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Abstract: Emotion plays a nuclear part in human attention, decision-making, and communication.
Electroencephalogram (EEG)-based emotion recognition has developed a lot due to the application
of Brain-Computer Interface (BCI) and its effectiveness compared to body expressions and other
physiological signals. Despite significant progress in affective computing, emotion recognition is
still an unexplored problem. This paper introduced Logistic Regression (LR) with Gaussian kernel
and Laplacian prior for EEG-based emotion recognition. The Gaussian kernel enhances the EEG
data separability in the transformed space. The Laplacian prior promotes the sparsity of learned LR
regressors to avoid over-specification. The LR regressors are optimized using the logistic regression
via variable splitting and augmented Lagrangian (LORSAL) algorithm. For simplicity, the introduced
method is noted as LORSAL. Experiments were conducted on the dataset for emotion analysis using
EEG, physiological and video signals (DEAP). Various spectral features and features by combining
electrodes (power spectral density (PSD), differential entropy (DE), differential asymmetry (DASM),
rational asymmetry (RASM), and differential caudality (DCAU)) were extracted from different
frequency bands (Delta, Theta, Alpha, Beta, Gamma, and Total) with EEG signals. The Naive Bayes
(NB), support vector machine (SVM), linear LR with L1-regularization (LR_L1), linear LR with
L2-regularization (LR_L2) were used for comparison in the binary emotion classification for valence
and arousal. LORSAL obtained the best classification accuracies (77.17% and 77.03% for valence
and arousal, respectively) on the DE features extracted from total frequency bands. This paper also
investigates the critical frequency bands in emotion recognition. The experimental results showed
the superiority of Gamma and Beta bands in classifying emotions. It was presented that DE was the
most informative and DASM and DCAU had lower computational complexity with relatively ideal
accuracies. An analysis of LORSAL and the recently deep learning (DL) methods is included in the
discussion. Conclusions and future work are presented in the final section.
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1. Introduction

Affective computing defined by Picard [1] is a multidisciplinary research field that relates to
computer science, psychology, neuroscience, and cognitive science. Levenson [2] believed that during
natural selection, emotions were preserved for the necessity of rapid response mechanisms when facing
different environmental threats. Emotion plays a nuclear role in human behavior, such as perception,
attention, decision-making, and communication [3]. Positive emotions contribute to healthy life and
efficient work, while negative emotions may result in health problems [4].

Emotion recognition methods include two main categories, according to the methods humans
communicate emotions, including body expressions, and physiological signals. Body expressions are
physical manifestations and easy to be collected. Theorists argue that each emotion corresponds to its
unique somatic response [1]. However, human physical manifestations are easily affected by the user’s
cultural background and social environment [4]. The physiological signals [3,4] are internal signals,
such as electroencephalogram (EEG), electrocardiogram (ECG), heart rate (HR), electromyogram
(EMG), and galvanic skin response (GSR). According to Connon’s theory [5], the emotion changes are
associated with quick responses in physiological signals coordinated by the autonomic nervous systems
(ANS). This makes the physiological signals not easily controlled and overcome the shortcomings of
body expressions [4]. Physiological signals have been widely applied in many studies for emotion
recognition [3,4]. These physiological signals, including ECG and EMG, are still not a direct reaction to
emotion changes. According to psychology and neurophysiology, emotion generation and activity
have a close relationship with the activity of the cerebral cortex. Thus, EEG signals effectively reflect the
brain electrical activity, and have been widely applied in many fields, including cognitive performance
prediction [6], mental load analysis [7,8], mental fatigue assessment [9], recommendation system [10]
and decoding visual stimuli [11,12].

Recently, the field of EEG-based emotion recognition has attracted a lot of interest,
including Brain-Computer Interaction (BCI) systems, basic emotion theories, and machine learning
algorithms [13,14]. In machine learning, the definition of the emotion model is necessary to describe the
objective function of the algorithms. There are mainly two kinds of models [3], discrete emotion spaces
and continuous emotion models. Among these models, the valence-arousal model by Russell [15] has
been widely used in emotion recognition for its simplicity to establish assessment criteria. The progress
of EEG-based emotion recognition also includes feature extraction, feature selection, dimension
reduction, and classification algorithms [13,14]. After the pre-processing of original EEG signals,
the current work is to extract and select informative features to enhance the discriminative signal
characteristics. Traditionally, feature extraction and selection are based on neuroscience and cognition
science [16]. For example, frontal asymmetry in Alpha band power for differentiating valence level
has attracted lots of interest in neuroscience research [17]. Besides neuro-scientific assumptions,
computation methods in machine learning are also applied for feature extraction and selection in
EEG-based emotion recognition [16,18]. Several studies transformed the pre-processed EEG-signal
into various analysis domains, including time, frequency, statistical, and spectral domains [19]. It
should be noted that only one feature extraction method is not suitable for various applications and
BCI systems [19]. Although the most informative EEG features for emotion classification are still
being researched, the power features obtained from different bands are widely recognized as the most
popular features. In these studies [20–22], power spectral density (PSD) from EEG signals worked well
for identifying emotional states. However, feature extraction usually generates high-dimensional and
abundant features. Feature selection and dimension reduction are necessary to avoid over-specification
and to reduce computational burden [3]. Compared to filter and wrapper methods for feature
selection, the dimension reduction methods, e.g., principal component analysis (PCA), and Fisher
linear discriminant (FLD), are more efficient. For further information about feature selection and
dimension reduction, we refer the reader to [23,24]. Many machine learning algorithms have been
introduced as EEG-based emotion classifiers, such as support vector machine (SVM) [25,26], Naive
Bayes (NB) [27], K-nearest neighbors (KNN), linear discriminant analysis (LDA), random forest (RF),
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and artificial neural networks (ANN). Among these methods, SVM based on spectral features, e.g.,
PSD, is the most widely applied approach. In [25], SVM was used to classify the joy, sadness, anger,
and pleasure feelings based on the EEG signals from 12 symmetric electrodes pairs. SVM was used
in [26] for emotion recognition with the accuracies 32% and 37% in valence and arousal dimensions,
respectively. A Gaussian NB in [27] was used to classify low/high valence, and arousal emotion with
precision of 57.6% and 62.0%, respectively.

