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Abstract: This paper deals with the state of charge (SoC) estimation of a lithium-ion battery pack
(LiBP) connected by some cells in series and parallel. The voltage noise, noise and current bias of
current through the LiBP are taken into account in the SoC estimation problem. In order to describe
the cell dynamic more accurately, especially for practical applications with charge and discharge
amplitude varying suddenly, in this paper we use the second dynamic order model of the cell to
estimate the SoC of the LiBP. By applying the sigma point Kalman filter (SPKF), the average SoC
of the pack and bias current of current measurement are estimated by first estimator; the second
estimator estimates the SoC differences of the cell modules from average SoC of the pack. The SoC of
the cell modules are the sum of average SoCs of the pack and the SoC differences. By only using
two estimators, the calculation complexity for SoC estimation is more reduced; this is very useful
for the LiBP, which has the number of cells connected in a large series. This method was applied
for the pack of SAMSUNG ICR18650-22P connected by seven cell modules; the cell modules were
connected by nine cells in parallel; the LiBP was charged and discharged with amplitude varying
suddenly. The estimated SoC of seven cell modules is smaller than 2% for a temperature operating
range typically −5 ◦C to 45 ◦C. The comparison of the accuracy of SoC estimation based on the first
and the second order dynamic models is made; the result shows that the SoC estimation used the
second order dynamic model is more exact.

Keywords: lithium-ion battery; SoC estimation; sigma point Kalman filter; battery pack; second order
dynamic model of cell

1. Introduction

Today, the lithium ion battery (LiB) is used widely in the practical applications because of its
advantages, such as high energy density, no memory and no scheduled cycling, less self-discharge,
long battery life and low maintenance. LiBP can provide extremely high currents and can discharge
very rapidly when short-circuited [1,2]. For an application with high power, for example, electric
vehicles or hybrid electric vehicles, the lithium ion battery pack (LiBP) is formed by connecting some
cells in parallel and series in order to get the desired power. State of charge (SoC) is the important
parameter of the cell, it is used to determine the electrical energy remaining of the cell in the battery
management system (BMS). However, when it comes to the LiBP, the SoC of the pack is not the proper
definition in the practice [3]. For the LiBP with many cells connected in series, the definitions average
SoC of the pack and SoC of cells are used. The average SoC of the pack shows the amount of electrical
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energy of the pack, and the SoC of cells indicates the electrical energy in the cells. Average SoC of
the pack and SoC of cells are two very important parameters for the BMS and cell balance control in
the practice.

In recent years, an assortment of techniques has been proposed in order to achieve accurate battery
SoC estimation. The most common methods are: the terminal voltage (open loop) method, the internal
resistance method and the Coulomb counting method [4,5]; the methods are based on the equivalence
circuit model of cell [6,7], the adaptive model considering the hysteristic, the noise, the varying of cell
resistance dependent on the aging process and the operating temperature [8]. The methods use the
Kalman filter [9], extended Kalman filter (EKF) [10] and particle point (PF) [11,12]. Additionally, there
are SoC estimation methods based on learning algorithms such as neural networks [13,14], fuzzy logic
and the nonlinear fractional model [15,16].

For the LiBP, the SoC estimation problem is still a hard problem [17,18]. Not only does this problem
consider the complexity of the LiBP’s model, the cell SoC, the average SoC for the cells connected
in series, the complexity of the estimation algorithm and the computing rate, but the influence of
parameters in the cell model and measurement noise are considered too [3]. Each consideration could
bring forward some different methods to solve the SoC estimation for LiBP with different accuracies.
In order to estimate the SoC of the cell, we need to measure exactly the operating temperature, voltage
and current through a cell. In the practice, the voltage and current measurements always are affected
by Gausses noise with a zero mean. The current bias is added on current measurements which are
caused by the amplifier. In this paper we present the SoC estimation for the LiBP connected by Ns cell
modules in series; each cell module is connected by Np cells in parallel (see Figure 1). In this research,
we use the second dynamic model of cell considering the voltage measurement noise of cell module,
noise and current bias of the current though LiBP.

