As. That means that
if one of the elements in As is zero, it will always be zero, which is unreasonable. Thus, we change the
computing method. We add another attention matrix Mk1 and then multiply matrix Mk. In addition,
we use the similarity matrix in 2S-AGCN [7] to estimate the similarity of two joints, and determine
whether there is a connection between two vertices and how strong the connection is. Finally,
Equation (1) is transformed into Equation (2):

f n
out =

Sv

∑
s

Ws ∗ ( f n−1
out ∗ (AS ⊕ Mk1 ⊕ Sk))� Mk (2)

where ⊕ denotes matrix addition. Sk is the similarity matrix proposed in 2s-AGCN [7]. Mk1 is a new
attention matrix we added.

For the temporal domain, since the number of neighbors for each vertex is fixed as two
(corresponding joints in the two consecutive frames), it is straightforward to perform the graph
convolution similar to the classical convolution operation. Concretely, we perform Kt ∗ 1 convolution
on the output feature map calculated above, where Kt is the kernel size of temporal convolution.
Spatial convolution is combined with temporal domain convolution into a graph convolution module.
The details are shown in Figure 3:

Figure 3. An AGCN block consists of spatial GCN(AGC), temporal GCN(T-CN), and other operations:
batch normalization (BN), Relu, dropout, and the residual block. A, M, and S in AGC represent the
adjacency matrix, edge importance matrix, and similarity matrix, respectively.

3.2. High-Order Spatial Features

For spatial features in a single frame, we propose combining the bone feature with the relative
distance feature of 3D joint. From the Figure 2b,d we can directly get the information contained by
these two features.
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Bone feature: Shi et al. [7] argued that the coordinate information of the joints could not represent
the action of the human body well. Therefore, they proposed the second-order information, which is
referred to bone feature, as a feature to enhance the performance on action recognition. The bone
feature is extracted from bone data, which includes the length and the direction. Each bone is a human
physical connection between joints; Shi defined the person’s center of gravity as the target joint; and all
directions of the bone are centripetal. Each bone is connected to two joints. The distance from joint
j1(x1, y1, z1) to center of gravity is farther than j2(x2, y2, z2). The vector representation of bone between
j1 and j2 is ej1,j2 = (x1 − x2, y1 − y2, z1 − z2). The direction is from j1 to j2.

The number of bones is always one less than the number of joints because each bone is connected
to two joints. In order to keep the quantity consistent, we set the empty bone at the center of gravity.
The input dimension of the bone network thereby can be the same as the joint network.

Relative distance feature of 3D Joints: We find that the feature extracted from relative distance
between 3D joints is useful for skeleton data. For example, nodding requires only a head movement.
The acceleration/velocity values of all vertices are zero, except for those of head-related joints.
However, the relative distance from the head to the other joints must be changing at all frames
and it can not be zero. In addition, we set the distance between the vertex and itself as zero, so the
relative distance information of one vertex is 25-dimensional. For a single frame skeleton, we can
use a 25 × 25 matrix to represent it. This matrix is a diagonal matrix, and the principal diagonal
elements are zeros. The shape of relative distance information is (N, 25, T, 25, 2), while the shape of
other information is (N, 3, T, 25, 2), where N denotes the batch-size we set and T denotes the length of
one action sequence.

3.3. High-Order Temporal Features

For temporal features in a single frame, we propose the velocity feature and the acceleration
feature. From the Figure 2c, we can directly get the information contained by these two features.

Velocity feature: Velocity features of an action are very crucial for action recognition.
Learning velocity features can be relatively complemented with learning features of the joint and
bone. For skeleton data, we calculate the motion velocity information of each vertex. The velocity of
vertex v1 is equal to the coordinate of v1 in the next frame minus the current frame. We can obtain the
velocity in three directions (x, y, z), which is helpful for analyzing the action. Velocities of different
orientations correspond to different changes. Therefore, velocity analysis in each orientation of the
vertex is effective for the final prediction. jt

1(xt
1, yt

1, zt
1) denotes the coordinates of joint j1 at t frame.

jt+1
1 (xt+1

1 , yt+1
1 , zt+1

1 ) denotes the coordinates of joint j1 at T + 1 frame. The velocity of vt
1(v

t
x1, vt

y1, vt
z1)

at t frame can be written as:

vt
1(v

t
x1, vt

y1, vt
z1) = jt+1

1 − jt
1 = (xt+1

1 − xt
1, yt+1

1 − yt
1, zt+1

1 − zt
1) (3)

For all joints, Equation (3) is transformed into Equation (4):

vt(vt
x, vt

y, vt
z) = jt+1 − jt = (xt+1 − xt, yt+1 − yt, zt+1 − zt) (4)

where v denotes the velocity of all joints in a single frame. Moreover, we calculate the velocity of the
edge between the two joints, which is the velocity of the bone. The calculation method of velocity of
the bone is the same as that of the joints. We use the 3D velocity of the bone as a feature and feed it
into the network. More details of the training results and comparison experiments are provided in
Section 4.