Recently, deep learning (DL) methods have been introduced for EEG-based emotion
classification [28,29]. The study [30,31] proposed deep belief network (DBN) to discriminate positive,
neutral, and negative emotions. The experimental results show that DBN performs better than SVM
and KNN. In [32], after an effective pre-processing method instead of traditional feature extraction
methods, a hybrid neural network combining convolutional neural network (CNN) and recurrent
neural network (RNN) is proposed to learn spatial-temporal representation from the pre-processed
EEG recordings. The proposed pre-processing strategy improves the emotion recognition accuracies
by about 33% and 30% for valence and arousal dimensions, respectively. In [33], a deep CNN (DCNN)
model is introduced to learn discriminative representations from the combined features in the raw
time domain, after normalization, and in the frequency domain. The obtained emotion classification
accuracies are higher than the traditionally best bagging tree (BT) classifier. The study [34] proposed
a hierarchical bidirectional gated recurrent unit (GRU) network with an attention mechanism. The
proposed scheme learned more significant representation from EEG sequences and the accuracies
obtained on cross-subject emotion classification task outperformed the long short time memory
(LSTM) network by 4.2% and 4.6% in valence and arousal dimensions, respectively. Compared to
traditional shallow methodologies, the DL models remove the signal pre-processing and feature
extraction/selection progress, and are more suitable for affective representation [35,36]. However, the
DL methods cannot reveal the relationship between emotional states and EEG signals for being like a
black box [37]. Moreover, the training of DL networks is extremely computationally time-consuming,
which limits their practical applications in real-time emotion recognition [3].

As aforementioned, the field of affective computing has developed a lot over the past several
years, including the incorporation of DL methodologies. However, the modeling and recognition of
emotional states is still an unexplored problem [13,14]. EEG-based emotion recognition is still faced
with several challenges, including fuzzy boundaries between emotions.

Note that logistic regression (LR) [38] has been widely used as a statistical learning model in
pattern recognition and machine learning, as well as in EEG signal processing. In [39], LR trained with
EEG power spectral features was used for automatic epilepsy diagnosis. The work in [40] further used
wavelet transform to extract effective representation from non-stationary EEG records and adopted LR
as a classifier to identify epileptic and non-epileptic seizures. In [41], regularized linear LR was trained
using the raw EEG signal without feature extraction to classify imaginary movements. In [42], LR
with L2-penalization to avoid overfitting was trained using spectral power features from intracranial
EEG (iEEG) signals for the analysis of the brain’s encoding states and memory performance. The
study in [43] further incorporated t-distributed stochastic neighbor embedding (tSNE) for dimension
reduction of iEEG signals, and the learned L2-regularized LR classier was used for predicting memory
encoding success. Despite the above studies, the potential of the LR model for EEG-based emotion
recognition is still not fully explored.

In this present study, we systematically introduced the logistic regression (LR) algorithm with
Gaussian kernel and Laplacian prior [44–46] for EEG-based emotion recognition. Different from these
LR classifiers, Gaussian radial basis function (RBF) kernel was used to enhance the data separability in
the transformed space [46]. Moreover, Laplacian prior promoting the sparsity of logistic regressors
was acted as L1-regularization [44]. This prior forces many components of logistic regressors to be zero.
Thus, the learned logistic regressors with sparseness control the complexity of the LR classifier and
consequently avoids over-specification in EEG-based emotion recognition. The logistic regression via
variable splitting and augmented Lagrangian (LORSAL) algorithm [45] was introduced to optimize the
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logistic regressors for lower computational complexity. Thus, the introduced LR method is abbreviated
as LORSAL. For overall evaluation of the LORSAL classifier, various power spectral features and
features calculated by combinations of electrodes were used as input for the classifiers. The conventional
NB, SVM, linear LR with L1-regularization (LR_L1), linear LR with L2-regularization (LR_L2) were
used for comparison to evaluate the performance of the LORSAL classifier. This paper also presents an
investigation of critical frequency bands [47,48] and an analysis of the effect of extracted features for
EEG-based emotion classification.

The rest of this paper is organized as follows. Section 2 presents the materials and methods,
including the dataset for emotion analysis using EEG, physiological and video signals (DEAP), various
features extracted from the EEG signals, the introduced LR model with Gaussian kernel and Laplacian
prior, and the LORSAL algorithm to learn LR regressors. The experimental results are shown in
Section 3. The introduced method is evaluated in the task of subject-dependent emotion recognition in
valence and arousal dimensions, and the compared methods include NB, SVM, LR_L1, and LR_L2.
Section 4 gives the discussion and a further comparison of LORSAL and the DL methods. Related
conclusion and future work are presented in Section 5.

2. Materials and Methods

2.1. DEAP Dataset and Pre-Processing

This study was performed on the dataset DEAP developed by researchers at Queen Mary
University of London [27]. This dataset is publicly available (http://www.eecs.qmul.ac.uk/mmv/

datasets/deap/index.html) and consists of multimodal physiological signals for human emotion
analysis. It contains, in total, 32 EEG-channel recordings and eight peripheral signals of 32 subjects
(50 percent females, aged between 19 and 37). The carefully selected 40 1-min videos were used
as emotion elicitation materials [27]. As shown in Figure 1, the 2D valence-arousal emotion model
by Russell [15] was used to quantitatively describe emotional states. The first dimension, valence,
ranges from unpleasant to pleasant, and the second dimension, arousal, changes from bored to excited.
Therefore, the valence-arousal model can describe most variations in human emotion changes. The
well-known self-assessment manikins (SAM) [49] (shown in Figure 2) were adopted for self-assessment
along the valence and arousal dimensions, and the corresponding discrete rating values change from 1
to 9, which can be used as identification labels in emotion analysis tasks [27]. In this paper, the first
32-channel EEG records (marker in Figure 3) in the DEAP dataset preprocessed in MATLAB format
were used. The EEG signals were preprocessed by down-sampling from 512 Hz to 128 Hz, and then
band-pass filtering with 4–45 Hz.
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Figure 3. International 10-20 system for 32 electrodes (marked with blue circles).

In this work, two different binary classification problems were posed for subject-dependent
emotion recognition: The discrimination of low/high valence (LV/HV), and low/high arousal (LA/HA).
The subjects’ ratings (scaling from 1 to 9) by SAM in the experiments [27] were used as the ground truth
and the threshold was selected as 5 to divide the rating values into two categories: LV/HV and LA/HA.
The time duration of one trail for each subject in the preprocessed EEG sequences is 63 s, in which the
first 3 s are baseline signals before watching video elicitations. The 3 s sequences were removed to
obtain the stimulus-related dynamics. The remaining 60-s EEG signals (thus, 7680 readings in each
EEG channel, in total) were segmented into sixty 1 s epochs. Thus, there were 40 * 60 EEG epochs, in
total, for each participant. Each subject-dependent EEG data had a dimensionality of 128 (sampling
points) * 32 (EEG channels) * 2400 (EEG epochs). Finally, we obtained the labeled EEG signals with
the dimension of 2400 for each subject. In this paper, for each subject, 10% of labeled epochs were
used to train the emotion classifier, and the remaining 90% for test. For example, the constructed EEG
dataset for the first participant consisted of 960 LV and 1440 HV epochs. Then, 10% of samples were
randomly selected from LV and HV samples, respectively, and 240 epochs were selected for training.



Appl. Sci. 2020, 10, 1619 6 of 25

Ten-fold cross-validation was used to evaluate the introduced LORSAL classifier, and the compared
traditional methods.