Figure 1. The pack of a lithium ion battery.

The SPKF, known as one of the state estimation methods, has some advantages over the EKF by
application ranges, and this method estimates more accurately the states for the second-order system or
higher; meanwhile, computational complexity is the same as EKF. SPKF is easily implemented, as there
is no requirement of the Jacobi matrix calculation [19–22]. For the EKF, the system’s nonlinear dynamic
is linearized at the sampling time, the input distributions are mapped via the linearized dynamic
function to calculate the output distributions, and the output distributions are less accurate if there is
high nonlinear of the system dynamic. For the SPKF, the whole of the input distributions are mapped
thought the nonlinear dynamic functions to get the output distribution. The SPKF algorithm is applied
to estimate the average SoC of LiBP and the SoC differences of the cell modules from the average SoC
of LiBP. SoC of cell modules is the sum of the average SoC of LiBP and the SoC differences of the cell
modules. The cell dynamic with charge and discharge amplitude varying suddenly is described more
exactly by using the second dynamic model. This research shows that the SoC estimation of LiBP using
the second order dynamic model is more exact when compared with using the first order dynamic
model, especially in the operating condition with the voltage measurement noise, noise and current
bias of the current though LiBP.

This paper is organized into five parts. The introduction is described in the first section; the second
order dynamic model of cell and the model of the LiBP are given in the second section. In Section 3,
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the estimation SoC of LiBP using the SPKF is presented; some experimental results are shown in the
next section. Finally, discussions are mentioned in the last section.

2. The Second Order Dynamic Model of the Cell and the Model of the LiBP

2.1. The Second Order Dynamic Model of the Cell Influenced by Voltage Noise, Noise and Current Bias

Based on our previous work [6], the second order equivalent circuit model of the cell is shown in
Figure 2.

Figure 2. The second order equivalent circuit model of a lithium-ion battery.

For the state estimation problem of the cell, we consider the states of cell to be two currents
through two dynamic branches of cell iR1 , iR2 , the hysteresis h, SoC z and the current bias b. The input
and output of the model are current though the cell i(t), and voltage v(t), respectively. The input i(t)
and output v(t) are measurable and influenced by noises which have Gaussian distribution with zero
mean. Set the state vector, input vector and output at the sample time k as Equation (1).

xk+1 =


iR1,k+1
iR2,k+1
hk+1
zk+1
bk+1


, uk =

[
ik

sgn(ik)

]
, yk = vk (1)

The state model of the cell on the discrete time domain is written in the Equation (2) as follows.


iR1,k+1
iR2,k+1
hk+1
zk+1
bk+1


=


AR1C1 0 0 0 0

0 AR2C2 0 0 0
0 0 Ah 0 0
0 0 0 1 0
0 0 0 0 1




iR1,k
iR2,k
hk
zk
bk


+



(
1−AR1C1

)
0(

1−AR2C2

)
0

0 (1−Ah)
−ηk∆t

Q 0
0 0


[

ik
sgn(ik)

]
+


wiR1,k

wiR2,k

0
0

wb,k


(2)

The matrices in the Equation (2) are calculated as

AR1C1 = exp
(
−∆t

R1C1

)
, AR2C2 = exp

(
−∆t

R2C2

)
, BR1C1 = 1−AR1C1 , BR2C2 = 1−AR2C2

Ah = exp
(
−

∣∣∣∣ηkikγk∆t
Q

∣∣∣∣); Bh = 1−Ah; w =
[

wiR1,k wiR2,k 0 0 wb,k
]T (3)

with w is the system disturbance vector, including the noises influencing the currents through two
dynamic branches of cell wiR1,k , wiR2,k and current bias noise through cell wb,k. The parameters ηk,γk are
the columbic efficiency and positive constant; they all depend on the operating temperature of cell.
The output equation of the model describing the relationship of the voltage drop on two electrodes of
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cell and the current, SoC—the hysteresis and currents through two dynamic branches—is written as
follows.

vk = OCV(zk) + Mhk −R1iR1,k −R2iR2,k −R0ik + ζk (4)

In short, the state space model of cell related to the voltage noise, noise and current bias of the
current through the cell is {

xk+1 = Akxk + Bkuk + wk
yk = OCV(zk) + Ckxk + Dkuk + ζk

(5)

in which, the matrices of Equation (5) are formed as follows.