Acceleration feature: Acceleration is a physical quantity used to describe the change in velocity.
Acceleration is helpful for analyzing action. In one skeleton sequence, the velocities of joints may have
different changes. Some joints move at a constant velocity, while other joints accelerate. The acceleration
of the joint is equal to the velocity of the current frame minus the corresponding joint of the
previous frame. Its feature dimensions are also three-dimensional. Basically, that means that the
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calculation method of acceleration information is the same as that of the velocity information. Therefore,
the features extracted from velocity and acceleration information are similar, while the acceleration
uses more frames to calculate the high-order motion. We can calculate acceleration information based
on Equation (5) as follows:

at
1 = vt+1

1 − vt
1 = (vt+1

x1 − vt
x1, vt+1

y1 − vt
y1, vt+1

z1 − vt
z1) (5)

For all joints, Equation (5) is transformed into Equation (6):

at = vt+1 − vt = (vt+1
x − vt

x, vt+1
y − vt

y, vt+1
z − vt

z) (6)

where at
1 denotes the acceleration of joint j1 at t frame. vt+1

1 and vt
1 denote the velocity of joint j1 at

t + 1 and t frames, respectively, and at denotes the acceleration of all joints in t frame.

3.4. High-Order Features Fusion

Joint Feature: For both of NTU-RGBD and NTU-RGBD-120 datasets, the joint features are
extracted from the 3D coordinates of the skeleton sequence. Joint features are fundamental and
important features for the skeleton data. Joints coordinates contain abundant spatial and temporal
information. Our baseline is a single stream of 3D joint. We also put the joint data into our neural
networks to extract joint feature as shown in Figure 2a.

Features extracted only by 3D joints are not enough for action recognition. We propose several
pieces of high-order information as input which is effective for action recognition. In front of the
input layer, a batch normalization layer is added to normalize the input data. A global average
pooling layer is added at the end of the network to pool feature maps of different samples to the same
size. Both the input and output of the network are graph-structures data in the graph convolution.
The last graph convolution layer generates a discriminative feature and puts it into the standard
soft-max classifier. The final score is the weighted summation of the scores of five streams, which is
used to predict the action label. We believe that the information contained in the joints, bones,
and relative distance is the most fundamental and important. Therefore, these features should be set
large weights. The velocity and acceleration information are auxiliary features that strengthen the
temporal relationship. These features should be set small weights. The weighted summation method
can be formulated as Equation (7):

S f = SaWa + SbWb + ScWc + SdWd (7)

where Sa, Sb, Sc, and Sd denote the score of joint, bone, joint and bone velocity, and relative distance,
respectively. S f denotes the final score. W∗ denotes the weights of scores.

4. Experiments

4.1. Datasets

NTU-RGBD [11] contains 56,880 video clips of 60 actions. The samples were taken from
40 different people by using a Kinect v2 camera. The ages of subjects are between 10 and 35.
They used three cameras simultaneously to capture three different horizontal views from the same
action. For the camera position setting: the three cameras were at the same height but three
different horizontal angles: −45◦, 0◦, +45◦ [11]. The dataset provides two methods to evaluate the
performance of action classification: cross-subject and cross-view. The training set of cross-subject
includes 40,320 samples, which consists of actions performed by 20 subjects. The testing set contains
16,560 samples, which consists of samples taken by another 20 subjects [11]. The cross-subject training
set includes 37,920 samples taken by Cameras 2 and 3, and testing set contains 18,960 samples taken
by Camera 1.
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NTU-RGBD-120 [12] is an extension of NTU-RGBD, which is much larger and provides much
more variation of environmental conditions, subjects, camera views, etc. It contains 114,480 video
clips of 120 actions. The ages of subjects are between 10 and 57, and heights are between 1.3 m
and 1.9 m. The dataset provides two criteria to evaluate the performance of action classification:
cross-subject and cross-setup. The training set of cross-subject includes 63,026 samples, which consists
of actions performed by 53 subjects. The testing set contains 50,919 samples taken by another 53
subjects [12]. The cross-setup training set includes 54,468 samples consisting of the samples with even
collection setup IDs. Testing set contains 59,477 samples, which consists of samples with odd setup
IDs. Different setup IDs correspond to changeable vertical heights of the cameras and their distances
to the subjects.