2.2. Feature Extraction

In this study, various power spectral features in the frequency domain and features calculated
by combinations of electrodes were extracted from the constructed EEG signals. The extraction of
prominent statistical characteristics is important for emotion recognition. The physiological signals,
e.g., EEG, are characterized with high complexity and non-stationarity, and power spectral density
(PSD) [20–22] from different frequency bands is the most well-known applicable statistical feature in
the task of emotion analysis. This benefits from the assumption that EEG signals are stationary for
the duration of a trail [50]. Many studies in neuroscience and psychology [51] suggest that these five
frequency bands are closely linked to psychological activities, including the emotion activity: Delta
(1 Hz–3 Hz), Theta (4 Hz–7 Hz), Alpha (8 Hz–13 Hz), Beta (14 Hz–30 Hz), and Gamma (31–50 Hz).
The fast Fourier transform (FFT) can be applied using discrete Fourier transform (DFT) [52], while the
common alternatives are short-time Fourier transform (STFT) [53,54]. PSD features are extracted from
the above five frequency bands using 256-point STFT and a sliding 0.5 s Hanning window with 0.25 s
overlapping along 1 s epoch for each EEG channel.

Differential entropy (DE) [55,56] is a measurement of the complexity of a continuous random
variable by extending the Shannon entropy concept [57]. These studies by Zheng et al. [47,48] and
Duan et al. [56] introduced DE for emotion classification using EEG low/high-frequency patterns.

The original formula of DE is defined as

h(X) = −

∫
X

f (x) log( f (x))dx, (1)

and DE when a random variable X obeys the Gaussian distribution N(µ, σ2) can be simply given as:

h(X) = −

∫ +∞

−∞

1
√

2πσ2
exp

(x− µ)2

2σ2 log
1

√

2πσ2
exp

(x− µ)2

2σ2 dx =
1
2

log 2πeσ2, (2)

where π and e are constants. According to [55], given a certain frequency band, DE equals to the
logarithmic spectral energy for a fixed-length EEG recording. Thus, the DE features are calculated in
the five frequency bands as for the PSD features.

In the literature [58,59], the asymmetric brain activity between the left and right hemispheres
is of high relation with emotions. In the studies [47,48], the differential asymmetry (DASM) and
rational asymmetry (RASM) features were defined as the differences and ratios of the DE features of
hemisphere asymmetric electrodes. Here, 14 pairs of asymmetric electrodes are selected to calculate
DASM and RASM: Fp1-Fp2, F7-F8, F3-F4, T7-T8, P7-P8, C3-C4, P3-P4, O1-O2, AF3-AF4, FC5-FC6,
FC1-FC2, CP5-CP6, CP1-CP2, and PO3-PO4. The DASM and RASM features are given as

DASM = DE(Xle f t) −DE(Xright), (3)

and
RASM = DE(Xle f t)/DE(Xright) (4)

respectively. Due to the studies suggested in [58,59], the emotional states are closely linked to the
spectral differences of brain activity between frontal and posterior brain regions. The definition of
differential caudality (DCAU) features [47,48] was also adopted in this paper to characterize the spectral
asymmetry in frontal-posterior direction. The DCAU features are given as the differences between
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11 pairs of frontal-posterior electrodes: FC5-CP5, FC1-CP1, FC2-CP2, FC6-CP6, F7-P7, F3-P3, Fz-Pz,
F4-P4, F8-P8, Fp1-O1, Fp2-O2. The formulation of DCAU is defined as

DCAU = DE(X f rontal) −DE(Xposterior). (5)

The dimensions of the PSD, DE, DSAM, RASM, and DCAU features are 160 (32 channels * 5
bands), 160 (32 channels * 5 bands), 70 (14 pairs of electrodes * 5 bands), 70 (14 pairs of electrodes * 5
bands), 55 (11 pairs of electrodes * 5 bands), respectively. For simplicity, the above-extracted features
were used directly and separately as input for the introduced and compared recognition methods.

2.3. Logistic Regression with Gaussian Kernel and Laplacian Prior

Logistic regression (LR) has been a common statistical learning model in pattern recognition
and machine learning [38]. Strictly speaking, the applications of LR in EEG signal analysis is not
new, as illustrated in the above introduction [39–43]. Despite this, the potential of the LR model
for EEG-based emotion recognition has not been fully exploited. In this paper, we systematically
introduced the logistic regression (LR) algorithm with Gaussian kernel and Laplacian prior [44–46] for
emotion recognition with EEG signals.

The goal of a supervised learning algorithm is to train a classifier using training samples in
order to recognize the label of an input feature vector from different classes. In EEG-based emotion
recognition, the major task is to assign the input EEG signals to one of the given classes. Especially in
this study, two binary classification problems were posed for subject-dependent emotion recognition:
The classification of LV/HV emotions, and LA/HA emotions.

Using a multinomial LR (MLR) model [38,44], the probability that the input feature xi belongs to
emotion class k is written as

p(yi = k|xi, w) =
exp(w(k)h(xi))∑K

k=1 exp(w(k)h(xi))
, (6)

where xi is the feature vector extracted from the original EEG sequences, and h(xi) indicates a vector of

functions of the input feature vector xi, and w ≡ [w(1)T
, . . . , w(K)T

]
T

is the logistic regressors. For binary
classification tasks (K = 2), this is known as LR model, for K > 2, the usual designation is MLR [44].
Although emotion recognition in this paper is binary classification, the formula of MLR is presented
here for completeness. On one hand, this does not affect the understanding of the model, on the other
hand, this makes it easy to extend to the cases when handling multiple emotion classes.

Note that the function h(xi) can be linear or nonlinear. For the latter case, kernel functions can
be selected to further enhance the separability of extracted features in the transformed space. In this
study, the Gaussian kernel is utilized, given by

K(xi, x j) = exp(− ‖ xi − x j ‖ /(2ρ2)), (7)

In this paper, the training of the LR classifier using labeled EEG epochs amounts to estimate the
class densities and learn the logistic regressor w. Following the formulation of the sparse MLR (SMLR)
algorithm in [44], the solution of w is given by the maximum a posteriori (MAP) estimate

ŵ = argmax
w
`(w) + log p(w), (8)

where `(w) indicates the log-likelihood function given as following:

`(w) = log
L∏

i=1

p(yi
∣∣∣xi, w) , (9)
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where L denotes the number of training samples, and

p(w) ∝ exp(−λ ‖ w ‖1), (10)

denotes the Laplacian prior, where ‖ w ‖1 indicates the L1 norm of w, and l is the regularization
parameter. The Laplacian prior forces the sparsity on the logistic regressors w, and promote many
components of w equal to zero [45,46]. The obtained sparse regressor reduces the complexity of the LR
classifier and, therefore, avoids over-specification in EEG-based emotion classification.

The convex problem in Equation (8) is difficult to optimize for the nonquadratic property of the
term `(w) and the non-smoothness of the term logp(w). The studies in [44,60] decomposed the problem
in Equation (8) into a sequence of quadratic problems using a majorization-minimization scheme [61].
The SMLR algorithm optimizes each quadratic problem with the complexity of O(((L + 1)K)3) [44]. The
fast SMLR (FSMLR) [62] is more efficient by applying a block-based Gauss–Seidel iterative procedure
to estimate w. Thus, the FSMLR algorithm is K2 faster than SMLR with the complexity of O((L + 1) 3K).