Ak =


AR1C1 0 0 0 0

0 AR2C2 0 0 0
0 0 Ah 0 0
0 0 0 1 0
0 0 0 0 1


, Bk =



(
1−AR1C1

)
0(

1−AR2C2

)
0

0 (1−Ah)
−ηk∆t

Q 0
0 0


C =

[
−R1 −R2 M 0 0

]
, D =

[
−R0 0

]
(6)

with ζk is the voltage noise of cell.

2.2. The Model of LiBP

Suppose that for the LiBP formed by Ns cell modules connected in series, each cell module includes
Np cells connected in parallel; the notations of the quantities are describe in Figure 3.

Figure 3. The model of lithium-ion battery pack (LiBP).

For the cell module, which has some cells with different initial SoCs connected in parallel, after
a certain period of time, the SoC of the cells in the module will balance itself. Then, the cells will
have the same SoC and a voltage drop on two electrodes. The model of a LiBP is converted into a
model of the cell modules connected in series, as shown in Figure 3. Thus, the average SoC of the cell
module is the SoC of the cells in that module after a certain period of time. Illustration of the process
of self-balancing of currents through four cells, and the SoCs and voltages of cells in a cell module
are shown in Figures 4 and 5, respectively, in which the initial SoCs of four cells are 0.9 (90%), 0.85
(85%), 0.8 (80%) and 0.75 (75%). The internal resistances of cells R0 are 0.0013 Ω, 0.0012 Ω, 0.0012 Ω
and 0.0011 Ω. After a period of 200 s, the SoCs of four cells are balanced by themselves; all four cells
have the same SoC and the same voltage drop on two electrodes.
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Figure 4. The currents through four cells.

Figure 5. The changing of the cell module voltage and the states of charge (SoC) of four cells in the
cell module.

We suppose that all the cells in the pack are the same kind, and are represented by a second
order dynamic model with parameters η, Q,γ, M0, M, R0, R1C1, R2C2, R1, R2. The relationship between
open-circuit voltage (OCV) and SoC according to the working temperature of the cell has been
determined experimentally [6]. Define the parameters of the LiBP as follows:

SOC0 ∈ R(Ns×Np), R0 ∈ R(Ns×Np) are the matrices representing the initial SoC, the resistance R0 of
the cells in the pack, respectively.

The initial SoC (at the time k = 0) of the cell module ith is counted as

z(i)0 =
1

Np

Np∑
j=1

SOC0(i, j), i = 1, 2, ..., Ns (7)

The internal resistance of the cell module ith is

R
i
0 =

1∑Np

j=1
1

R0(i, j)

i = 1, 2, ..., Ns (8)

The capacity of the cell module ith is

Q(i) =

Np∑
j=1

Q = NpQ i = 1, 2, ..., Ns (9)



Appl. Sci. 2020, 10, 1896 6 of 16

The LiBP now is modeled by Ns cell modules connected in series. Normally, we need Ns estimators
to estimate the SoC of Ns cell modules, and then average SoC of LiBP is average of the estimated
SoC of Ns cell modules. This method has a large calculation burden if Ns is large, as the estimation
algorithm is then complex, and noise is considered. In this research, by only using two estimators,
the average SoC of a pack is estimated by the first estimator; the second estimator is used to estimate
the SoC differences for the cell modules from the average SoC of the pack. Finally, the SoC of the cell
modules is the sum of the average SoC of the pack and the SoC differences, respectively.