4.2. Data Augmentation

During the experiment, we performed the data analysis and gathered statistics on the samples
of incorrect recognition. Experiments show that the graph convolution is efficient for the large
displacement. However, we also found that the fine-grained actions were more likely to predict
incorrectly. Thus, we made a data augmentation for these action categories, which consists of
16 categories. They are drinking water, eating a meal/snack, brushing teeth, clapping, reading,
writing, wearing a shoe, taking off a shoe, making a phone call, playing with the phone/tablet,
typing on the keyboard, pointing to something with a finger, taking a selfie, sneezing, coughing,
touching the head (headache), and touching the neck (neckache). Considering that the datasets were
collected in-three-dimensions, and in order to maintain the relative position of the joints unchanged,
we performed the rotation of the skeleton data with angles of ±2◦.

4.3. Training Detail

All experiments were conducted on the Pytorch deep learning framework. Stochastic gradient
descent (SGD) with Nesterov momentum (0.9) was applied as the optimization strategy. The batch
size was 64. Cross-entropy was selected as the loss function to backpropagate gradients. The weight
decay was set to 0.0001. For both the NTU-RGBD [11] and NTU-RGBD-120 [12] datasets, there are
at most two people in each sample of the dataset. If the number of bodies in the sample was less
than two, we padded the second body with 0. The maximum number of frames in each sample is
300. For samples with less than 300 frames, we repeated the samples until it reached 300 frames.
The learning rate was set as 0.1 and was divided by 10 at the 30th epoch and 40th epoch. The training
process was ended at the 50th epoch.

4.4. Ablation Experiment

In Section 3, we add the joints feature, bones feature, joint-velocity feature, bone-velocity feature,
and relative distance feature for action recognition. Since the acceleration feature is similar to the
velocity feature, the accuracy after fusion is not significantly improved. The ablation studies of different
features are shown in Tables 1 and 2, where J, B, JV, BV, and RD denote that features of joint, bone,
joint-velocity, bone-velocity and relative-distance, respectively. Obviously, the multi-feature fusion
method outperforms the single-feature-based methods on two benchmark evaluations.
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Table 1. Comparisons of the validation accuracy with different input modalities on a cross-subject
benchmark of the NTU-RGBD dataset.

Methods Accuracy (%) (No Augmentation) Accuracy (%) (Augmentation)

Joint 86.7 87.7
Bone 87.0 88.1

Joint-Velocity 86.1 86.8
Bone-Velocity 85.4 86.9

Relative-Distance 87.1 87.5

J+B+JV+BV+RD 90.5 91.7

Table 2. Comparisons of the validation accuracy with different input modalities on a cross-view
benchmark of the NTU-RGBD dataset.

Methods Accuracy (%) (No Augmentation) Accuracy (%) (Augmentation)

Joint 93.0 93.8
Bone 93.4 94.3

Joint-Velocity 93.0 93.5
Bone-Velocity 92.7 93.4

Relative-Distance 93.2 94.0

J+B+JV+BV+RD 95.8 96.8

Tables 3 and 4 are the results on NTU-RGBD-120 dataset. The results also illustrate that
the multi-feature fusion method is more effective. The recognition accuracy of our model in
NTU-RGBD-120 is slightly lower than the accuracy of NTU-RGBD. The major reasons leading to this
result were: (1) NTU-RGBD-120 adds some fine-grained object-related individual actions. For these
actions, the body movements are not significant, and the sizes of the objects involved are relatively
small; e.g., when “counting money” and “playing magic cube”. (2) Some fine-grained hand/finger
motions are added in NTU-RGBD-120. Most of the actions in the NTU-RGBD dataset have significant
body and hand motions, while the NTU-RGBD-120 dataset contains some actions that have fine-grained
hand and finger motions, such as “making an ok sign” and “snapping fingers”. (3) The third limitation
is the large number of action categories. When only a small set of classes is available, each can be very
distinguishable by finding a simple motion pattern or even by the appearance of an interacted object.
However, when the number of classes increases, similar motion patterns and interacted objects will be
shared among different classes, which makes the action recognition much more challenging.

Table 3. Comparisons of the validation accuracy with different input modalities on cross-subject
benchmark of NTU-RGBD-120 dataset.