In this work, the logistic regression via variable splitting and augmented Lagrangian (LORSAL) [45]
algorithm is introduced to solve the LR regressors in Equation (8). LORSAL has been proposed for
hyperspectral image classification (HSI) in remote sensing community [45,46]. The complexity of
LORSAL is O((L + 1) 2K) for each quadratic problem, compared to the O(((L + 1)K)3) and O((L + 1) 3K)
complexities of the SMLR and FSMLR algorithms. Note that in this paper, we might use LORSAL
directly to indicate the introduced LR with Gaussian kernel and Laplacian prior.

3. Experimental Results

In this work, we systematically investigated the classification performance of the introduced
LORSAL method compared with four classifiers, Naive Bayes (NB) [27], support vector machine
(SVM) [25,26], linear LR with L1-regularization (LR_L1), linear LR with L2-regularization (LR_L2)
for the binary classification of the LV/HV and LA/HA emotional states. These features, including
PSD, DE, DASM, RASM, and DCAU, were extracted from the EEG-signals and used directly as inputs
for the classifier. The NB in MATLAB was employed as in [27]. The LIBLINEAR [63] software was
adopted for the implementation of the LR_L1, and LR_L2 classifiers, respectively, with the default cost
parameter. The LIBSVM [64] tool was utilized to implement the SVM classifier by using the linear
kernel with default parameters. For simplicity, the parameters for Gaussian kernel and Laplacian prior
in the LORSAL method were set as default in [46]. Such parameter settings may be not optimal for
EEG-based emotion recognition, but present ideal classification performance in the experiments.

3.1. Overall Classification Accuracy

The mean accuracies and standard deviations obtained by different classifiers in valence dimension
for different features extracted from five frequency bands (Delta, Theta, Alpha, Beta, and Gamma) and
the total frequency bands are tabulated in Table 1. It should be noted that ‘Total’ in Table 1 denotes
the features by concatenating all different features from all frequency bands. Given the same features
extracted from the EEG signals, the accuracy metrics of the black bold font in Table 1 indicate the
highest accuracies obtained by different classifiers for each frequency band, while the precision metrics
with gray background denote the highest precisions obtained by compared methods for all kinds of
frequency bands. The LORSAL methods obtained the highest accuracy of 77.17% for the DE feature
from the total frequency bands among all the compared classifiers. Under the same case, the highest
classification accuracy obtained by SVM is 69.55%, while the best accuracy by NB is 62.36% for the
DASM feature from the total frequency bands.
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Table 1. The mean precisions and standard deviations (%) of the classification of LV/HV emotions
obtained by the compared classifiers for different features extracted from different frequency bands.

Feature Classifier Delta Theta Alpha Beta Gamma Total

PSD

NB 54.18/5.39 53.94/5.24 54.25/5.08 58.85/7.63 61.23/8.48 60.51/6.71
SVM 51.14/14.31 47.57/15.75 52.35/16.04 62.97/12.18 64.15/12.19 69.04/5.91

LR_L1 44.80/4.63 45.23/4.72 44.00/5.51 38.41/8.75 36.18/9.67 34.43/9.52
LR_L2 44.57/4.88 45.11/4.92 44.14/5.49 38.47/8.63 36.38/9.58 34.38/9.57

LORSAL 56.45/5.79 56.19/5.34 58.29/5.56 64.95/6.78 68.30/7.98 63.29/6.54

DE

NB 54.27/3.62 53.90/3.53 54.62/4.07 59.19/5.59 61.52/6.51 61.04/5.76
SVM 52.08/13.54 49.76/14.14 52.04/13.41 62.91/10.23 65.88/9.93 69.55/6.58

LR_L1 44.04/4.80 44.67/4.73 43.16/5.34 38.22/8.67 36.08/9.52 33.69/9.88
LR_L2 43.86/4.88 44.44/4.69 43.15/5.41 38.15/8.64 36.06/9.52 33.81/9.59

LORSAL 61.79/4.55 58.34/3.90 59.20/4.04 67.06/6.95 72.93/7.30 77.17/6.37

DASM

NB 54.81/6.61 53.97/5.53 54.07/6.12 60.18/6.16 62.27/6.88 62.36/5.66
SVM 45.64/14.11 44.66/14.77 44.83/14.66 56.24/13.18 60.95/12.14 64.48/10.21

LR_L1 45.32/4.11 45.77/3.89 45.41/4.86 40.68/7.45 38.83/8.79 36.90/8.82
LR_L2 45.35/4.04 46.03/3.95 45.59/4.66 40.77/7.53 38.84/8.68 37.11/8.80

LORSAL 58.38/3.58 55.21/3.55 55.42/3.46 60.31/5.39 64.63/6.22 71.63/4.94

RASM

NB 51.17/6.55 51.61/7.37 51.02/6.98 54.90/8.57 58.08/9.47 55.65/6.77
SVM 37.41/15.45 37.23/14.33 37.35/13.87 40.56/16.24 47.29/17.02 48.17/17.72

LR_L1 49.39/6.07 48.19/5.55 48.17/6.24 45.29/6.11 42.39/7.44 42.71/6.64
LR_L2 49.45/4.75 47.92/4.30 47.95/4.73 45.44/5.87 42.53/6.97 42.69/6.37

LORSAL 49.31/8.79 51.68/8.71 51.68/8.98 52.55/10.36 57.38/9.69 51.67/7.53

DCAU

NB 53.98/6.22 52.97/6.73 53.72/6.03 59.61/5.70 61.97/6.52 61.95/5.52
SVM 43.40/13.46 41.11/13.93 43.91/14.39 55.47/13.83 59.57/12.67 63.48/9.93

LR_L1 45.94/4.24 46.26/4.11 45.82/4.41 41.38/7.32 39.19/8.29 37.41/8.21
LR_L2 46.03/4.23 46.45/4.11 45.74/4.38 41.33/7.24 39.21/8.35 37.45/8.22

LORSAL 57.01/3.38 54.68/3.59 55.20/3.55 59.38/5.61 63.54/6.21 69.89/4.89

The SVM classifier is the most widely applied approach based on spectral features, especially
PSD. Table 1 shows that the performance of SVM is second only to LORSAL on all features extracted
from total frequency bands, and the corresponding accuracies are 69.04%, 69.55%, 64.48%, 48.17%, and
63.48% for the PSD, DE, DASM, RASM, and DCAU features. In study [27], the NB classifier obtained
an accuracy of 57.6% in the valence dimension. In this study, the mean precisions obtained by NB
are approximately between 60% and 62% for the PSD, DE, DASM, and DCAU features from the total
frequency bands.