3. Soc Estimation for the LiBP Using the SPKF

To estimate the average SoC of Ns cell modules in LiBP, the quantities, including Ns voltages on
the cell modules, the operating temperature of LBP and the current through LiBP pack are measured
continuously at sampled-times. Using the sigma point estimation algorithm [19–21], two steps are
performed at each sample time k, as follows:

Step 1. Estimate the average SoC of LiBP and current bias of current through the LiBP; this step is
done by algorithm SPKF 1.

Step 2. Estimate SoC difference of each cell module from the average SoC determined in Step 1 by
algorithm SPKF 2. Finally, estimate the SoC for all cell modules by the sum of the average SoC of LiBP
and the SoC difference corresponding to the cell modules.

To conduct Step 1, suppose the LiBP as the equivalent cell described by the second order dynamic
model. The state variables need to be estimated, including the currents through two dynamic branches
iR1 , iR2 , the hysteresis h, SoC of the equivalent cell z and the bias current of current through the
equivalent cell b.

The input of the estimation model is the current through the LiBP with bias current and
measurement noise; the output is the voltage on LiBP. Define the estimated state variable vector as

x =
[

iR1,k iR2 hk zk bk
]T

(10)

The covariance matrices of state estimation errors, system noises (noise of current, noise of current
bias) and voltage noise are σx̃, σw and σζ, respectively.

The General Algorithms

SoC Estimation Algorithm for LiBP.

Initialize the parameters of cell
Initialize the parameters of LiBP including:
SOC0 ∈ R(Ns×Np), R0 ∈ R(Ns×Np)

Initialize the covariance matrices
Calculate the initial SoC of the cell modules in the LiBP z(i)0

Calculate the internal resistance of the cell modules R
i
0

Calculate the capacity of the cell module Q(i)

For sample time k = 1 to∞ do
Measure the current through the LiBP

Measure the voltages on the cell modules
Measure the temperature
Estimate the state x̂+k for equivalent cell and estimate the bias current by using the algorithm SPKF 1

For cell module i = 1 to Ns do
Estimate the SoC difference ∆ẑ(i)k of cell module ith by using the algorithm SPKF 2

End
Calculate the SoC for all cell modules ẑ(i) = ẑk + ∆ẑ(i)k, i = 1, 2..., Ns

End

The algorithm SPKF 1 and SPKF 2 are presented in the Appendix A.
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4. The Experimental Results

To test the SoC estimation algorithm for LiBP, in this study we use LiBP with seven cell modules
connected in series; each cell module consists of nine cells connected in parallel. Cells used in the LiBP are
Lithium–SAMSUNG with parameters (supplied by manufacturer): ICR18650-22P 2200 mAh, Vmax = 4.25 V,
Vmin =2.75 V, nominal voltage 3.62 V. The test temperature limit is considered from −5 ◦C to 45 ◦C.

By experimental testing, the dynamic parameters of the cell are given in Table 1. Instead of
forming a plot of the relationship between the OCV and SoC at many temperatures, we only form
the relationship between the OCV and SoC at reference temperature 20 ◦C and the change amount of
OCV with respect to the SoC when the temperature changes 1 ◦C at reference temperature 20 ◦C, so
the relationship between OCV and SOC at any temperature can be calculated easily. The relationship
between OCV and SoC at 20 ◦C and the change amount of OCV with respect to the SoC when the
temperature changes 1 ◦C at reference temperature 20 ◦C are given in Figures 6 and 7, respectively.
Figure 6 shows that the relationship OCV and SoC is strong, nonlinear relationship, and the OCV–SOC
characteristic curve is greatly influenced by the temperature change and has a great influence on the
accuracy of battery state estimation.

Table 1. The second order dynamic parameters of the cell with respect to the temperature.