Methods Accuracy (%) (No Augmentation)

Joint 80.7
Bone 81.2

Joint-Velocity 78.5
Bone-Velocity 79.2

Relative-Distance 81.5

J+B+JV+BV+RD 86.4
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Table 4. Comparisons of the validation accuracy with different input modalities on cross-setup
benchmark of NTU-RGBD-120 dataset.

Methods Accuracy (%) (No Augmentation)

Joint 84.3
Bone 84.5

Joint-Velocity 81.4
Bone-Velocity 82.3

Relative-Distance 84.5

J+B+JV+BV+RD 89.2

4.5. Comparison with the State-of-the-Art

We compare the final model with the state-of-the-art skeleton-based action recognition methods
on NTU-RGBD dataset and NTU-RGBD-120 dataset. The results of the comparison are shown in
Tables 5 and 6. The methods used for comparison include the handcraft-feature-based methods [33],
RNN-based methods [28,29,34,35], CNN-based methods [36,37], and GCN-based methods [6–10].
From Table 5, we can see that our proposed method achieves the best performances of 96.8% and 91.7%
in terms of two criteria on the NTU-RGBD dataset.

Since the NTU-RGBD-120 dataset was released in 2019, there are no related works on this dataset
yet. Therefore, we only cite the result of relevant methods mentioned in the original paper of this
dataset. As shown in the Table 6, our method is significantly better than the others.

Table 5. Comparisons of the validation accuracy with state-of-the-art methods on the NTU-
RGBD dataset.

Methods Cross-Subject (%) Cross-View (%)

Lie Group(2014) [33] 50.1 82.8

Trust Gate ST-LSTM(2016) [29] 69.2 77.7
Two-stream RNN(2017) [34] 71.3 79.5

STA-LSTM(2017) [28] 73.4 81.2
VA-LSTM(2017) [35] 79.4 87.6

SR-TSL(2018) [37] 84.8 92.4
HCN(2018) [36] 86.5 91.1

ST-GCN (2018) [6] 81.5 88.3
AS-GCN(2018) [9] 86.8 94.2
PB-GCN (2018) [8] 87.5 93.2
2s-AGCN(2019) [7] 88.5 95.1

AGC-LSTM(2019) [10] 89.2 95.0

ours 91.7 96.8
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Table 6. The results of different methods, which are designed for 3D human activity analysis, using the
cross-subject and cross-setup evaluation criteria on the NTU RGB+D 120 dataset.

Methods Cross-Subject (%) Cross-Setup (%)

ST-LSTM(2016) [29] 55.7 57.9
Internal Feature Fusion(2017) [38] 58.2 60.9

GCA-LSTM(2017) [30] 58.3 59.2
Multi-Task Learning Network(2017) [39] 58.4 57.9

FSNet(2018) [40] 59.9 62.4
Skeleton Visualization (Single Stream)(2017) [41] 60.3 63.2

Two-Stream Attention LSTM(2018) [38] 61.2 63.3
Multi-Task CNN with RotClips(2018) [42] 62.2 61.8

Body Pose Evolution Map(2018) [43] 64.6 66.9

ours 86.4 89.4

5. Conclusions

In this work, we propose several spatial and temporal features which are more effective for
skeleton-based action recognition. By blending these high-order features, the deep network highlights
the spatial changes and temporal changes of the 3D joints, which are crucial for action recognition.
It is worth mentioning that the multi-feature fusion method outperforms the single-feature-based
method. For each high-order feature added, the accuracy of the final result is improved by about 1%.
On the cross-subject and cross-view evaluation criteria of the NTU-RGBD dataset, blending high-order
features can improve the accuracy by 3.8% and 2.8%, respectively. What is more, for the cross-subject
and cross-setup evaluation criteria of the NTU-RGBD-120 dataset, blending high-order features can
improve the accuracy by 5.7% and 4.9%, respectively. The results prove the efficiency of the high-order
features and indicate that the performance of our model is the state-of-the-art. In future work, we will
add visual information to solve the problems caused by object-related individual actions, and prepare
to add some part-based features to solve the problem of fine-grained actions.

6. Patents

Using the method we proposed in this article, we published an invention patent. There is
some information about our invention patent. More details can be searched for publication number
(CN110427834A) from the official website of the State Intellectual Property Office of China.

China Patent: Jiuqing Dong, Yongbin Gao, Yifan Yao, Jia Gu, and Fangzheng Tian. Behavior
recognition system and method based on skeleton data [P]. CN110427834A,2019-11-08.
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