However, the best accuracies obtained by LR_L1 and LR_L2 are approximately 46%, which is
significantly lower than those obtained by NB, SVM, and LORSAL. Although the LR_L1 and LR_L2
adopted L1-regularization and L2-regularization during the optimization of LR regressors to avoid
over-specification, the assumption of linear separability does not hold for the extracted features from
EEG signals. The average precisions obtained by the LORSAL have significant improvement over
these by LR_L1 after incorporating the Gaussian kernel. The Gaussian kernel can enhance the data
separability in the transformed space and meanwhile, the Laplacian prior can promote sparsity on the
learned LR regressor and avoid over-specification of the selected training EEG epochs.

For the classification task of LV/HV emotions, the LORSAL methods present the best classification
accuracies, 77.17%, 71.63%, and 69.89% on the DE, DASM, and DCAU features from total frequency
bands, which are higher than SVM by about 8%, 7%, and 6%. The SVM and NB classifiers perform best
by accuracies 69.04% and 55.65% on the PSD and RASM features from ‘Total’ bands, respectively. As is
shown in Table 2, the performance of the five classifiers on classifying LA/HA emotions is similar to
the case of LV/HV classification. The introduced LORSAL method performed best on the DE, DASM,
and DCAU features from ‘Total’ bands, and the corresponding accuracies outperformed these of SVM
by about 7%, 9%, and 8%. In addition, the performance of LORSAL was obviously better than that
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of the compared LR_L1, and LR_L2 methods in the arousal dimension. The incorporated Gaussian
kernel and Laplacian prior improved the distinguishing ability of LORSAL in emotion recognition task
based on EEG signals.

Table 2. The mean precisions and standard deviations (%) of the classification of LA/HA emotions
obtained by the compared classifiers for different features extracted from different frequency bands.

Feature Classifier Delta Theta Alpha Beta Gamma Total

PSD

NB 54.22/5.37 53.08/5.66 53.82/5.30 55.39/8.03 58.44/8.94 57.54/6.15
SVM 50.83/15.93 48.07/15.6 49.95/15.65 58.05/15.31 58.82/15.08 68.60/8.07

LR_L1 47.74/6.07 47.96/5.66 47.46/6.49 45.34/9.97 44.11/11.67 43.55/14.04
LR_L2 47.66/6.31 47.94/5.78 47.42/6.41 45.47/9.96 44.03/11.64 43.58/14.23

LORSAL 57.45/6.75 56.91/6.86 58.82/6.23 63.99/6.47 67.75/7.05 61.62/6.64

DE

NB 54.13/3.76 53.43/3.68 54.08/3.76 56.97/4.81 58.75/5.33 58.46/5.00
SVM 46.90/14.53 45.03/14.93 47.51/14.57 55.88/13.34 63.33/12.79 69.92/7.94

LR_L1 47.29/6.52 47.69/5.93 46.96/6.81 45.26/10.88 44.16/12.99 43.10/15.21
LR_L2 47.38/6.40 47.81/5.89 46.91/6.88 45.29/11.03 44.12/13.03 43.25/15.00

LORSAL 61.97/4.64 58.18/3.94 59.35/3.97 66.57/6.67 72.73/7.62 77.03/6.20

DASM

NB 54.67/6.10 54.78/6.33 54.31/7.68 58.11/5.75 60.46/5.28 60.34/4.50
SVM 43.95/13.24 42.84/13.38 43.02/12.53 51.24/14.69 56.42/13.68 61.79/12.34

LR_L1 48.07/5.75 48.16/4.98 47.91/5.34 45.99/8.41 45.45/10.67 44.60/12.33
LR_L2 48.13/5.64 48.05/5.18 47.76/5.38 45.93/8.45 45.43/10.72 44.78/12.22

LORSAL 58.13/3.75 55.14/3.62 55.18/3.37 59.70/4.94 64.54/5.87 71.20/4.96

RASM

NB 51.31/7.57 51.92/7.12 51.01/6.47 54.25/6.52 55.26/6.84 53.57/4.25
SVM 36.59/13.04 35.31/11.31 36.18/12.49 37.79/14.05 42.61/17.12 43.46/15.61

LR_L1 49.45/6.07 49.07/4.97 50.18/4.32 49.14/5.75 47.83/7.35 47.94/7.39
LR_L2 49.44/5.08 49.16/4.41 50.19/4.22 49.05/5.73 47.92/7.21 48.10/7.31

LORSAL 49.09/10.60 50.93/10.79 50.15/10.95 50.14/11.36 53.51/11.07 50.67/8.33

DCAU

NB 55.09/7.10 53.86/6.91 53.98/7.42 56.98/7.23 60.14/5.99 59.98/4.50
SVM 42.34/13.47 41.56/13.26 43.19/13.26 50.64/13.76 55.06/14.99 60.04/12.79

LR_L1 48.19/5.42 48.36/4.90 48.01/5.18 46.34/8.24 45.29/10.05 44.47/11.45
LR_L2 48.21/5.31 48.38/5.04 47.86/5.14 46.29/8.13 45.33/9.93 44.61/11.51

LORSAL 57.16/3.69 54.49/3.65 55.18/3.46 58.09/4.99 62.68/5.60 68.48/4.93

For a more comprehensive comparison of the NB, SVM, and LORSAL approaches, Table 3
tabulated the average values and standard deviations of precision, recall, and F1, for the binary emotion
classification problem of LV/HV and LA/HA, respectively, when different features were extracted from
the total frequency bands. The introduced LORSAL method obtained the best precisions (77.17%/6.37%
for LV/HV, and 77.03%/6.20% for LA/HA), the best recalls (76.79%/6.21% for LV/HV, and 76.15%/6.14%
for LA/HA), and the best F1 values (76.90%/6.27% for LV/HV, and 76.47%/6.14% for LA/HA), for
EEG-based emotion recognition. In summary, the above analysis suggests the application of LORSAL
on the DE features extracted from ‘Total’ bands for EEG-based emotion recognition. For simplicity, we
will focus on comparing the performance of LORSAL with NB and SVM in the following subsections.
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Table 3. The mean metrics and standard deviations (%) of precision, recall, and F1 for the binary
classification of LV/HV and LA/HA emotions obtained by the compared classifiers for different features
extracted the total frequency bands.