−5 ◦C 5 ◦C 15 ◦C 25 ◦C 35 ◦C 45 ◦C

ηk 1.0870 0.9803 1.0221 1.0184 1.0543 1.0399
Q(mAh) 2200 2200 2200 2200 2200 2200
γ 250.0000 78.4916 63.6762 2.0749 170.0408 151.3064

M0(V) 0.0073 0.0049 0.0048 0.0018 0.0036 0.0024
M(V) 0.0347 0.0257 0.0188 0.0177 0.0201 0.0185
R0(Ω) 0.0013 0.0013 0.0012 0.0012 0.0012 0.0011

R1C1(s) 0.6124 1.7556 0.3228 1.4882 0.2997 0.4631
R2C2(s) 3.9035 7.5994 8.1119 36.8543 5.1841 6.5319
R1(Ω) 0.0204 0.0203 0.0201 0.0019 0.0019 0.0019
R2(Ω) 0.0494 0.0376 0.0288 0.0443 0.0136 0.0134

Figure 6. The relationship between open-circuit voltage (OCV) and SoC at 20 ◦C.

Figure 7. The change amount of OCV with respect to SoC when the temperature changes 1 ◦C.
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The LiBP power is 480 W; the voltage at both ends of the LiBP is 24 V. The initial parameters
of the LiBP assumed at 25 ◦C include SOC0 ∈ R(Ns×Np), R0 ∈ R(Ns×Np)(see Tables A1 and A2 in the
Appendix A).

The covariance matrices of the state vector estimation errors of the current noise and the voltage
noise are listed as follows, respectively.

σ+
x̃,0

=


0.001 0 0 0 0

0 0.0001 0 0 0
0 0 0.01 0 0
0 0 0 0.01 0
0 0 0 0 0.01


, σw̃ =

[
0.001 0

0 0.001

]
, σζ = 0.001, (11)

The bias current is 0.5 A (bk = 0.5A); the charge and discharge scenarios with current through the
LiBP and the voltages measured on seven cell modules over a period of 3900 s are shown in Figures 8
and 9, respectively.

Figure 8. The current through the LiBP in the charge and discharge scenarios.

Figure 9. The voltages measured on seven cell modules.

In order to show the capability of describing more the cell dynamic more exactly, the SoC
estimation is experimented on for the LiBP, charged and discharged; with amplitude varying suddenly
(see Figure 8), the maximum charged and discharged amplitudes of current are 5 A and 23 A,
respectively. We suppose that the measured current through LiPB drifts with the bias current 0.5 A.
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This experimental charged and discharged scenario is similar to the charged and discharged situation
of LiBP using for EVs in practice. The measured voltages of seven cell modules are influenced by the
noise; the varying of those voltages depends on the charged and discharged amplitude of current
through LiPB, as shown in the Figure 9.

The average SoC estimations for cell modules in LiBP are shown in Figure 10; the SoC estimation
errors of the cell modules are plotted in Figure 11. From the SoC estimation results, we see that after
about 0.1 h, the SoC estimations of the cell modules are close to the actual average SoC of the cell
modules. The SoC estimation errors for the cell modules 1–7 at the end point of the experiment are:
0.17%, 0.4%, 0.15%, 0.5%, 0.17%, 0.02% and 0.17%, respectively (see Figure 11). The SoC estimation
errors of cell modules are quite small; Module 2 and Module 4 get the largest errors (0.4% and
0.5%, respectively).

Figure 10. The average SoC of the cell modules in the LiBP.

Figure 11. SoC estimation error of cell modules in the LiBP.
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Figure 12 plots the estimation of current bias of the current through the LiBP; after a period of time
0.05 h, the estimated value is distributed around the true value of 0.5 A. The error of this estimation
is quite large; the largest error is approximately 0.1 A, but the mean of this error calculated over the
experimental period of time is about 4%. So the estimation of current bias is acceptable in the practice.

Figure 12. The current bias estimation of current through LiBP.