Feature Classifier
Valence Arousal

Precision Recall F1 Precision Recall F1

PSD
NB 60.51/6.71 56.65/4.99 48.84/9.54 57.54/6.15 54.95/4.29 46.86/8.54

SVM 69.04/5.91 65.62/6.55 65.24/7.39 68.60/8.07 61.09/6.17 60.41/7.47
LORSAL 63.29/6.54 62.15/6.65 61.84/7.27 61.62/6.64 59.02/5.53 58.46/6.54

DE
NB 61.04/5.76 60.31/5.19 58.83/5.48 58.46/5.00 58.96/5.05 55.84/5.74

SVM 69.55/6.58 66.93/6.50 66.89/7.15 69.92/7.94 63.50/6.57 63.45/7.54
LORSAL 77.17/6.37 76.79/6.21 76.90/6.27 77.03/6.20 76.15/6.14 76.47/6.14

DASM
NB 62.36/5.66 62.18/5.54 61.73/5.57 60.34/4.50 60.79/4.90 59.76/4.77

SVM 64.48/10.21 63.01/7.15 62.01/9.11 61.79/12.34 59.06/6.36 57.49/8.46
LORSAL 71.63/4.94 71.38/4.92 71.43/4.92 71.20/4.96 70.68/5.00 70.82/4.94

RASM
NB 55.65/6.77 53.72/4.64 46.01/7.92 53.57/4.25 52.38/2.95 40.70/6.37

SVM 48.17/17.72 52.47/5.24 43.24/9.56 43.46/15.61 50.25/0.98 40.00/3.72
LORSAL 51.67/7.53 51.35/2.98 46.69/5.49 50.67/8.33 50.60/2.11 45.32/3.94

DCAU
NB 61.95/5.52 61.65/5.44 61.26/5.48 59.98/4.50 60.14/4.50 59.36/4.37

SVM 63.48/9.93 62.09/6.51 60.99/8.59 60.04/12.79 58.21/6.32 56.12/8.76
LORSAL 69.89/4.89 69.68/4.77 69.71/4.81 68.48/4.93 68.11/4.90 68.19/4.88

3.2. Investigation of Critical Frequency Bands

In this study, the informative features were extracted from different frequency bands (Delta, Theta,
Alpha, Beta, Gamma, and Total) for EEG-based emotion recognition. Thus, we present an investigation
of the critical frequency bands in EEG signals for emotion processing. Figures 4a–f and 5a–f show
the mean precisions obtained by LORSAL, SVM, and NB for the classification of LV/HV and LA/HA,
respectively, when the frequency bands alternated among Delta, Theta, Alpha, Beta, Gamma, and Total.
Gamma and Beta are more informative than other frequency bands (Delta, Theta, and Alpha). For
example, among the first five frequency bands, the LOSAL obtained the highest accuracies of 72.93%
and 67.06% on Gamma and Beta from the DE features in valence classification, the best accuracies of
72.73% and 66.57% on Gamma and Beta from the DE features in arousal recognition.

There is not always a causal relationship between features with high recognition accuracies and
emotions. Koelstra et al. [27] presented an investigation about the causal relationship between the
emotions and their EEG signals on the DEAP dataset. The average frequency power of trials was
calculated over the bands Theta, Alpha, Beta, and Gamma (between 3 and 47 Hz). The Spearman
correlated coefficients were tabulated [27] to present the statistical correlation of the power changes
of EEG sequences and subject ratings. Similar research has been done by Zheng [47], we focused on
analyzing the informative neural patterns associated with recognizing different emotions. Especially,
the Fisher ratio was used to investigate the critical frequency bands for discriminating different
emotions. The Fisher ratio has been used in pattern recognition for class separability measure and
feature selection [65–67], as well as in emotion classification [3,4,13,14,27]. The higher values of the
Fisher ratio mean more informative neural patterns and features related to emotion recognition. It is
defined as the ratio of interclass difference to the intraclass spread

Fn(L, H) =
(mLn −mHn)

2

σ2
Ln + σ2

Hn

, (11)

where L and H mean two different emotion, e.g., LV/HV or LA/HA, and mLn, mHn, σ2
Ln, and σ2

Hn denote
the mean and variance of the n-th dimension of the EEG feature belonging to emotions L and H,
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respectively. Thus, Fn(L, H) indicates the class separability between emotions L and H for the n-th
dimension of the extracted feature.
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Given the extracted feature and the specific frequency bands, the mean Fisher ratio F(L, H)

is calculated by averaging the values of Fn(L, H) over all the EEG channels (e.g., PSD and DE) or
combinations of electrodes (e.g., DASM, RASM, and DCAU)

F(L, H) =
1
N

N∑
n=1

Fn(L, H), (12)

where N is the number of EEG channels or combinations of electrodes.
Figure 6 shows the Fisher ratio of the extracted PSD, DE, DASM, RASM, and DCAU feature along

different frequency bands by averaging the values over all subjects in valence and arousal dimensions,
respectively. In addition, Table 4 illustrates the Fisher ratio over different frequency bands by averaging
the values over all features and subjects in valence and arousal dimensions, respectively. The Fisher
ratio values shown in Table 4 are calculated by further averaging the values presented in Figure 6 over
the five different frequency bands. The following subsection presents comprehensively an analysis
including the EEG neural patterns associated with emotions in previous studies [27,47,48], the critical
frequency bands and the informative features for emotion recognition. Specific frequency ranges are
highly related to certain brain activities. There are neuroscience findings [68,69] revealing that the
Alpha bands in EEG signals associate with attentional processing, while the Beta bands associate with
emotional and cognitive progress. In the previous studies on the DEAP dataset by Koelstra et al. [27],
they reported negative correlations in the Theta, Alpha, and Gamma bands for arousal, and strong
correlations in all investigated frequency bands for valence. Similarly, Onton et al. [70] found a positive
correlation of valence and the Beta and Gamma bands.

From Figure 6 and Table 4, we found that the Gamma and Beta bands obtained higher values of
the Fisher ratio than the other frequency bands. This means that the features extracted over Gamma
and Beta bands are more effective for discriminating different emotions, as is in accordance with the
classification accuracies by the compared classifiers illustrated in Figure 5. Similarly, Li and Lu [71]
showed that the EEG Gamma bands are appropriate for emotion recognition when images are used for
emotion elicitation. The studies by [47] Zheng and Lu found specific neural patterns in high-frequency
bands for distinguishing negative, neutral, and positive emotions. For negative and neutral emotions,
the energy of Beta and Gamma frequency bands decreases, while positive emotions present higher
energy of these two frequency bands. Their experimental results [47] on SJTU Emotion EEG Dataset
(SEED) showed that the KNN, LR_L2, SVM, and DBN classifiers performed better on Gamma and Beta
frequency bands than other bands for the PSD, DE, DASM, RASM, and DCAU features. This showed
the informativeness of EEG Gamma and Beta bands for emotion recognition with film clips as stimuli
in the SEED dataset. The emotion elicitation materials in the DEAP dataset are one-minute videos [27].
Our experimental results in DEAP and findings were in accordance with these previous studies [47,48].
Additionally, the total frequency bands concatenating all the original five frequency bands can further
improve the emotion recognition performance, and the LORSAL obtained the highest mean accuracies
in valence and arousal dimensions from the DE, DASM, and DCAU features, as is consistent with the
results in studies [47,48].

Table 4. Fisher ratio of different frequency bands by averaging the values over all features and subjects
in valence and arousal dimensions, respectively.

Emotion Valence Arousal

Frequency
Bands Delta Theta Alpha Beta Gamma Delta Theta Alpha Beta Gamma

PSD 0.046 0.005 0.014 0.155 0.414 0.045 0.005 0.013 0.124 0.418
DE 0.047 0.052 0.077 0.242 0.256 0.051 0.048 0.062 0.173 0.197

DASM 0.057 0.063 0.070 0.240 0.317 0.068 0.073 0.067 0.186 0.243
RASM 0.004 0.050 0.037 0.131 0.115 0.004 0.065 0.052 0.095 0.080
DCAU 0.059 0.062 0.064 0.224 0.307 0.062 0.064 0.067 0.195 0.244
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3.3. Effect of Extracted Features

This subsection presents an analysis of the effects of different features on the average accuracies
for emotion recognition based on the EEG signal. When the extracted features alternate among PSD,
DE, DASM, RASM, and DCAU, the mean precisions obtained by LORSAL, SVM, and NB for the
classification of LV/HV and LA/HA are shown in Figures 7a–f and 8a–f. All the LORSAL, SVM, and
NB classifiers performed best for the DE features. Among all classifiers, LORSAL obtained the highest
accuracies of 77.17% and 77.03% in valence and arousal dimensions, respectively, for the DE features
extracted from total frequency bands. In addition, the highest precisions obtained by SVM are 69.55%
and 69.92%, respectively, for DE from total frequency bands. The DE features denote the complexity
of continuous random variables [55–57]. The EEG signals are characterized by higher low-frequency
energy over high-frequency energy, and consequently, DE can distinguish EEG sequences according to
low- and high-frequency energy. These results agree with the findings in [47,48], and further show the
superiority of the DE features in EEG-based emotion classification.
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Figure 8. Effects of the different features (PSD, DE, DASM, RASM, and DCAU) on the classification
precisions for LA/HA emotions obtained by the LORSAL, SVM, and NB classifiers from the six different
frequency bands: (a) Delta, (b) Theta, (c) Alpha, (d) Beta, (e) Gamma, (f) Total.
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Moreover, the DASM and DCAU features provide relatively ideal performance compared to the
PSD and DE features. DASM and DCAU are asymmetric features and the former findings showed the
effectiveness of asymmetrical brain activity along left-right and frontal-posterior directions in emotion
analysis. It is noted that the dimensions of the DASM and DCAU features are 70 and 55, respectively,
which are fewer than that of PSD and DE with 160-dimension features. This makes DASM and DCAU
more competitive in computational complexity. The experimental results were also consistent with the
findings by Zheng and Lu [47,48].

4. Discussion

Although the area of affective computing has developed a lot over the past years, the topic of
EEG-based emotion recognition is still a challenging problem. This paper introduced LR with Gaussian
kernel and Laplacian prior for EEG-based emotion recognition. The Gaussian kernel enhances the
EEG data separability in the transformed space, and the Laplacian prior controls the complexity of the
learned LR regressor in the training process. The LORSAL algorithm was introduced to optimize the
LR with Gaussian kernel and Laplacian prior for its low computational complexity. Various spectral
power features in the frequency domain and features by combining the asymmetrical electrodes, PSD,
DE, DASM, RASM, and DCAU, were extracted for the Delta, Theta, Alpha, Beta, Gamma and Total
frequency bands using 256-point STFT from the segmented 1 s EEG epochs.

The experiments were conducted on the publicly available DEAP dataset, and the performance of
the introduced LORSAL methods was compared with the NB, SVM, LR_L1, and LR_L2 classifiers.
The experimental results showed that LORSAL presented the best accuracies of 77.17% and 77.03% in
valence and arousal dimensions, respectively, on the DE features from the total frequency bands, while
the SVM classifiers obtained the second-highest accuracies of 69.55% and 69.92%. The other evaluation
metrics obtained by LORSAL, SVM, and NB were also tabulated in the paper. The introduced LORSAL
method also presented the best Recall (76.79% and 77.03% in valence and arousal, respectively) and F1
(76.90% and 76.47% in valence and arousal, respectively). The previous experimental results showed
the superiority of the introduced LORSAL method for EEG-based emotion recognition compared to
the NB, SVM, LR_L1, and LR_L2 approaches.

This paper also showed an investigation of the critical frequency bands for EEG-based emotion
recognition. In this study, the informative features are captured from different frequency bands:
Delta, Theta, Alpha, Beta, Gamma, and Total. The previous neuroscience studies showed that specific
frequency band ranges are associated with specific brain activities. For example, the EEG Alpha
frequency bands are related to attentional processing, whereas the Beta bands are a reflection of
emotional and cognitive processing. The experimental results showed that the LORSAL, SVM, and NB
classifiers performed better on the Gamma and Beta frequency bands than other bands for different
features. The comparison of the Fisher ratio also showed the effectiveness of Gamma and Beta bands
in emotion recognition. The findings in this study are in accordance with the previous work about
critical bands investigation [47,48].

Additionally, the effects of different features, PSD, DE, DASM, RASM, and DCAU, on the emotion
classification results were also analyzed in this paper. Experimental results show that the compared
approaches, LORSAL, SVM, and NB obtained superior precision metrics on the DE features over other
features. This shows the effectiveness of the DE features in distinguishing low- and high-frequency
energy in EEG sequences. Meanwhile, the DASM and DCAU features presented relatively ideal
classification accuracies compared to the PSD features. It is noted that DASM and DCAU have the
advantages of less time consumption for their lower dimensionality than PSD and DE.

For a more comprehensive analysis, -Table 5 showed a comparison of the introduced LORSAL
methods, the other shallow classifiers, and the deep learning approaches for EEG-based emotion
recognition of LV/HV and LA/HA on DEAP dataset. In single-trial classification by Koelstra et al. [27],
the NB after feature selection using Fisher’s linear discrimination, obtained the accuracies of 57.65%
and 62.0% in valence and arousal dimensions. In [72], the Bayesian weighted-log-posterior function
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optimized with the perceptron convergence algorithm presented average precisions of 70.9% and
70.1% for valence and arousal. For within-subject emotion recognition of LV/HV and LA/HA,
Atkinson et al. [73] presented the accuracies of 73.41% and 73.06% using minimum-Redundancy-
Maximum-Relevance (mRMR) for feature selection. Rozgić et al. [74] performed classification using
segment level decision fusion and presented precisions of 76.9% and 69.4% to discriminate LV/HV and
LA/HA emotions. In the studies by Zheng et al. [48], the discriminative graph regularized extreme
learning machine (GELM) with DE features achieved the highest average accuracies of 69.67% for
4-class classification in VA emotion space. The introduced LORSAL classifier presented ideal evaluation
metrics for EEG emotion recognition, including the compared NB, SVM, LR_L1, and LR_L2 methods
in the experiments.