Figure 13 depicts the changing in voltage and current through the cells of the cell Module 1. The
current through the nine cells has the same varying as the current through the LiBP. The Figure 14
plots the comparison of SoC estimation errors of seven cell modules of LiBP using the first and second
order dynamic models. The results show that when using the second order dynamic model of the cell,
the SoC estimation of the cell modules in the LiBP is about 10 times smaller than using the first order
dynamic model. The comparison result is illustrated in the Table A3.

Figure 13. Voltage varying and currents through the cells in cell Module 1.
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Figure 14. The SoC estimation error comparison between the two cases: using the first order dynamic
model and the second order dynamic model of the cell at 25 ◦C.

Figure 15 is the comparison of the SoC estimation errors of the cell modules in the LiBP tested by
operating temperatures: −5, 5, 15, 25, 35 and 45 ◦C. In general, the SoC estimation errors of the cell
modules are small at the temperatures ranging from −5 to 25 ◦C (the SoC of cell modules is estimated
more accurately). At the temperature −5 ◦C, the SoC estimation error is positive; this means that
the SoC estimation errors will be much larger than the actual cell module average SoC, about 2%.
However, the SoC estimation error of cell module is negative for temperature ranging from 35 ◦C to
40 ◦C, so the SoC estimation is much smaller than actual cell module average SoC, about 2%. This SoC
estimation is a very significant for the SoC estimation for LiBP compared with methods presented in
the literature [3,18].

Figure 15. The SoC estimation of cell modules with respect to the temperatures: −5, 5, 15, 25, 35 and 45 ◦C.

The calculation time of the SoC estimation algorithm in this test is 0.002 s, corresponding to a
sample time of Ts = 1 s.
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5. Conclusions

This paper presents the SoC estimation method for the LiBP formed by Ns cell modules connected
in series; each cell module includes Np cells connected in parallel. In this research, we use the second
dynamic model of cell considering the cell module voltage measuring noise, noise and current bias of
the current in order to describe more exactly the nonlinear dynamics of cell for practical applications
with charge and discharge amplitude varying suddenly. Based on the principle of SPKF, the SoC
estimation algorithm for the cell modules in LiBP is applied, taking into account the voltage noise,
noise and current bias of current through the LiBP. The algorithm was tested experimentally for LiBP
consisting of seven cell modules connected in series; each cell module consisted of nine Lithium Ion
cells SAMSUNG ICR18650-22P in parallel. Experimental results for the temperature ranging from
−5 ◦C to 45 ◦C show that the SoC estimations for cell modules are quite accurate compared with the
methods presented in the materials [3,18]. The results show that using the second order dynamic
model of the cell also brings accuracy higher in SoC estimation for cell modules than using the first
order dynamic model.
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Appendix A.

Appendix A.1. The Algorithm SPKF 1

Calculate for equivalent cell at sample time k

• This forms the augmented state vector at the sampling time, including the estimated states at the
sample time k− 1 x̂+k−1, the vector of mean values of the system noise w and measurement noise ζ:

x̂a,+
k−1 =

[
x̂+k−1

T, w, ζ
]T

(A1)

• This forms the estimated covariance matrix of the state vector estimation error, including the
covariance matrices of the state estimation error at time k− 1, the noise error and the measured
error, respectively.

σa,+
x̃,k−1

= diag
(
σ+

x̃,k−1
, σw, σζ

)
(A2)

• The input sigma point matrix containing p + 1 sigma points is established as

Xa,+
k−1 =

{
x̂a,+

k−1, x̂a,+
k−1 + γ

√
σa,+

x̃,k−1
, x̂a,+

k−1 − γ
√
σa,+

x̃,k−1

}
=

[
Xx,+

k−1, Xw,+
k−1 , Xv,+

k−1

]T
(A3)

• Calculates state sigma point matrix by using the dynamic state Equation (5):