Recently, deep learning (DL) methods have been used for EEG-based emotion classification [28,29].
In [75], a hybrid DL model combining CNN and RNN learned task-related features from grid-like EEG
frames and achieved the accuracies of 72.06% and 74.12 for valence and arousal. The DNN and CNN
models by Tripathi et al. [76] achieved the precisions of 75.78%, 73.12%, 81.41%, and 73.36% along
valence and arousal dimensions, respectively. The classification accuracies for valence and arousal were
over 85% using LSTM-RNN by Alhagry et al. [77], and over 87% using 3D-CNN by Salama et al. [78].
More recently, Chen et al. [33,34] have researched a lot on the combination of DL models and various
features. As tabulated in Table 5, computer vision CNN (CVCNN), global spatial filter CNN (GSCNN),
and global space local time filter (GSLTCNN) [33] presented obvious improvements with concatenating
PSD, raw EEG features, and normalized EEG signals. In [34], the proposed hierarchical bidirectional
gated recurrent unit (H-ATT-BGRU) network performed better on raw EEG signals than CNN and
LSTM, and the obtained accuracies in valence and arousal dimensions were 67.9% and 66.5% for 2-class
cross-subject emotion recognition. For more details about the DL architectures applied in the DEAP
data, readers may refer to the literature [33,34,75–78]. Compared to traditional shallow methods, the
DL schemes remove the signal pre-processing and feature extraction/selection progress, and are more
suitable for affective representation [35,36]. However, the DL methods cannot reveal the relationship
between emotional states and EEG signals for being like a black box [37].

However, more importantly, the training of DL networks is extremely time-consuming, which
limits their practical applications in real-time emotion recognition [3]. Craik et al. [28] stated that from
practical issues, the DL methods have problems of very long computation, and the vanishing/ exploding
gradients, and their practical application need extra graphic processing unit (GPU). Roy et al. [29]
pointed out that from a practical point-of-view, the hyperparameter search of a DL algorithm often
takes up a lot of time for training. Additionally, Craik et al. [28] and Roy et al. [29] make comprehensive
reviews on the recent DL schemes.

To illustrate the time efficiency, the average training time of the compared NB, SVM, MLR_L1,
MLR_L2, and LORSAL methods are shown in Table 6. The average running time for STFT-based
feature extraction is 68.15 s. In our experiment, all the programs are performed using on a computer
with an Intel Core i5-4590 of 3.30 GHz and 8.00-GB RAM. LORSAL takes just no more than 4 s for
training, and the computing time is in the same order as the compared traditional shallow methods.
As mentioned earlier, the complexity of LORSAL is O((L + 1) 2K) for each quadratic problem, where L
is the number of EEG epochs used for training and K is the number of emotion classes. As shown in
Table 5, the time-consumptions of LORSAL on DE, PSD, DASM, RASM, and DCAU (with different
dimensions 160, 160, 70, 70, and 55) are nearly the same. Given limited computational resources, or
with portable devices, the introduced LORSAL algorithm has higher time efficiency than DL methods
and can present better performance than the compared shallow methods.
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Table 5. Comparison of the introduced LORSAL methods, the other shallow classifiers, and the deep learning approaches for EEG-based emotion recognition of
LV/HV and LA/HA on DEAP dataset.

Classifier Valence Arousal Description

NB by Koelstra et al. [27] 57.6 62.0

2-class classification for valence and
arousal, and within-subject emotion
recognition.

Bayesian weighted-log-posterior by Yoon et al. [72] 70.9 70.1
SVM+mRMR by Atkinson et al. [73] 73.41 73.06

Segment level decision fusion by Rozgić et al. [74] 76.9 68.4
CNN+RNN by Li et al. [75] 72.06 74.12

DNN by Tripathi et al. [76] 75.78 73.12
CNN 81.41 73.36

LSTM-RNN by Alhagry et al. [77] 85.65 85.45
3D-CNN by Salama et al. [78] 87.44 88.49

GELM by Zheng et al. [48] 69.7 4-class classification in VA space.

SVM

+Raw

by Chen et al. [33]

0.5590 0.7525

2-class classification for valence and
arousal, and within-subject emotion
recognition, and AUC (Area Under ROC
Curve) used for evaluation.

+Norm 0.5591 0.5590
+PSD 0.7596 0.5531

+PSD+Raw 0.9234 0.9462
+PSD+Norm 0.7460 0.7353

CVCNN

+Raw 0.6221 0.6012
+Norm 0.6551 0.6176
+PSD 0.9307 0.88.51

+PSD+Raw 0.9933 0.9988
+PSD+Norm 1.00 1.00

GSCNN

+Raw 0.6242 0.5902
+Norm 0.6394 0.5987
+PSD 0.8875 0.8802

+PSD+Raw 0.9933 0.9930
+PSD+Norm 1.00 1.00

GSLTCNN

+Raw 0.6717 0.6175
+Norm 0.6350 0.5670
+PSD 0.8523 0.8390

+PSD+Raw 0.9946 0.9958
+PSD+Norm 1.00 1.00

CNN
+Raw by Chen et al. [34]

57.2 56.3 2-class classification for valence and
arousal, and cross-subject emotion
recognition

LSTM 63.7 61.9
H-ATT-BGRU 67.9 66.5

NB

+DE in our study

61.04 58.46
2-class classification for valence and
arousal, and within-subject emotion
recognition

SVM 69.55 69.92
MLR_L1 33.69 43.10
MLR_L2 33.81 43.25
LORSAL 77.17 77.03



Appl. Sci. 2020, 10, 1619 21 of 25

Table 6. Running time of the compared NB, SVM, MLR_L1, MLR_L2, and LORSAL methods in terms
of second and the average time-consumption of feature extraction is 68.15 s.

Classifier
Valence Arousal

PSD DE DASM RASM DCAU PSD DE DASM RASM DCAU

NB 4.37 4.36 1.91 1.92 1.51 4.42 4.41 1.93 1.93 3.44
SVM 4.53 4.37 2.34 2.47 2.04 4.26 4.16 2.26 2.34 3.45

MLR_L1 0.14 0.13 0.04 0.04 0.03 0.17 0.15 0.04 0.04 0.08
MLR_L2 0.12 0.11 0.04 0.04 0.03 0.13 0.11 0.04 0.04 0.07
LORSAL 3.75 3.89 3.87 3.69 3.85 3.74 3.86 3.86 3.69 3.87

5. Conclusions and Future Work

This paper systematically investigates the introduced LORSAL algorithm for the EEG-based
emotion class. Additionally, the critical frequency bands, Delta, Theta, Alpha, Beta, Gamma, and the
effectiveness of different features, PSD, DE, DASM, RASM, and DCAU, on emotion recognition are
also analyzed. The LORSAL classifier performs better than the compared shallow methods and has
the superiority of time efficiency compared to the recent DL approaches.

The performance and application of LORSAL-based emotion recognition should be further
researched in future work. More informative and representative features can be used in LORSAL. As
shown in Table 5, in the research by Chen et al. [33], SVM achieved higher values of AUC (Area Under
ROC Curve), 0.9234 and 0.9426, for classifying LV/HV and LA/HA emotions by concatenating PSD and
raw pre-processed EEG signals than with other features. We will try to integrate different features
to train the LORSAL classifier. The future attempts include the application of LORSAL for 4-class
emotion classification in VA space, as the studies in [48]. A further comparison of LORSAL and DL
methods, and the combination of their advantages in feature extraction and avoiding overfitting will
be investigated. Future work could also include applying LORSAL on multimodal information, e.g.,
fNIRS, and other physiological signals in brain activity analysis [79,80].
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