Xx,−
k, j = f

(
Xx,+

k−1, ik, Xw,+
k−1

)
= AkXx,+

k−1 + Bkuk + Xw,+
k−1 (A4)
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• The priori state vector estimation is calculated as:

x̂−k =

p∑
j=0

αm
j Xx,−

k, j (A5)

• Update the covariance matrices of the state vector estimation error:

σ−x̃,k =

p∑
j=0

αc
j

(
Xx,−

k, j − x̂−k

)(
Xx,−

k, j − x̂−k

)T
(A6)

• Calculate the output sigma point matrix using the output equation of Equation (5):

Yk = OCV(ẑk) + CkXx,−
k, j + Dkuk + Xζ,+k−1 (A7)

• Estimate the voltage of the equivalent cell.

ŷk = ûk =

p∑
j=0

αm
j Yk (A8)

• Update the covariance matrices of estimated output voltage.

σỹ,k =

p∑
j=0

αc
j(Yk − ûk)(Yk − ûk)

T (A9)

• Update the covariance matrices of the state vector estimation error and output voltage estimation
error:

σ−x̃,ỹ,k =

p∑
j=0

αc
j

(
Xx,−

k, j − x̂−k

)
(Yk − ûk)

T (A10)

• Calculate the estimation gain matrix as

Lk =
σ−

x̃,ỹ,k

σỹ,k
(A11)

• Update the priori estimation states by taking into account the output errors, the estimation of
state vector as

x̂+k = x̂−k + Lk(yk − ŷk) (A12)

• Update the covariance matrix of the state vector estimation errors:

σ+
x̃,k

= σ−x̃,k − Lkσỹ,kLk
T (A13)

Appendix A.2. The Algorithm SPKF 2

Calculate for each cell module i, i = 1 : Ns at sample time k
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• Form the augmented state vector of cell module ith, including the SoC difference ∆ẑ(i)k and mean

of the SoC difference noise w(i)
∆z:

∆ẑa,(i)+
k−1 =

[
∆ẑ(i)+k−1, w(i)

∆z

]T
(A14)

• Form the covariance matrix of the SoC difference estimation error:

σ
a,(i)+
∆z̃,k−1

= diag
(
σ
(i)+
∆z̃,k−1

, σ
w(i)

∆z

)
(A15)

• The input sigma point matrix containing p + 1 sigma points is established as

∆χa,(i)+
k−1 =

{
∆ẑa,(i)+

k−1, ∆ẑa,(i)+
k−1 + γ

√
σ

a,(i)+
∆z̃,k−1

, ∆ẑa,(i)+
k−1 − γ

√
σ

a,(i)+
∆z̃,k−1

}
=

{
∆χ∆z,(i)+

k−1, j , ∆χ
w+

∆z
k−1, j

}T
(A16)

• Calculate the state sigma point matrix.

∆χ∆z,(i)−
k, j = f

{
∆χ∆z,(i)+

k−1, j , uk−1, ∆χ
w+

∆z
k−1, j

}
= ∆χ∆z,(i)+

k−1, j −

((
Ik − îb,k

)
+ ∆χ

w+
∆z

k−1, j

)
1

3600Q(i) (A17)

with uk−1 = Ik − îb,k, j = 1 : p + 1.
• Calculate the priori SoC difference estimation.

∆ẑ(i)−k =

p∑
j=0

αm
j ∆χ∆z,(i)−

k, j (A18)

• Update the covariance matrix of SoC difference estimation error.

σ
(i)−
∆z̃,k

=

p∑
j=0

αc
j

(
∆χ∆z,(i)−

k, j − ∆ẑ(i)−k

)(
∆χ∆z,(i)−

k, j − ∆ẑ(i)−k

)T
(A19)

• Calculate the output sigma point matrix.

U(i)
k = h

{
∆χ∆z,(i)−

k, j ,
((

Ik − îb,k
)
+ ∆χ

w+
∆z

k−1, j

)}
= OCV(zk + ∆χ∆z,(i)−

k, j , T) − Ik∆R(i) + M(i)hk −R(i)
1 C(i)

1 iR,1 −R(i)
2 C(i)

2 iR,2 −R
(i)
0 (Ik − îb,k)

(A20)

• Estimate the output voltage.

û(i)
k =

p∑
j=0

αm
j U(i)

k (A21)

• Update the covariance matrix of the output voltage estimation error.

σ
(i)
ũ,k

=

p∑
j=0

αc
j

(
U(i)

k − û(i)
k

)(
U(i)

k − û(i)
k

)T
(A22)
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• Update the covariance matrix of SoC difference estimation error and output voltage estimation error.

σ
(i)−
∆z̃,ũ,k

=

p∑
j=0

αc
j

(
∆χ∆z,(i)−

k, j − ∆ẑ(i)−k

)(
U(i)

k − û(i)
k

)T
(A23)

• Calculate the estimation gain matrix as

L(i)
k =

σ
(i)−
∆z̃,ũ,k

σ
(i)
ũ,k

(A24)

• SoC difference estimation is calculated as

∆ẑ(i)+k = ∆ẑ(i)−k + L(i)
k

(
ûk − û(i)

k

)
(A25)

• Update the covariance matrix of SoC difference estimation error.

σ
(i)+
∆z̃,k

= σ
(i)−
∆z̃,k
− L(i)

k σ
(i)
ũ,k

L(i)T

k (A26)

Appendix A.3. Tables A1–A3

Table A1. Initial SoC of cells in the LiBP at 25 ◦C (The SoC from 0% to 100% expressed as range from 0 to 1).

Cell1 Cell2 Cell3 Cell4 Cell5 Cell6 Cell7 Cell8 Cell9

Module 1 0.49 0.69 0.63 0.99 0.52 0.80 0.80 0.71 0.54
Module 2 0.78 0.6 0.98 0.74 0.64 0.47 0.71 0.44 0.80
Module 3 0.56 0.88 0.99 0.96 0.99 0.42 0.56 0.93 0.44
Module 4 0.67 0.99 0.79 0.83 0.64 0.77 0.98 0.60 0.57
Module 5 0.90 0.50 0.92 0.70 0.80 0.74 0.72 0.54 0.57
Module 6 0.52 0.54 0.64 0.78 0.94 0.98 0.42 0.47 0.90
Module 7 0.59 0.82 0.78 0.93 0.99 0.85 0.82 0.59 0.67

Table A2. The initial resistances R0 of the cells in the LiBP at 25 ◦C (Ω).

Cell1 Cell2 Cell3 Cell4 Cell5 Cell6 Cell7 Cell8 Cell9

Module 1 0.0013 0.0014 0.0011 0.0015 0.0010 0.0010 0.0013 0.0011 0.0012
Module 2 0.0014 0.0011 0.0013 0.0011 0.0013 0.0012 0.0011 0.0014 0.0011
Module 3 0.0014 0.0014 0.0012 0.0014 0.0014 0.0011 0.0013 0.0011 0.0015
Module 4 0.0013 0.0012 0.0012 0.0014 0.0015 0.0014 0.0013 0.0014 0.0010
Module 5 0.0011 0.0014 0.0014 0.0012 0.0010 0.0012 0.0014 0.0013 0.0014
Module 6 0.0011 0.0012 0.0013 0.0013 0.0013 0.0013 0.0012 0.0015 0.0014
Module 7 0.0011 0.0011 0.0013 0.0010 0.0012 0.0011 0.0011 0.0010 0.0014

Table A3. The comparison of SoC estimation error of cell modules for two cases: the first and second
order dynamic models of the cell at 25 ◦C.

Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 Module 7

The first order
dynamic model 1% 1% 1% 1% 1.2% 0.9% 2%

The second order
dynamic model 0.17 % 0.4% 0.15% 0.5% 0.17% 0.02% 0.17%
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